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ON ε-APPROXIMATION AND FIXED POINTS
OF NONEXPANSIVE MAPPINGS IN METRIC SPACES

T. D. Narang and Sumit Chandok

Abstract. Using fixed point theory, B. Brosowski [2] proved that if T is a nonexpansive
linear operator on a normed linear space X, C a T -invariant subset of X and x a T -invariant
point, then the set PC(x) of best C-approximant to x contains a T -invariant point if PC(x) is
non-empty, compact and convex. Subsequently, many generalizations of the Brosowski’s result
have appeared. We also obtain some results on invariant points of a nonexpansive mapping for the
set of ε-approximation in metric spaces thereby generalizing and extending some known results
including that of Brosowski, on the subject.

Using fixed point theory, the theorem of Meinardus [6] on invariant approxi-
mation was generalized by Brosowski [2] who proved that if T is a nonexpansive
linear operator on a normed linear space X, C a T -invariant subset of X and x
a T -invariant point, then the set PC(x) of best C-approximant to x contains a T -
invariant point if PC(x) is non-empty, compact and convex. Subsequently, various
generalizations of Brosowski’s result have appeared (see e.g. [5]). In the present
work we also obtain some results on invariant points of a nonexpansive mapping
T on the set of ε-approximation in metric spaces. Our results contain some of the
results of [1], [2], [5], [6], [7], [8], [11] and [12].

To begin with, we recall a few definitions.
Let G be a non-empty subset of a metric space (X, d), x ∈ X and ε > 0. An

element g◦ ∈ G is said to be (s.t.b.) an ε-approximation or ε-approximant to x
(respectively, ε-coapproximation or ε-coapproximant to x) if d(x, g◦) ≤ d(x, g) + ε
(respectively, d(g◦, g) + ε ≤ d(x, g)) for all g ∈ G, i.e. (d(x, g◦) ≤ d(x,G) + ε
(respectively, d(g◦, g) + ε ≤ d(x,G)). We shall denote by PG(x, ε) (respectively,
RG(x, ε)) the set of all ε-approximant (respectively, ε-coapproximant) to x, i.e.
PG(x, ε) = {g◦ ∈ G : d(x, g◦) ≤ d(x,G) + ε} (respectively, RG(x, ε) = {g◦ ∈ G :
d(g◦, g) + ε ≤ d(x,G)}). For ε = 0, the set PG(x, ε) (respectively, RG(x, ε)) is the
set of best approximations (respectively, best coapproximations) of x in G.
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For ε > 0, the set PG(x, ε) is always a non-empty bounded set and is closed if G
is closed. In normed linear spaces, the elements of ε-approximation were introduced
by R.C. Buck (who used the term ‘good approximation’ for such elements) and
subsequently, the study was taken up by others (see, e.g. [10]).

A sequence 〈gn〉 in G is said to be ε-minimizing for x if limn→∞ d(x, gn) ≤
d(x,G) + ε. The set G is said to be ε-approximatively compact (see [7]) if for each
x ∈ X, each ε-minimizing sequence has a subsequence converging to an element
of G.

If a mapping T : X → X leaves subset G of X invariant, then the restriction
of T to G is denoted by T/G.

If G is a closed subset of X then T : G → G is called a compact mapping [5] if
for every bounded subset A of G, T (A) is compact in G.

A mapping T : X → X is s.t.b.
a) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X,
b) contraction if there exists α, 0 ≤ α < 1 such that d(Tx, Ty) ≤ αd(x, y) for

all x, y ∈ X.
A mapping T : X → X satisfies condition (A) (see [7]) if d(Tx, y) ≤ d(x, y) for

all x, y ∈ X.
A family of maps {fα : α ∈ G} is s.t.b. a G-convex structure (see [3]), if
i. fα : [0, 1] → G, i.e. fα is a mapping from [0, 1] into G for each α ∈ G;
ii. fα(1) = α for each α ∈ G;
iii. fα(t) is jointly continuous in (α, t), i.e. fα(t) → fα◦(t◦) for α → α◦ in G

and t → t◦ in [0, 1], and
iv. d(fα(t), fβ(t)) ≤ Φ(t)d(α, β) where Φ: (0, 1) → (0, 1).
For a metric space (X, d), a continuous mapping W : X × X × [0, 1] → X is

s.t.b. convex structure on X if for all x, y ∈ X and λ ∈ [0, 1], we have

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

for all u ∈ X. The metric space (X, d) with convex structure is called a convex
metric space [14].

A subset K of a convex metric space (X, d) is s.t.b. a convex set [14] if
W (x, y, λ) ∈ K for all x, y ∈ K and λ ∈ [0, 1].

The set K is said to be starshaped (or p-starshaped) [4] if there exists a p ∈ K
such that W (x, p, λ) ∈ K for all x ∈ K and λ ∈ [0, 1].

Clearly, each convex set is starshaped but not conversely.
A convex metric space (X, d) is said to satisfy Property (I) [4] if for all x, y, p ∈

X and λ ∈ [0, 1],
d(W (x, p, λ),W (y, p, λ)) ≤ λd(x, y).

A normed linear space and each of its convex subsets are simple examples of
convex metric spaces. There are many convex metric spaces which are not normed
linear spaces (see [14]). Property (I) is always satisfied in a normed linear space.
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A more general class of sets containing the starshaped sets is called ‘contrac-
tive’.

A subset K of a metric space (X, d) is s.t.b. contractive if there exists a se-
quence 〈fn〉 of contraction mappings of K into itself such that fny → y for each
y ∈ K.

In a convex metric space (X, d) satisfying Property (I), every starshaped set
is contractive can be seen as below.

Suppose K is starshaped with respect to p ∈ K. Define fn : K → K as

fn(y) = W (y, p, 1− 1
n

), n = 1, 2, 3, . . .

Consider, d(y, fny) = d(y, W (y, p, 1− 1
n )) ≤ (1− 1

n )d(y, y)+ 1
nd(y, p) → 0 as n →∞.

Thus fny → y for all y ∈ K. Moreover,

d(fnx, fny) = d(W (x, p, 1− 1
n

),W (y, p, 1− 1
n

)) ≤ (1− 1
n

)d(x, y)

for all x, y ∈ K, i.e. 〈fn〉 is a sequence of contraction mappings.
The following result dealing with the structure of the set PG(x, ε) will be used

in the sequel.

Lemma. If G is an ε-approximatively compact set in a metric space (X, d)
then PG(x, ε) is a non-empty compact set.

Proof. By the definition of d(x,G), we can find g◦ ∈ G such that d(x, g◦) ≤
d(x,G) + ε and so PG(x, ε) is non-empty.

Let 〈gn〉 be a sequence in PG(x, ε), i.e. d(x, gn) ≤ d(x,G)+ε for all n = 1, 2 . . .
and so

lim
n→∞

d(x, gn) ≤ d(x,G) + ε (1)

i.e. 〈gn〉 is ε-minimizing sequence in G. Since G is ε-approximatively compact,
〈gn〉 has a subsequence 〈gni〉 → g◦ ∈ G. So (1) implies d(x, g◦) ≤ d(x,G) + ε, i.e.
g◦ ∈ PG(x, ε) and so PG(x, ε) is compact.

The following result which deals with invariance of ε-approximations for non-
expansive mappings improves and generalizes Theorem 2.1 of [8].

Theorem 1. Let T be a self mapping on a metric space (X, d), G a T -
invariant subset of X and x a T -invariant point. If the set D of ε-approximant to
x is a compact set with D-convex structure and T is nonexpansive on D∪{x}, then
D contains a T -invariant point.

Proof. Since D = {y ∈ G : d(x, y) ≤ d(x,G)+ ε}, T : D → D. In fact if y ∈ D,
then

d(x, Ty) = d(Tx, Ty) ≤ d(x, y) ≤ d(x,G) + ε

and so Ty ∈ D.
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Let 〈kn〉, 0 ≤ kn < 1 be a sequence of real numbers such that kn → 1 as
n →∞. Define Tn as Tnz = fTz(kn), z ∈ D. Since T (D) ⊆ D and 0 ≤ kn < 1, we
have that each Tn is a well defined and maps D into D. Moreover, for all y, z ∈ D

d(Tny, Tnz) = d(fTy(kn), fTz(kn))

≤ Φ(kn)d(Ty, Tz) ≤ Φ(kn)d(y, z),

and so each Tn is a contraction mapping on D. Since D is compact, it follows from
Banach Contraction Principle that each Tn has a unique fixed point xn ∈ D, i.e.
Tnxn = xn for each n. Since D is compact, 〈xn〉 has a subsequence xni

→ x̄ ∈ D.
We claim that T x̄ = x̄. Consider

xni
= Tni

xni
= fTxni

(kni
) → fT x̄(1).

As the family {fα} is jointly continuous and T being nonexpansive, is continuous.
Thus xni → T x̄. Therefore T x̄ = x̄ i.e. x̄ ∈ D is T -invariant.

For ε = 0, we have

Corollary 1. Let T be mapping on a metric space (X, d), G a T -invariant
subset of X and x a T -invariant point. If the set D of best G-approximant to x is
compact set with D-convex structure and T is nonexpansive on D ∪ {x}, then D
contains a T -invariant point.

The above corollary improves and generalizes Theorem 2 of [7].
In view of the Lemma, we have

Corollary 2. Let T be mapping on a metric space (X, d), G an ε-
approximatively compact (approximatively compact) and T -invariant subset of X
and x a T -invariant point. If the set D of ε-approximant (best approximant) to
x has convex structure and T is nonexpansive on D ∪ {x}, then D contains a
T -invariant point.

Theorem 2. Let T be a self mapping on a metric space (X, d), G a T -
invariant subset of X and x a T -invariant point. If the set D of ε-approximant to
x is compact, contractive and T is nonexpansive on D ∪ {x}, then D contains a
T -invariant point.

Proof. Since D = {y ∈ G : d(x, y) ≤ d(x,G)+ ε}, T : D → D. In fact if y ∈ D,
then

d(x, Ty) = d(Tx, Ty) ≤ d(x, y) ≤ d(x,G) + ε

and so Ty ∈ D. Since D is contractive, there exists a sequence 〈fn〉 of contraction
mapping of D into itself such that fnz → z for every z ∈ D.

We claim that z◦ is a fixed point of T . Let ε > 0 be given. Since zni → z◦ and
fnTz◦ → Tz◦, there exist a positive integer m such that for all ni ≥ m

d(zni , z◦) <
ε

2
and d(fniTz◦, T z◦) <

ε

2
.
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Again,
d(fni

Tzni
, fni

Tz◦) ≤ d(zni
, z◦) <

ε

2
.

Hence, d(fni
Tzni

, T z◦) ≤ d(fni
Tzni

, fni
Tz◦) + d(fni

Tz◦, T z◦) < ε
2 + ε

2 , i.e.
d(fni

Tzni
, T z◦) < ε for all ni ≥ m and so fni

Tzni
→ Tz◦. But fni

Tzni
= zni

→ z◦
and therefore Tz◦ = z◦.

Using the Lemma we have

Corollary 3. Let T be a self mapping on a metric space (X, d), G an ε-
approximatively compact, T -invariant subset of X and x a T -invariant point. If
the set D of ε-approximant to x is contractive and T is nonexpansive on D ∪ {x},
then D contains a T -invariant point.

Corollary 4. Let T be mapping on a convex metric space (X, d) satisfying
Property (I), G a T -invariant subset of X and x a T -invariant point. If the set D
of ε-approximant to x is compact, starshaped and T is nonexpansive on D ∪ {x},
then D contains a T -invariant point.

Proof. As in Theorem 2, T is a self map on D. Since D is non-empty and
starshaped, there exists p ∈ D such that W (z, p, λ) ∈ D for all z ∈ D, λ ∈ I = [0, 1].
Let 〈kn〉, 0 ≤ kn < 1 , be a sequence of real numbers such that kn → 1 as n →∞.
Define Tn as Tn(z) = W (Tz, p, kn), z ∈ D. Since T is a self map on D and D is
starshaped, each Tn is a well defined and maps D into D. Moreover,

d(Tny, Tnz) = d(W (Ty, p, kn),W (Tz, p, kn)) ≤ knd(Ty, Tz) ≤ knd(y, z),

i.e. each Tn is a contraction mapping on the compact set D. So by Banach Con-
traction Principle each Tn has a unique fixed point xn ∈ D, i.e. Tnxn = xn for
each n. Since D is compact, 〈xn〉 has a subsequence xni → x̄ ∈ D. We claim that
T x̄ = x̄. Consider,

d(xni , T x̄) = d(Tnixni , T x̄) = d(W (Txni , p, kni), T x̄)

≤ knid(Txni , T x̄) + (1− kni)d(p, T x̄)

≤ knid(xni , x̄) + d(1− kni)d(p, T x̄) → 0,

and so xni → T x̄. Therefore T x̄ = x̄, i.e. x̄ is T -invariant.
Remarks 1. (i) Since in a convex metric space (X, d) satisfying Property (I)

every starshaped set is contractive, the result also follows from Theorem 2.
(ii) Corollary 3 generalizes Theorem 2 of [11] which is a generalization of The-

orem of Brosowski [2] as well as of Singh [12].
(iii) Since a Banach space is a convex metric space with Property (I) and D is

compact if G is ε-approximatively compact. Theorem 2.2 of [8] is a particular case
of Corollary 4.

Clearly, fnT is a contraction on the compact set D for each n and so by Banach
contraction principle, each fnT has a unique fixed point, say zn in D. Now the
compactness of D implies that the sequence 〈zn〉 has a subsequence zni → z0 ∈ D.
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For ε = 0, we derive the following known results as corollaries.

Corollary 5. Let T be a self mapping on a convex metric space (X, d)
satisfying Property (I), G a T -invariant subset of X and x a T -invariant point. If
the set D of best G-approximant to x is non-empty compact and starshaped and T
is nonexpansive on D ∪ {x}, then D contains a T -invariant point.

Corollary 6. [12]. Let T be a nonexpansive mapping on a normed linear
space X. Let G be a T -invariant subset of X and x a T -invariant point in X. If
D, the set of best G-approximant to x is non-empty compact and starshaped, then
it contains a T -invariant point.

Corollary 7. [13] Let X be a normed linear space and T : X → X be a non-
expansive mapping. Let T have a fixed point, say x, and leaves a finite-dimensional
subspace G of X invariant. Then T has a fixed point which is a best G-approximant
to x in G.

Since in this case the set D is non-empty and compact, the result follows from
Corollary 6.

Theorem 3. Let T be a self mapping on a convex metric space (X, d) satisfying
Property (I). Suppose G is a closed T -invariant subset of X, T/G is compact and
x a T -invariant point. If the set D of ε-approximant to x is starshaped and T is
nonexpansive on D ∪ {x}, then D contains a T -invariant point.

Proof. As in the proof of Theorem 2, D is T -invariant. Now D is a bounded
subset of G and T/G is compact so T (D) is compact. Since D is closed and
starshaped, by Theorem 3 [1] T has a fixed point in D.

For ε = 0 , Theorem 3 improves Theorem 10 of [1] and also generalizes Theorem
4 of [5].

Now we give a result for T -invariant points in the set of ε-coapproximations in
G for a given element x of a metric space (X, d).

Theorem 4. Let T be a self map satisfying condition (A) on a convex metric
space (X, d) satisfying Property (I), G a subset of X such that RG(x, ε) is non-
empty compact, starshaped and T is nonexpansive on RG(x, ε). Then there exists
a g◦ ∈ RG(x, ε) such that Tg◦ = g◦.

Proof. Let g◦ ∈ RG(x, ε). Consider

d(Tg◦, g) + ε ≤ d(g◦, g) + ε ≤ d(x,G)

and so Tg◦ ∈ RG(x, ε) i.e. T : RG(x, ε) → RG(x, ε). Now proceeding as in
Corollary 4, we shall get g◦ ∈ RG(x, ε) which is a fixed point for T .

Remarks 2. (i) Taking ε = 0, we see that Theorem 4 improves and generalizes
Theorem 4.1 of [8].
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(ii) Proceeding as in Theorem 1, one can show that Theorem 4 holds if star-
shapedness of RG(x, ε) is replaced by the condition that RG(x, ε) is a set with
convex structure.

(iii) Results similar to those proved in the earlier part of the paper can be
proved for the set of ε-coapproximations.

(iv) Theorem 4.2 of [8] on strong best coapproximation can also be proved for
convex metric space under relaxed conditions as in Theorem 4.

Acknowledgement. The authors are thankful to the referee for valuable
comments leading to improvements of the paper.
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