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ε-APPROXIMATION IN GENERALIZED 2-NORMED SPACES

Mehmet Açıkgöz

Abstract. The notion of generalized 2-normed spaces was introduced by Lewandowska in
1999 [5]. One can obtain a generalized 2-normed space from a normed space. We shall define the
notions of 1-type ε-quasi Chebyshev subspaces and give some results in this field.

1. Introduction

The concept of linear 2-normed spaces has been investigated by Gahler in
1965 [3] and has been developed extensively in different subjects by others. Z.
Lewandowska published a series of papers on 2-normed sets and generalized 2-
normed spaces in 1999–2003 [5]–[9]. There are some works on characterization of
2-normed spaces, extension of 2-functionals and approximation in 2-normed spaces
([1], [2] and [4]). Also Sh. Rezapour has some works in ε-approximation theory
[10]–[12].

Let X be a linear space of dimension greater than 1 over K, where K is the
real or complex numbers field. Suppose ‖·, ·‖ be a non-negative real-valued function
on X ×X satisfying the following conditions:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent vectors.
(ii) ‖x, y‖ = ‖y, x‖ for all x, y ∈ X.
(iii) ‖λx, y‖ = |λ| ‖x, y‖ for all λ ∈ K and all x, y ∈ X.
(iv) ‖x + y, z‖ ≤ ‖x, z‖+ ‖y, z‖ for all x, y, z ∈ X.
Then ‖·, ·‖ is called a 2-norm on X and (X, ‖·, ·‖) is called a linear 2-normed

space. Every 2-normed space is a locally convex topological vector space. In fact
for a fixed b ∈ X, pb (x) = ‖x, b‖ for all x ∈ X, is a seminorm and the family P =
{pb : b ∈ X} generates a locally convex topology on X. There are no remarkable
relations between normed spaces and 2-normed spaces and we can not construct a
2-norm by using a norm.
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Definition 1. ([5] and [7]) Let X and Y be linear spaces, D be a non-empty
subset of X × Y such that for every x ∈ X, y ∈ Y the sets

Dx = {y ∈ Y : (x, y) ∈ D} , Dy = {x ∈ X : (x, y) ∈ D}
are linear subspaces of the spaces Y and X, respectively. A function ‖·, ·‖ : D −→
[0,∞) is called a generalized 2-norm on D if it satisfies the following conditions:

(N1) ‖x, αy‖ = |α| ‖x, y‖ = ‖αx, y‖, for all (x, y) ∈ D and every scalar α.
(N2) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖, for all (x, y) , (x, z) ∈ D.
(N3) ‖x + y, z‖ ≤ ‖x, z‖+ ‖y, z‖, for all (x, z) , (y, z) ∈ D.
Then (D, ‖·, ·‖) is called a 2-normed set. In particular, if D = X × Y ,

(X × Y, ‖·, ·‖) is called a generalized 2-normed space. Moreover, if X = Y , then
the generalized 2-normed space is denoted by (X, ‖·, ·‖).

For example, let A be a Banach algebra and ‖a, b‖ = ‖ab‖ for all a, b ∈ A.
Then, (A, ‖·, ·‖) is a generalized 2-normed space.

Let us consider linear spaces X and Y and D ⊆ X×Y a 2-normed set. A map
f : D −→ R is called 2-linear if it satisfies the following conditions [5]–[9]:

(i) f (x1 + x2, y1 + y2) = f (x1, y1) + f (x1, y2) + f (x2, y1) + f (x2, y2), for all
(x1, y1) , (x2, y2) ∈ D.

(ii) f (δx, λy) = δλf (x, y) for all scalars δ, λ and (x, y) ∈ D.
A 2-linear map f is said to be bounded if there exists a non-negative real

number M such that ‖f (x, y)‖ ≤ M ‖x, y‖ for all (x, y) ∈ D. Also, the norm of a
2-linear map f is defined by

‖f‖ = inf {M ≥ 0 : ‖f (x, y)‖ ≤ M ‖x, y‖ for all (x, y) ∈ D} .

2. ε-approximation in generalized 2-normed spaces

Definition 2. Let (X × Y, ‖·, ·‖) be a generalized 2-normed space, W be a
subpace of X, 0 6= y ∈ Y and ε > 0 be given.

(i) w0 ∈ W is called ε-best approximation of x ∈ X in W respect to y, if

‖x− w0, y‖ ≤ inf {‖x− w, y‖ : w ∈ W}+ ε.

The set of all ε-best approximations of x in W respect to y is denoted by P y
W,ε (x).

Note that every subspace W of X is ε-proximinal, that is P y
W,ε (x) is nonempty

for all x ∈ X and all y ∈ Y .
(ii) W is called 1-type ε-pseudo Chebyshev if P y

W,ε (x) is finite dimensional for
all x ∈ X and all 0 6= y ∈ Y . Also, W is called 1-type ε-quasi Chebyshev if P y

W,ε (x)
is compact in (X, py) for all x ∈ X and all 0 6= y ∈ Y .

(iii) Let y be a non-zero element of Y and 〈y〉 be the subspace of Y generated
by y. A mapping f : W × 〈y〉 −→ R is called y-subadditive if

f (w1 + w2, y) ≤ f (w1, y) + f (w2, y) and f (w1, λy) = λf (w1, y)

for all w1, w2 ∈ W and for every scalar λ.
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A y-subadditive map f is said to be bounded if there exists a non-negative real
number M such that |f (w, t)| ≤ M ‖w, t‖ for all w ∈ W and all t ∈ 〈y〉. Also, the
norm of a y-subadditive map f is defined by

‖f‖ = inf {M ≥ 0 : |f (w, t)| ≤ M ‖w, t‖ for all (w, t) ∈ W × 〈y〉} .

We will denote by S (W, y) the set of all bounded y-subadditive maps on Wx〈y〉.
Theorem 1. Let (X × Y, ‖·, ·‖) be a generalized 2-normed space, x ∈ X, W

be a subspace of X, w0 ∈ W , 0 6= y ∈ Y and ε > 0 be given. Then, w0 ∈ P y
W,ε (x)

if and only if there exists f ∈ S (X, y) such that f |W×〈y〉= 0, ‖f‖ = 1 and
f (x− w0, y) ≥ ‖x− w0, y‖ − ε.

Proof. First suppose that there exists f ∈ S (X, y) such that f |W×〈y〉= 0,
‖f‖ = 1 and f (x− w0, y) ≥ ‖x− w0, y‖ − ε. Then ‖x− w0, y‖ ≤ f (x0 − w0, y) +
ε = f (x− w, y) + ε ≤ ‖x− w, y‖ · ‖f‖ + ε = ‖x− w, y‖ + ε for all w ∈ W .
Hence, w0 ∈ P y

W,ε (x). Conversely, define f (x, t) = inf {‖x− w, t‖ : w ∈ W}. Then,
f ∈ S (X, y), f |W×〈y〉= 0, ‖f‖ = 1 and f (x− w0, y) + ε ≥ ‖x− w0, y‖.

Theorem 2. Let (X × Y, ‖·, ·‖) be a generalized 2-normed space, x ∈ X, W
be a subspace of X, w0 ∈ W , 0 6= y ∈ Y and ε > 0 be given. Then, M ⊆ P y

W.ε (x)
if and only if there exists f ∈ S (X, y) such that f |W×〈y〉= 0, ‖f‖ = 1 and
f (x− w, y) ≥ ‖x− w, y‖ − ε for all m ∈ M .

Proof. Let M ⊆ P y
W,ε (x) and choose w0 ∈ P y

W,ε (x) with ‖x− w0, y‖ = λ + ε,
λ = inf {‖x− w, y‖ : w ∈ W}. By Theorem 1, there exists f ∈ S (X, y) such that
f |W×〈y〉= 0, ‖f‖ = 1 and f (x− w0, y) ≥ ‖x− w0, y‖ − ε. Then, f (x−m, y) =
f (x− w0, y) ≥ ‖x− w0, y‖ − ε = λ ≥ ‖x−m, y‖ − ε, for all m ∈ M .

Definition 3. Let (X × Y, ‖·, ·‖) be a generalized 2-normed space, 0 6= y ∈ Y ,
ε > 0 be given and f ∈ S (X, y). Define

My
f,ε = {x ∈ X : f (x, y) ≥ ‖x, y‖ − ε, ‖x, y‖ ≤ 1 + ε} .

Theorem 3. Let (X × Y, ‖·, ·‖) be a generalized 2-normed space, W be a
subspace of X, and ε > 0 be given.

(i) W is 1-type ε-pseudo Chebyshev if and only if there do not exist 0 6= y ∈ Y ,
f ∈ S (X, y), x ∈ X with ‖x, y‖ ≤ 1 and infinitely many linearly independent
elements w1, w2, . . . in W such that f |W×〈y〉= 0, ‖f‖ = 1 and f (x− wn, y) ≥
‖x− w, y‖ − ε for all n ≥ 1

(ii) W is 1-type ε-quasi Chebyshev if and only if there do not exist 0 6= y ∈ Y ,
f ∈ S (X, y), x ∈ X with ‖x, y‖ ≤ 1 and a sequence {wn}n≥1 in W without
a convergent subsequence such that f |W×〈y〉= 0, ‖f‖ = 1 and f (x− wn, y) ≥
‖x− wn, y‖ − ε for all n ≥ 1.

Proof. (i) First assume that there exist 0 6= y ∈ Y , f ∈ S (X, y), x ∈ X
with ‖x, y‖ ≤ 1 and infinitely many linearly independent elements w1, w2, . . . in
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W such that f |W×〈y〉= 0, ‖f‖ = 1 and f (x− wn, y) ≥ ‖x− wn, y‖ − ε for
all n ≥ 1. It follows that dim P y

W,ε = ∞ and hence W is not 1-type ε-pseudo
Chebyshev subspace of X. Now, suppose that W is not 1-type ε-pseudo Chebyshev
subspace of X. Since P y

W,ε (λx) = λP y
W, ε

λ
(x) and P y

W,ε1
(x) ⊆ P y

W,ε2
(x) for all

0 < ε1 ≤ ε2, x ∈ X and λ > 0, there exists x ∈ X with ‖x, y‖ ≤ 1 such that
dim P y

W,ε = ∞. Hence, P y
W,ε contains infinitely many linearly independent elements

g1, g2, . . . . By Theorem 2, there exists f ∈ S (X, y) such that f |W×〈y〉= 0, ‖f‖ = 1
and f (x− gn, y) ≥ ‖x− gn, y‖ − ε for all n ≥ 1. The proof of part (ii) is similar
that of (i).

Theorem 4. Let (X × Y, ‖·, ·‖) be a generalized 2-normed space, W be a
subspace of X and ε > 0 be given. If My

f,ε is finite dimensional for all 0 6= y ∈ Y ,
and all f ∈ Λy =

{
h ∈ S (X, y) : ‖h‖ = 1 and h |W×〈y〉= 0

}
, then W is 1-type

ε-pseudo Chebyshev subspace of X.

Proof. Assume that W is not 1-type ε-pseudo Chebyshev subspace of X.
Then by Theorem 3, there exist 0 6= y ∈ Y , f ∈ S (X, y), x0 ∈ X with ‖x0, y‖ ≤
1 and infinitely many linearly independent elements w1, w2, . . . in W such that
‖f‖ = 1, f |W×〈y〉= 0, and f (x0 − wn, y) ≥ ‖x0 − wn, y‖ − ε for all n ≥ 1. Since
‖x0 − wn, y‖ ≤ f (x0 − wn, y) + ε = f (x0, y) + ε ≤ 1 + ε, x0 − wn ∈ My

f,ε for all
n ≥ 1. This is a contradiction.

Definition 4. Let (X × Y, ‖·, ·‖) be a generalized 2-normed space, 0 6= y ∈ Y ,
ε > 0 be given and let M be a subspace of S (X, y). For each x ∈ X, put

DM,y
x,ε = {t ∈ X : f (t, y) = f (x, y) for all f ∈ M and ‖t, y‖ ≤ ‖x, y‖M + ε} ,

where ‖x, y‖M = sup {|f (x, y)| : ‖f‖ ≤ 1, f ∈ M}.
It is clear that DM,y

x,ε is a non-empty, closed and convex subset of (X, py), for
all x ∈ X.

We say that M has the property (y, ε)− F ∗ if DM,y
x,ε is finite dimensional for

all x ∈ X. Also,we say that M has the property (y, ε) − C∗ if DM,y
x,ε is compact

for all x ∈ X.

Theorem 5. Let (X × Y, ‖·, ·‖) be a generalized 2-normed space, 0 6= y ∈ Y ,
W be a closed subspace of (X, pb), ε > 0 be given and let M0 = {f ∈ S (X, y) :
f |W×〈y〉= 0

}
. Then, dim P y

W,ε (x) < ∞ if and only if M0 has the property (y, ε)−
F ∗.

Proof. If DM0,y
x,ε = ∞ for some x ∈ X, then there exist infinitely many linearly

independent elements t1, t2, . . . in DM0,y
x,ε . Hence, t1 − t2 ∈ W for all n ≥ 1 and

‖t1 − (t1 − tn) , y‖ = ‖tn, y‖ = ‖x, y‖M0
+ ε = ‖t1 − (t1 − tn) , y‖M0

+ ε

for all n ≥ 1. Therefore, t1 − tn ∈ P y
W,ε (t1) for all n ≥ 1. Now, suppose that

dim P y
W,ε (x0) = ∞ for some x0 ∈ X. Then, there exist infinitely many linearly
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independent elements g1, g2, . . . in P y
W,ε (x0). It is easy to see that, ‖x0 − gn, y‖ ≤

‖x0 − gn, y‖M0
+ ε = ‖x0, y‖M0

+ ε for all n ≥ 1. It follows that x0 − gn ∈ DM0,y
x0,ε

for all n ≥ 1, which is a contradiction.

Theorem 6. Let (X × Y, ‖·, ·‖) be a generalized 2-normed space, 0 6= y ∈ Y ,
W be a closed subspace of (X, pb), ε > 0 be given and let M0 = {f ∈ S (X, y) :
f |W×〈y〉= 0

}
. Then, dim P y

W,ε (x) is compact if and only if M0 has the property
(y, ε)− C∗.
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