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RIESZ SPACES OF MEASURES ON SEMIRINGS

Z. Ercan

Abstract. It is shown that the spaces of finite valued signed measures (signed charges) on
σ-semirings (semirings) are Dedekind complete Riesz spaces, which generalizes known results on
σ-algebra and algebra cases.

In the literature, to the best of my knowledge, in measure theory there are
two (slightly) different definitions of a “semiring” as a collection of subsets of a
nonempty set with certain conditions. The notion of a “semiring” has first been
defined in [2] as a nonempty collection T of a nonempty set X which satisfies, for
each A,B ∈ T , that A ∩ B ∈ T and A − B =

⋃
n Cn for some pairwise disjoint

sequence (Cn) in T (see also [5]). In [1], a nonempty set T of subsets of a nonempty
set X is called a semiring on X if it is closed under finite intersections and for each
A,B ∈ T there are pairwise disjoint sets C1, C2, . . . , Cn such that A−B =

⋃n
i=1 Ci.

In this paper we use the notion of a semiring as in the later sense. A semiring T
on X is called a semi-algebra if X ∈ T (see [4]). Of course algebras and σ-rings are
semirings and there are plenty of examples of semirings which are not an algebra
or a σ-ring.

A subset A of X is called a σ-set in a semiring S on X if A =
⋃∞

n=1 An for
some disjoint sequence (An) in S. It is easy to see that if A, A1, A2, . . . , An are in
a semiring then A −⋃n

i=1 Ai is a σ-set, but if A ∈ S and (An) is a sequence in S
then A−⋃∞

n=1 An may not be a σ- set.
Example 1. i) Let X = [0, 1) and T = {[a, b) : 0 ≤ a ≤ b ≤ 1} is a semiring

on X, but {0} = X −⋃
n[1/n, 1) is not a σ-set in T .

ii) Let X be a countable infinite set, T = {{x} : x ∈ X} ∪ {∅}. For each
A,A1, A2, · · · ∈ T , A−⋃

n An is a σ-set, but T is neither an algebra nor a σ-ring.
This observation let us to introduce the following notion.

Definition 1. A semiring S on X is called a σ-semiring on a set X if for
each A ∈ S and for each sequence (An) in S the set A−⋃

n An is a σ- set.
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It should be noted that for sequences (An), (Bn) in a σ-semiring S there exists
a disjoint sequence (Cn) in S such that

⋃
n

An −
⋃
n

Bn =
⋃
n

Cn.

If µ is a measure on S and
⋃

n An ⊂
⋃

n Bn then
∑
n

µ(An) ≤ ∑
n

µ(Bn).

For unknown definitions we refer to standard books [1] and [5].

1. The spaces of signed measures and charges as Riesz spaces

A map µ : S → R, where S is a semiring on a set X, is called a signed measure
if it is the difference of two positive measures. Let Σ be a σ-algebra on a set X and
let

M(Σ) = {µ : µ : Σ −→ R is a signed measure }.
It is well known that under the operations

(µ1 + µ2)(A) = µ1(A) + µ2(A), (αµ)(A) = αµ(A)

µ1 ≤ µ2 ⇔ µ1(A) ≤ µ2(A) for all A ∈ Σ

M(Σ) is a Dedekind complete Riesz space and for any µ, ν ∈ M(Σ) the supremum
of µ and ν is determined by the formula

(µ ∨ ν)(A) = sup{µ(B) + ν(A−B) : B ∈ Σ and B ⊂ A}
(see [1] for a proof). The main result of this paper is to give a generalization of
this as follows.

Theorem 1. Let S be a σ-semiring on a set X and let

M(S) = {µ : µ : S −→ R is a signed measure}.
Under the operations

(µ1 + µ2)(A) = µ1(A) + µ2(A), (αµ)(A) = αµ(A)

µ1 ≤ µ2 ⇔ µ1(A) ≤ µ2(A) for all A ∈ S
M(S) is a Dedekind complete Riesz space and for any 0 ≤ µ, ν ∈ M(S) the supre-
mum of µ, ν is given by

w(A) = sup
{ ∞∑

n=1
µ(An) +

∞∑
n=1

ν(Bn) : (An), (Bn) are disjoint in S,

⋃
n

An ⊂ A and A−
∞⋃

n=1

An =
∞⋃

n=1

Bn

}
.



Riesz spaces of measures on semirings 237

Proof. Firstly let 0 ≤ µ, ν ∈ M(S) be given and w(A) be defined as above.
It is easy to see that w(A) ≥ 0 for each A ∈ S and w(∅) = 0. Let {An} be
a disjoint sequence in S satisfying

⋃∞
n=1 An = A ∈ S. Let (Bn) be a disjoint

sequence in S with
⋃∞

n=1 Bn ⊂ A and choose a disjoint sequence (Cn) in S such
that A −⋃∞

n=1 Bn =
⋃∞

n=1 Cn. For each m, let (Tn
m) be a disjoint sequence in S

satisfying
∞⋃

n=1

(Cn ∩Am) ⊂ Am −
∞⋃

n=1

(Bn ∩Am) =
∞⋃

n=1

Tn
m

which implies ∑
n

ν(Cn ∩Am) ≤ ∑
n

ν(Tn
m).

Also we have
∑
n

µ(Bn) +
∑
n

ν(Cn) =
∑
n

µ(
⋃

m(Bn ∩Am)) +
∑
n

ν(
⋃

m(Cn ∩Am))

=
∑
n

∑
m

µ(Bn ∩Am) +
∑
n

∑
m

ν(Cn ∩Am)

=
∑
m

(
∑
n

µ(Bn ∩Am) +
∑
n

ν(Cn ∩Am))

≤ ∑
m

(
∑
n

µ(Bn ∩Am) +
∑
n

ν(Tn
m))

≤ ∑
m

w(Am),

so that
w(

⋃
n

An) ≤ ∑
m

w(An).

For the converse direction let ε > 0. For each n choose a disjoint sequences
(Bm

n), (Tm
n) in S satisfying

⋃
m

Bm
n ⊂ An and An −

⋃
m

Bm
n =

⋃
m

Tm
n

such that
w(An)− ε/2n ≤ ∑

m
µ(Bm

n) +
∑
m

ν(Tm
n).

So ∑
n

w(An)− ε ≤ ∑
n

∑
m

µ(Bm
n) +

∑
n

∑
m

ν(Tm
n).

Note that for each i, j, m, n

Bm
n ∩ Ti

j = ∅ and
⋃
n

⋃
m

Bm
n ⊂

⋃
n

An

and there exists a disjoint sequence (Cn) in S such that
⋃
n

⋃
m

Tm
n ⊂

⋃
n

An −
⋃
n

⋃
m

Bm
n =

⋃
m

Cm
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and ∑
n

∑
m

µ(Tm
n) ≤ ∑

m
µ(Cm).

Now it is clear that ∑
n

w(An)− ε ≤ w(
⋃

n An).

Since ε > 0 is arbitrary, we have

w(
⋃
n

An) =
∑
n

w(An).

So far we have shown that w is an upper bound of µ, ν in M(S). Now suppose that
β is another upper bound of µ, ν. Let A ∈ S and (An), (Bn) be arbitrary disjoint
sequence in S with

⋃
n

An ⊂ A and A−
⋃
n

An =
⋃

Bn

and
∑
n

µ(An) +
∑
n

ν(Bn) ≤ ∑
n

β(An) +
∑

β(Bn) = β(
⋃

n An ∪
⋃

n Bn) = β(A)

which implies that w ≤ β in M(S). We have proved that µ ∨ ν exists for each
0 ≤ µ, ν ∈ M(

∑
). Let µ, ν ∈ M(S) with α ≤ ν, µ for some measure −α. Now it is

routine to check that
(µ− α) ∨ (ν − α) + α

is least upper bound on µ and ν, i.e. µ∨ ν exists. Hence M(S) is a Riesz space. If
µα ↑≤ µ we define µ∞(A) = supαµα(A) then it is easy to show that µ∞ ∈ M(S)
and µα ↑ µ∞, which proves that M(S) is Dedekind complete.

It is known that if A is an algebra on a set X, then the vector space

C(A) = {µ : µ : A −→ R is a signed charge}
is a vector lattice under pointwise order and supremum of µ, ν ∈ C(A) is given by

µ ∨ ν(A) = w(A) = sup{µ(B) + ν(A−B) : B ∈ A and B ⊂ A}
(see [2] for a proof). This result can be generalized as follows and its proof is similar
to the proof of the above theorem.

Theorem 2. Let A be a semiring (not necessarily a σ-semiring) on X. Then

M(Σ) = {µ : µ : A −→ R is a signed charge}
is a Dedekind complete vector lattice under usual operations and supremum of any
µ, ν is given by

(µ ∨ ν)(A) = sup
{ k∑

i=1

µ(Ai) +
k∑

i=1

ν(Bi) : Ai, Bi ∈ A,
⋃k

i=1 Ai ⊂ A and

A−
k⋃

i=1

Ai =
k⋃

i=1

Bi, Ai ∩Aj = Bi ∩Bj = φ for all i 6= j
}

.
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