ON A UNIQUENESS THEOREM IN THE INVERSE STURM-LIOUVILLE PROBLEM

T. N. Harutyunyan

Abstract

We introduce new supplementary data to the set of eigenvalues, to determine uniquely the potential and boundary conditions of the Sturm-Liouville problem. As a corollary we obtain extensions of some known uniqueness theorems in the inverse Sturm-Liouville problem.

1. Introduction and statement of the result

Let $L(q, \alpha, \beta)$ denote the Sturm-Liouville problem

$$
\begin{gather*}
\ell y \equiv-y^{\prime \prime}+q(x) y=\mu y, \quad x \in(0, \pi), \quad \mu \in \mathbf{C} \tag{1.1}\\
y(0) \cos \alpha+y^{\prime}(0) \sin \alpha=0, \quad \alpha \in(0, \pi] \tag{1.2}\\
y(\pi) \cos \beta+y^{\prime}(\pi) \sin \beta=0, \quad \beta \in[0, \pi) \tag{1.3}
\end{gather*}
$$

where q is a real-valued, summable on $[0, \pi]$ function (we write $q \in L_{\mathbf{R}}^{1}[0, \pi]$). By $L(q, \alpha, \beta)$ we also denote the self-adjoint operator, generated by the problem (1.1)-(1.3). It is known, that the spectrum of $L(q, \alpha, \beta)$ is discrete and consists of simple eigenvalues (see [1], [2]), which we denote by $\mu_{n}(q, \alpha, \beta), n=0,1,2, \ldots$, emphasizing the dependence of μ_{n} on q, α and β.

Let $y=\varphi(x, \mu, \alpha, q)$ and $y=\psi(x, \mu, \beta, q)$ be the solutions of (1.1) with initial values

$$
\begin{aligned}
\varphi(0, \mu, \alpha, q) & =\sin \alpha, & \varphi^{\prime}(0, \mu, \alpha, q) & =-\cos \alpha \\
\psi(\pi, \mu, \beta, q) & =\sin \beta, & \psi^{\prime}(\pi, \mu, \beta, q) & =-\cos \beta .
\end{aligned}
$$

The eigenvalues μ_{n} of $L(q, \alpha, \beta)$ are the solutions of the equation

$$
\begin{align*}
\chi(\mu) & \stackrel{\text { def }}{=} \varphi(\pi, \mu, \alpha) \cos \beta+\varphi^{\prime}(\pi, \mu, \alpha) \sin \beta \\
& =-\left[\psi(0, \mu, \beta) \cos \alpha+\psi^{\prime}(0, \mu, \beta) \sin \alpha\right]=0 . \tag{1.4}
\end{align*}
$$

AMS Subject Classification: 34L20, 47E05.
Keywords and phrases: Inverse Sturm-Liouville problem; uniqueness theorem; spectral data.

It is easy to see, that $\varphi_{n}(x) \stackrel{\text { def }}{=} \varphi\left(x, \mu_{n}(q, \alpha, \beta), \alpha, q\right)$ and $\psi_{n}(x) \stackrel{\text { def }}{=}$ $\psi\left(x, \mu_{n}(q, \alpha, \beta), \beta, q\right), n=0,1,2, \ldots$, are the eigenfunctions, corresponding to the eigenvalue $\mu_{n}(q, \alpha, \beta)$. The squares of the L^{2}-norm of these eigenfunctions:

$$
\begin{equation*}
a_{n}=a_{n}(q, \alpha, \beta)=\int_{0}^{\pi} \varphi_{n}^{2}(x) d x \tag{1.5}
\end{equation*}
$$

are usually called the norming constants.
Since all eigenvalues are simple, there exist constants $c_{n}=c_{n}(q, \alpha, \beta), n=$ $0,1,2, \ldots$, such that

$$
\begin{equation*}
\varphi_{n}(x)=c_{n} \cdot \psi_{n}(x) \tag{1.6}
\end{equation*}
$$

The main result of this paper is the following "uniqueness" theorem (in inverse problem):

Theorem 1. If for all $n=0,1,2, \ldots$

$$
\begin{align*}
\mu_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right) & =\mu_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right) \tag{A}\\
c_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right) & =c_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right) \tag{B}
\end{align*}
$$

then $\alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$ and $q_{1}(x)=q_{2}(x)$ almost everywhere (a.e.) on $[0, \pi]$.
The problem $L(q, \alpha, \beta)$ is called "even" if $\alpha+\beta=\pi$ and $q(\pi-x)=q(x)$ a.e. on $[0, \pi]$.

Corollary. The problem $L(q, \alpha, \beta)$ is even if and only if $c_{n}(q, \alpha, \beta)=(-1)^{n}$.
The inverse Sturm-Liouville problems were stated and solved in different versions (see, for example, [3]-[18]). We will consider below the connections between some of the known uniqueness theorems and our Theorem 1 and its corollary (see $\S 5$, Theorems $\left.1^{\prime}, 2,2^{\prime}, 3\right)$.

2. Some preliminary results

Lemma 1. Let $(\alpha, \beta, q) \in(0, \pi] \times[0, \pi) \times L_{\mathbf{R}}^{1}[0, \pi]$. Then, for $n \geqslant 1$ (except $\left.\mu_{0}(\alpha, \beta, q)\right)$

$$
\begin{equation*}
\mu_{n}(\alpha, \beta, q)=\left[n+\delta_{n}(\alpha, \beta)\right]^{2}+[q]+r_{n}(\alpha, \beta, q) \tag{2.1}
\end{equation*}
$$

where $[q]=\frac{1}{\pi} \int_{0}^{\pi} q(x) d x$,

$$
\begin{aligned}
& \delta_{n}(\alpha, \beta)=\frac{1}{\pi}\left[\arccos \frac{\cos \alpha}{\sqrt{\left[n+\delta_{n}(\alpha, \beta)\right]^{2} \sin ^{2} \alpha+\cos ^{2} \alpha}}\right. \\
&\left.-\arccos \frac{\cos \beta}{\sqrt{\left[n+\delta_{n}(\alpha, \beta)\right]^{2} \sin ^{2} \beta+\cos ^{2} \beta}}\right]
\end{aligned}
$$

and $r_{n}=r_{n}(\alpha, \beta, q)=o(1)$, when $n \rightarrow \infty$, uniformly by $\alpha, \beta \in[0, \pi]$, and q from bounded subsets of $L_{\mathbf{R}}^{1}[0, \pi]$. The well-known asymptotics

$$
\begin{align*}
& \mu_{n}(\alpha, \beta, q)=n^{2}+\frac{2}{\pi}(\operatorname{ctg} \beta-\operatorname{ctg} \alpha)+[q]+\tilde{r}_{n}(\alpha, \beta, q), \quad \text { if } \sin \alpha \neq 0, \sin \beta \neq 0 \tag{2.2}\\
& \mu_{n}(\pi, \beta, q)=\left(n+\frac{1}{2}\right)^{2}+\frac{2}{\pi} \operatorname{ctg} \beta+[q]+\tilde{r}_{n}(\beta, q), \quad \text { if } \sin \beta \neq 0 \quad(\beta \in(0, \pi)) \tag{2.3}
\end{align*}
$$

$\mu_{n}(\alpha, 0, q)=\left(n+\frac{1}{2}\right)^{2}-\frac{2}{\pi} \operatorname{ctg} \alpha+[q]+\tilde{r}_{n}(\alpha, q)$, if $\sin \alpha \neq 0,(\alpha \in(0, \pi))$,

$$
\begin{equation*}
\mu_{n}(\pi, 0, q)=(n+1)^{2}+[q]+\tilde{r}_{n}(q) \tag{2.4}
\end{equation*}
$$

where $\tilde{r}_{n}=o(1)$ (but this estimate is not uniform in $(\alpha, \beta) \in[0, \pi]$), are the particular cases of (2.1). The sequence $\left\{\delta_{n}(\alpha, \beta)\right\}_{n=1}^{\infty}$ has the limit

$$
\delta_{\infty}(\alpha, \beta)= \begin{cases}0, & \text { if } \alpha, \beta \in(0, \pi) \tag{2.6}\\ \frac{1}{2}, & \text { if } \alpha=\pi, \beta \in(0, \pi) \text { or } \alpha(0, \pi), \beta=0 \\ 1, & \text { if } \alpha=\pi, \beta=0\end{cases}
$$

For the proof and the details of Lemma 1 see paper [19].
Let $y_{i}(x, \mu, q), i=1,2$, be the solutions of (1.1) with initial values

$$
\begin{aligned}
& y_{1}(0, \mu, q)=y_{2}^{\prime}(0, \mu, q)=1 \\
& y_{1}^{\prime}(0, \mu, q)=y_{2}(0, \mu, q)=0
\end{aligned}
$$

It is clear, that

$$
\begin{equation*}
\varphi(x, \mu, \alpha, q) \equiv y_{1}(x, \mu, q) \sin \alpha-y_{2}(x, \mu, q) \cos \alpha \tag{2.7}
\end{equation*}
$$

Lemma 2. 1) Let $q \in L_{\mathbf{C}}^{1}[0, \pi]$. Then

$$
\begin{align*}
y_{1}\left(x, \lambda^{2}, q\right)= & \cos \lambda x+\frac{\sin \lambda x}{2 \lambda} \int_{0}^{x} q(s) d s+ \\
& +\frac{1}{2 \lambda} \int_{0}^{x} q(s) \sin \lambda(x-2 s) d s+O\left(\frac{e^{|\operatorname{Im} \lambda| x}}{|\lambda|^{2}}\right) \tag{2.8}\\
y_{2}\left(x, \lambda^{2}, q\right)= & \frac{\sin \lambda x}{\lambda}-\frac{\cos \lambda x}{2 \lambda^{2}} \int_{0}^{x} q(s) d s+ \\
& +\frac{1}{2 \lambda^{2}} \int_{0}^{x} q(s) \cos \lambda(x-2 s) d s+O\left(\frac{e^{|\operatorname{Im} \lambda| x}}{|\lambda|^{3}}\right) \tag{2.9}
\end{align*}
$$

In particular (for real λ)

$$
\begin{array}{ll}
y_{1}\left(\pi, \lambda^{2}, q\right)=\cos \lambda \pi+\frac{\sin \lambda \pi}{2 \lambda} \int_{0}^{\pi} q(s) d s+o\left(\frac{1}{\lambda}\right), & \lambda \rightarrow+\infty \\
y_{2}\left(\pi, \lambda^{2}, q\right)=\frac{\sin \lambda \pi}{\lambda}-\frac{\cos \lambda \pi}{2 \lambda^{2}} \int_{0}^{\pi} q(s) d s+o\left(\frac{1}{\lambda^{2}}\right), & \lambda \rightarrow+\infty \tag{2.11}
\end{array}
$$

Also

$$
\begin{align*}
& y_{1}^{\prime}\left(x, \lambda^{2}, q\right)=-\lambda \sin \pi x+O\left(e^{|\operatorname{Im} \lambda| x}\right) \tag{2.12}\\
& y_{2}^{\prime}\left(x, \lambda^{2}, q\right)=\cos \lambda x+O\left(\frac{e^{|\operatorname{Im} \lambda| x}}{|\lambda|}\right) \tag{2.13}
\end{align*}
$$

2) For $\mu=-t^{2}=(i t)^{2} \rightarrow-\infty(t \rightarrow+\infty)$

$$
\chi(\mu)=\chi\left(-t^{2}\right)= \begin{cases}\frac{t e^{\pi t}}{2}\left[\sin \alpha \cdot \sin \beta+O\left(\frac{1}{t}\right)\right], & \text { if } \sin \alpha \neq 0, \sin \beta \neq 0 \tag{2.14}\\ \frac{e^{\pi t}}{2}\left[\sin \beta+O\left(\frac{1}{t}\right)\right], & \text { if } \sin \beta \neq 0, \alpha=\pi \\ \frac{e^{\pi t}}{2 t}\left[1+O\left(\frac{1}{t}\right)\right], & \text { if } \alpha=\pi, \beta=0\end{cases}
$$

3) Let $q \in L_{\mathbf{R}}^{1}[0, \pi]$. Then

$$
\begin{equation*}
\varphi(\pi, \mu, \alpha, q)=\sum_{n=0}^{\infty} \varphi\left(\pi, \mu_{n}, \alpha, q\right) \cdot \prod_{\substack{m \neq n \\ m=0}}^{\infty} \frac{\mu_{m}-\mu}{\mu_{m}-\mu_{n}} \tag{2.15}
\end{equation*}
$$

Proof. 1) The asymptotic formulae (2.8)-(2.13) are proved in detail in [19], or they are corollaries of the results of [19] (see also [8]). For $q \in L^{2}[0, \pi]$ they can be found in [10], [11] and other papers.
2) Relation (2.14) is the corollary of (1.4), (2.7) and (2.8)-(2.13).
3) For $q \in L_{\mathbf{R}}^{2}[0, \pi]$ (2.15) is proved in [11] (more detailed proof is presented in [17]). For $q \in L_{\mathbf{R}}^{1}[0, \pi]$ the proof is the same.

Now we establish some connections between spectral data. The following formula is well known (see, e.g., [18], (2.8))

$$
\int_{0}^{\pi} \varphi_{n}^{2}(x) d x=\varphi^{\prime}\left(\pi, \mu_{n}\right) \cdot \stackrel{\circ}{\varphi}\left(\pi, \mu_{n}\right)-\stackrel{\circ}{\varphi}_{\varphi}\left(\pi, \mu_{n}\right) \cdot \varphi\left(\pi, \mu_{n}\right)
$$

$\left.(\stackrel{\circ}{(x, \mu)})=\frac{\partial}{\partial \mu} f(x, \mu)\right)$ which is equivalent to (see $(1.4),(1.5,(1.6))$

$$
\begin{equation*}
a_{n}(q, \alpha, \beta)=-c_{n}(q, \alpha, \beta) \cdot \stackrel{\circ}{\chi}\left(\mu_{n}\right) \tag{2.16}
\end{equation*}
$$

By definition (1.6) we have, that $(\alpha \in(0, \pi])$

$$
\begin{equation*}
c_{n}(q, \alpha, \beta)=\frac{\varphi\left(\pi, \mu_{n}(q, \alpha, \beta), \alpha, q\right)}{\sin \beta}, \quad \sin \beta \neq 0 \quad(\beta \neq 0) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n}(q, \alpha, 0)=-\varphi^{\prime}\left(\pi, \mu_{n}(q, \alpha, 0), \alpha\right) \tag{2.18}
\end{equation*}
$$

The normalized eigenfunctions h_{n} we define as

$$
\begin{equation*}
h_{n}(x)=\frac{\varphi_{n}(x)}{\left\|\varphi_{n}\right\|} \tag{2.19}
\end{equation*}
$$

Now we present the definitions of spectral data $\ell_{n}=\ell_{n}(q, \alpha, \beta)$, which were introduced in [10], [11] and [17] (as supplementary data to eigenvalues), and their connection with our spectral data $c_{n}=c_{n}(q, \alpha, \beta)$, that follows from 1.6 and (2.17)(2.19).

$$
\begin{align*}
& \ell_{n}(q, \alpha, \beta)=\log \left[(-1)^{n} \cdot \frac{h_{n}(\pi)}{h_{n}(0)}\right]=\log \left[(-1)^{n} c_{n}(q, \alpha, \beta) \cdot \frac{\sin \beta}{\sin \alpha}\right], \\
& \quad \text { if } \sin \alpha \neq 0, \sin \beta \neq 0, \tag{2.20}\\
& \ell_{n}(q, \pi, \beta)=\log \left[(-1)^{n} \cdot \frac{h_{n}(\pi)}{h_{n}^{\prime}(0)}\right]=\log \left[(-1)^{n} c_{n}(q, \pi, \beta) \cdot \sin \beta\right], \\
& \quad \text { if } \sin \beta \neq 0, \alpha=\pi, \tag{2.21}\\
& \ell_{n}(q, \alpha, 0)=\log \left[(-1)^{n+1} \cdot \frac{h_{n}^{\prime}(\pi)}{\left.h_{n}(0)\right]=}=\log \left[(-1)^{n} c_{n}(q, \alpha, 0) \cdot \frac{1}{\sin \alpha}\right],\right. \\
& \text { if } \sin \alpha \neq 0, \beta=0, \tag{2.22}\\
& \ell_{n}(q, \pi, 0)=\log \left[(-1)^{n} \cdot \frac{\left.h_{n}^{\prime}(\pi)\right]=}{h_{n}^{\prime}(0)}\right]=\log \left[(-1)^{n} c_{n}(q, \pi, 0)\right], \text { if } \alpha=\pi, \beta=0 . \tag{2.23}
\end{align*}
$$

3. The proof of Theorem 1

We prove Theorem 1 in 4 steps. At first we consider the case $\alpha_{1}=\pi, \beta_{1}=0$. From condition (A), (2.1) and (2.5) we obtain ($n=0,1,2, \ldots$)

$$
(n+1)^{2}+\left[q_{1}\right]+\tilde{r}_{n}\left(q_{1}, \pi, 0\right)=\left(n+\delta_{n}\left(\alpha_{2}, \beta_{2}\right)\right)^{2}+\left[q_{2}\right]+r_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right) .
$$

It follows easily that $\delta_{n}\left(\alpha_{2}, \beta_{2}\right) \rightarrow 1$, when $n \rightarrow \infty$. According to (2.6), it is possible only if $\alpha_{2}=\pi, \beta_{2}=0$. Then, from condition (B) and (2.23), we obtain $\ell_{n}\left(q_{1}, \pi, 0\right)=\ell_{n}\left(q_{2}, \pi, 0\right)$ for $n=0,1,2, \ldots$, and we can repeat the proof of Theorem 5 , chapter III, of [10], page 62 , to obtain $q_{1}(x)=q_{2}(x)$, a.e.

Remark. The uniqueness theorems in [10], [11] and [17] are proved under condition $q_{1}, q_{2} \in L_{\mathbf{R}}^{2}[0, \pi]$, but they are true also for $q_{1}, q_{2} \in L_{\mathbf{R}}^{1}[0, \pi]$, because the asymptotic formulae and estimates (see (2.8)-(2.13)) for solutions of (1.1) (which are used particularly to prove that some contour integrals tend to zero) are true also for $q \in L^{1}[0, \pi]$, as it is proved in details in [20].

Secondly, we consider the case $\alpha_{1}=\pi, \beta \in(0, \pi)$. Then condition (A) gives us
$\left(n+\frac{1}{2}\right)^{2}+\frac{2}{\pi} \operatorname{ctg} \beta_{1}+\left[q_{1}\right]+r_{n}\left(q_{1}, \pi, \beta_{1}\right)=\left[n+\delta_{n}\left(\alpha_{2}, \beta_{2}\right)\right]^{2}+\left[q_{2}\right]+r_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right)$
by (2.1) and (2.3). It easy to prove from (3.1), that $\lim _{n \rightarrow \infty} \delta_{n}\left(\alpha_{2}, \beta_{2}\right)=\frac{1}{2}$, and by (2.6) it is possible only if $\alpha_{2}=\pi, \beta_{2} \in(0, \pi)$ or $\alpha_{2} \in(0, \pi), \beta_{2}=0$.

In the case $\alpha_{2}=\pi, \beta_{2} \in(0, \pi)$ we have

$$
\frac{2}{\pi} \operatorname{ctg} \beta_{1}+\left[q_{1}\right]=\frac{2}{\pi} \operatorname{ctg} \beta_{2}+\left[q_{2}\right]
$$

by (3.1) and (2.3). Also

$$
\frac{y_{2}\left(\pi, \mu_{n}, q_{1}\right)}{\sin \beta_{1}}=\frac{y_{2}\left(\pi, \mu_{n}, q_{2}\right)}{\sin \beta_{2}}
$$

by condition (B) and (2.17). Together with (A) and (2.15) we obtain

$$
\begin{equation*}
\frac{y_{2}\left(\pi, \mu, q_{1}\right)}{\sin \beta_{1}}=\frac{y_{2}\left(\pi, \mu, q_{2}\right)}{\sin \beta_{2}} \tag{3.2}
\end{equation*}
$$

for all $\mu \in \mathbf{C}$. Substituting $\mu=\left(n+\frac{1}{2}\right)^{2}$ in (3.2), by (2.11) we obtain
$\frac{y_{2}\left(\pi,\left(n+\frac{1}{2}\right)^{2}, q_{1}\right)}{\sin \beta_{1}}=\frac{1}{\sin \beta_{1}}\left[\frac{(-1)^{n}}{n+\frac{1}{2}}+\frac{o(1)}{\left(n+\frac{1}{2}\right)^{2}}\right]=\frac{1}{\sin \beta_{2}}\left[\frac{(-1)^{n}}{n+\frac{1}{2}}+\frac{o(1)}{\left(n+\frac{1}{2}\right)^{2}}\right]$.
It follows that $\sin \beta_{1}-\sin \beta_{2}=\frac{o(1)}{n+\frac{1}{2}}$, i.e. $\sin \beta_{1}=\sin \beta_{2}$. Then, by (2.21), we have $\ell_{n}\left(q_{1}, \pi, \beta_{1}\right)=\ell_{n}\left(q_{2}, \pi, \beta_{2}\right), n=0,1,2 \ldots$, and we can repeat the proof of Theorem 3 in [17] to obtain $\beta_{1}=\beta_{2}$ and $q_{1}(x)=q_{2}(x)$, a.e.

In the case $\alpha_{2} \in(0, \pi), \beta_{2}=0$ from condition (B), according to (2.17) and (2.18) $\frac{y_{2}\left(\pi, \mu_{n}, q_{1}\right)}{\sin \beta_{1}}=-\varphi^{\prime}\left(\pi, \mu_{n}, \alpha_{2}, q_{2}\right)$ and by (2.11), (2.7), (2.12) and (2.13) we obtain

$$
\begin{aligned}
\frac{1}{\sin \beta_{1}} & \left\{\frac{\sin \sqrt{\mu_{n}} \pi}{\sqrt{\mu_{n}}}-\frac{\cos \sqrt{\mu_{n}} \pi}{2 \mu_{n}} \int_{0}^{\pi} q_{1}(s) d s+\frac{o(1)}{\mu_{n}}\right\}= \\
& =\left\{-\sqrt{\mu_{n}} \sin \sqrt{\mu_{n}} \pi+O(1)\right\} \sin \alpha_{2}+\left\{\cos \sqrt{\mu_{n}} \pi+O\left(\frac{1}{\sqrt{\mu_{n}}}\right)\right\} \cos \alpha_{2}
\end{aligned}
$$

Since $\sin \beta_{1} \neq 0$ and $\sin \alpha_{2} \neq 0$, the last equality is impossible (the left-hand side tends to zero, when $n \rightarrow \infty$, but the right-hand side does not). Thus in the case $\alpha_{1}=\pi, \beta_{1} \in(0, \pi)$, Theorem 1 is also proved.

The third case is $\alpha_{1} \in(0, \pi), \beta_{1}=0$. In this case from condition (A), (2.1) and (2.4) we obtain
$\left(n+\frac{1}{2}\right)^{2}-\frac{2}{\pi} \operatorname{ctg} \alpha_{1}+\left[q_{1}\right]+r_{n}\left(q_{1}, \alpha_{1}, 0\right)=\left[n+\delta_{n}\left(\alpha_{2}, \beta_{2}\right)\right]^{2}+\left[q_{2}\right]+r_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right)$
From this equality it follows easily that $\lim _{n \rightarrow \infty} \delta_{n}\left(\alpha_{2}, \beta_{2}\right)=\frac{1}{2}$, and therefore, either $\alpha_{2}=\pi, \beta_{2} \in(0, \pi)$ (as proved above, this case is impossible), or $\alpha_{2} \in(0, \pi)$, $\beta_{2}=0$. Similarly to the second case, we prove that $\sin \alpha_{1}=\sin \alpha_{2}$ and by (2.16) we obtain that $\ell_{n}\left(q_{1}, \alpha_{1}, 0\right)=\ell_{n}\left(q_{2}, \alpha_{2}, 0\right)$. According to Theorem 4 of [17] we get $\alpha_{1}=\alpha_{2}$ and $q_{1}(x)=q_{2}(x)$, a.e.

The fourth and the last case is $\sin \alpha_{1} \neq 0$ and $\sin \beta_{1} \neq 0$, i.e. $\alpha_{1}, \beta_{1} \in$ $(0, \pi)$. The cases $\alpha_{2}=\pi$ or $\beta_{2}=0$ are impossible, since they reduce to cases I, II or III. Therefore $\alpha_{2}, \beta_{2} \in(0, \pi)$. It follows from (A) and (2.2) that $\lim _{n \rightarrow \infty}\left(\mu_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right)-n^{2}\right)=\frac{2}{\pi}\left(\operatorname{ctg} \alpha_{1}-\operatorname{ctg} \beta_{1}\right)+\frac{1}{\pi} \int_{0}^{\pi} q_{i}(t) d t=$
$=\lim _{n \rightarrow \infty}\left(\mu_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right)-n^{2}\right)=\frac{2}{\pi}\left(\operatorname{ctg} \alpha_{2}-\operatorname{ctg} \beta_{2}\right)+\left[q_{2}\right]$. Also we have by (A), (B) and (2.17) $\frac{\varphi\left(\pi, \mu_{n}, \alpha_{1}, q_{1}\right)}{\sin \beta_{1}}=\frac{\varphi\left(\pi, \mu_{n}, \alpha_{2}, q_{2}\right)}{\sin \beta_{2}}$. Then, by (2.15) we obtain $\frac{\varphi\left(\pi, \mu, \alpha_{1}, q_{1}\right)}{\sin \beta_{1}}=\frac{\varphi\left(\pi, \mu, \alpha_{2}, q_{2}\right)}{\sin \beta_{2}}$ for all $\mu \in \mathbf{C}$. Now, by (2.7), (2.10) and (2.11) for $\mu=n^{2}$ we have

$$
\begin{aligned}
\frac{\varphi\left(\pi, n^{2}, \alpha_{1}, q_{1}\right)}{\sin \beta_{1}} & =\frac{\sin \alpha_{1}}{\sin \beta_{1}}\left\{(-1)^{n}+\frac{o(1)}{n}\right\} \\
& =\frac{\sin \alpha_{2}}{\sin \beta_{2}}\left\{(-1)^{n}+\frac{o(1)}{n}\right\}=\frac{\varphi\left(\pi, n^{2}, \alpha_{2}, q_{2}\right)}{\sin \beta_{2}}
\end{aligned}
$$

and it follows easily that $\frac{\sin \alpha_{1}}{\sin \beta_{1}}=\frac{\sin \alpha_{2}}{\sin \beta_{2}}$. Thus, by (2.20) we obtain $\ell_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right)=$ $\ell_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right), n=0,1,2, \ldots$, and by the uniqueness theorem of [11] we have that $\alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$ and $q_{1}(x)=q_{2}(x)$, a.e. The proof of Theorem 1 is complete.

4. Proof of the Corollary

Let $q^{*}(x) \stackrel{\text { def }}{=} q(\pi-x)$. It is easily verified that (see [11])

$$
\begin{equation*}
\varphi\left(\pi-x, \mu, \alpha, q^{*}\right) \equiv \psi(x, \mu, \pi-\alpha, q) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{n}(q, \alpha, \beta)=\mu_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right), \quad n=0,1,2, \ldots \tag{4.2}
\end{equation*}
$$

Lemma 3. For all $n=0,1,2, \ldots, \alpha \in(0, \pi]$ and $\beta \in[0, \pi)$ the equality

$$
\begin{equation*}
c_{n}(q, \alpha, \beta) \cdot c_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right)=1 \tag{4.3}
\end{equation*}
$$

is true.
Proof. By (4.1), (4.2) and (1.6)

$$
\begin{aligned}
& \psi\left(x, \mu_{n}(q, \alpha, \beta), \beta, q\right) \equiv \varphi\left(\pi-x, \mu_{n}(q, \alpha, \beta), \pi-\beta, q^{*}\right) \\
& \equiv \varphi\left(\pi-x, \mu_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right), \pi-\beta, q^{*}\right) \\
& \equiv c_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right) \psi\left(\pi-x, \mu_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right), \pi-\alpha, q^{*}\right) \\
& \equiv c_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right) \cdot \varphi\left(x, \mu_{n}(q, \alpha, \beta), \alpha, q\right) \\
& \quad \equiv c_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right) \cdot c_{n}(q, \alpha, \beta) \cdot \psi\left(x, \mu_{n}(q, \alpha, \beta), \beta, q\right) .
\end{aligned}
$$

It follows that (4.3) holds true.
To prove the sufficiency we note that if $c_{n}(q, \alpha, \beta)=(-1)^{n}$, then $c_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right)=(-1)^{n}$ by (4.3) and since $\mu_{n}(q, \alpha, \beta)=\mu_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right)$, then $q(x)=q^{*}(x)$ and $\alpha=\pi-\beta$ by Theorem 1 .

If problem $L(q, \alpha, \beta)$ is even, i.e. $q(\pi-x)=q(x)$ and $\alpha+\beta=\pi$, then $c_{n}^{2}(q, \alpha, \beta)=1$ by (4.3). Since the roots μ_{n} of function $\chi(\mu)$ are simple, then $\stackrel{\circ}{\chi}\left(\mu_{n}\right)$ and $\stackrel{\circ}{\chi}\left(\mu_{n+1}\right)$ have the different sign and since $a_{n}>0$, it follows that c_{n} and c_{n+1}
have the different sign by $a_{n}=-c_{n} \cdot \stackrel{\circ}{\chi}\left(\mu_{n}\right)$ (see (2.16)). If we show that $\stackrel{\circ}{\chi}\left(\mu_{0}\right)<0$, we will obtain that $c_{0}(q, \alpha, \beta)=1=(-1)^{0}$ and therefore $c_{n}(q, \alpha, \beta)=(-1)^{n}$.

Really, it follows from (2.14) that when μ changes from $-\infty$ to $\mu_{0}, \chi(\mu)$ changes from $+\infty$ to 0 , i.e. $\stackrel{\circ}{\chi}\left(\mu_{0}\right)<0$. The proof of corollary is complete.

5. Some extentions

Following reasons, very similar to the proof of Theorem 1, we see that the following holds.

THEOREM 2. Let $\left(\alpha_{i}, \beta_{i}, q_{i}\right) \in(0, \pi] \times[0, \pi) \times L_{\mathbf{R}}^{1}[0, \pi], i=1,2 . \quad$ If $\mu_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right)=\mu_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right)$ and $\ell_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right)=\ell_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right)$ for all $n=$ $0,1,2, \ldots$, then $\alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$ and $q_{1}(x)=q_{2}(x)$, a.e.

If, following [11], we introduce the set

$$
\begin{aligned}
& M\left(p, \alpha_{0}, \beta_{0}\right)=\left\{(q, \alpha, \beta) \in L_{\mathbf{R}}^{1}[0, \pi] \times(0, \pi] \times[0, \pi):\right. \\
&\left.\mu_{0}(q, \alpha, \beta)=\mu_{n}\left(p, \alpha_{0}, \beta_{0}\right), n \geqslant 0\right\}
\end{aligned}
$$

then we can formulate next theorem (in terms of [11]), which follows from Theorem 1 and its Corollary.

Theroem 1'. (i) The mapping

$$
(\alpha, \beta, q) \in(0, \pi] \times[0, \pi) \times L_{\mathbf{R}}^{1}[0, \pi] \mapsto\left(\mu_{n}(q, \alpha, \beta), c_{n}(q, \alpha, \beta) n \geqslant 0\right)
$$

is one to one. Equivalently, the mapping

$$
(q, \alpha, \beta) \in M\left(p, \alpha_{0}, \beta_{0}\right) \mapsto\left(c_{n}(q, \alpha, \beta) n \geqslant 0\right)
$$

is one to one.
(ii) The mapping

$$
(q, \alpha, \beta) \in L_{\mathbf{R}}^{1}[0, \pi] \times(0, \pi] \times[0, \pi) \mapsto\left(\mu_{n}(q, \alpha, \beta) ; n \geqslant 0\right),
$$

is one to one when restricted to the subset of even points (i.e. $\alpha+\beta=\pi, q(\pi-x)=$ $q(x))$ in $L_{\mathbf{R}}^{1}[0, \pi] \times(0, \pi] \times[0, \pi)$.

If in Theorem 1' we change $c_{n}(q, \alpha, \beta)$ to $\ell_{n}(q, \alpha, \beta)$ we obtain a proposition (call it Theorem 2'), which follows from Theorem 2 and its Corollary (see [11]: $L(q, \alpha, \beta)$ even if and only if $\left.\ell_{n}(q, \alpha, \beta)=0, n \geqslant 0\right)$, and which not only joins the uniqueness theorems of [10], [11] and [17], but also extend them.

Also the connection (2.16) shows that Theorem 1 is equivalent to
THEOREM 3. Let $\left(\alpha_{i}, \beta_{i}, q_{i}\right) \in(0, \pi] \times[0, \pi) \times L_{\mathbf{R}}^{1}[0, \pi], i=1,2 . \quad$ If $\mu_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right)=\mu_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right)$ and $a_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right)=a_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right)$ for all $n=$ $0,1,2, \ldots$, then $\alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$ and $q_{1}(x)=q_{2}(x)$, a.e.

Of course, it is a variant of the Theorem of Marchenko [8] for finite intervals, which is usually ([9], [16], [21]) formulated for $\alpha_{i}, \beta_{i} \in(0, \pi)$, with condition $\frac{a_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right)}{\sin ^{2} \alpha_{1}}=\frac{a_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right)}{\sin ^{2} \alpha_{2}}$ instead of $a_{n}\left(q_{1}, \alpha_{1}, \beta_{1}\right)=a_{n}\left(q_{2}, \alpha_{2}, \beta_{2}\right)$.

REFERENCES

[1] Levitan, B. M., Sargsyan, I. S., Sturm-Liouville and Dirac Operators (in Russian), Nauka, Moscow, 1988.
[2] Marchenko, V. A., The Sturm-Liouville Operators and Their Applications (in Russian), Naukova Dumka, Kiev, 1977.
[3] Ambarzumian, V. A., Über eine Frage der Eigenwerttheorie, Z. Physik, 53 (1929), 690-695.
[4] Borg, G., Eine Umkehrung der Sturm-Liouvillschen Eigenwertaufgabe, Acta Math. 78,1 (1946), 1-96.
[5] Levinson, N., The inverse Sturm-Lioville problem, Mat. Tidsskr B. (1949), 25-30.
[6] Gel'fand, I. M., Levitan, B. M., On the determination of a differential equation from its spectral function (in Russian), Izv. Akad. Nauk SSSR, Ser. Math., 15 (1951), 253-304.
[7] Krein, M. G., Solution of the inverse Sturm-Liouville problem (in Russian), Dokl. Akad. Nauk SSSR, 76 (1951), 21-24.
[8] Marchenko, V. A., Concerning the theory of differential operators of the second order (in Russain), Trudy Moskov. Math. Obshch., 1 (1952), 327-420.
[9] Marchenko, V. A., Some problems in the theory of differential operators of the second order (in Russian), Dokl. Akad. Nauk SSSR, 72 (1950), 457-460.
[10] Pöschel, J., Trubowitz E., Inverse Spectral Theory, Acad. Press, 1987.
[11] Isaacson, E. L., Trubowitz, E., The inverse Sturm-Liouville problem, I, Com. Pure Appl. Math., 36 (1983), 767-783.
[12] Isaacson, E. L., McKean, H. P., Trubowitz, E., The inverse Sturm-Liouville problem, II, Com. Pure Appl. Math., 37 (1984), 1-11.
[13] Dahlberg, B. E. I., Trubowitz, E., The inverse Sturm-Liouville problem, III, Com. Pure Appl. Math., 37 (1984), 255-267.
[14] McLaughlin, J. R., Rundell, W., A uniqueness theorem for an inverse Sturm-Liouville problem, J. Math. Phys., 28, 7 (1984), 1471-1472.
[15] McLaughlin, J. R., On uniqueness theorems for second order inverse eigenvalue problems, J. Math. Anal. Appl., 118 (1986), 38-41.
[16] McLaughlin, J. R., Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Review, 28, 1 (1986), 53-72.
[17] Harutyunyan, T. N., Nersesyan, V. V., A uniqueness theorem in inverse Sturm-Liouville problem, J. Contemporary Math. Anal., 39, 6 (2004), 27-36.
[18] Koyunbakan, H., Panakhov, E. S., A uniqueness theorem for inverse nodal problem, Inverse problems in Science and Engineering, 15, 6 (2007), 517-524.
[19] Harutyunyan, T. N., The dependence of the eigenvalues of the Sturm-Liouville problem on boundary conditions, Mat. Vesnik, 60, 4 (2008), 285-294.
[20] Harutyunyan, T. N., Hovsepyan, M. S., On the solutions of the Sturm-Liouville equation, Mathem. in Higher School, I, 3 (2005), 59-74.
[21] Levitan, B. M., Generalized Translation Operators and Some of Their Applications (in Russian), Fizmatgiz, Moscow, 1962.
(received 09.02.2008, in revised form 21.04.2008)
Yerevan State University, Department of Mathematics and Mechanics
E-mail: hartigr@yahoo.co.uk

