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ON SEQUENCE-COVERING π-s-IMAGES OF
LOCALLY SEPARABLE METRIC SPACES

Nguyen Van Dung

Abstract. We introduce the notion of double cs-cover and give a characterization on
sequence-covering π-s-images of locally separable metric spaces by means of double cs-covers
having π-property of ℵ0-spaces.

1. Introduction

To determine what spaces are the images of “nice” spaces under “nice” map-
pings is one of the central questions of general topology [2]. In the past, many
noteworthy results on images of metric spaces have been obtained. For a survey
in this field, see [15], for example. Recently, π-images of metric spaces cause at-
tention once again [6, 9, 10, 16]. It is known that a space is a sequence-covering
π-s-image of a metric space if and only if it has a point-star network consisting
of point-countable cs-covers [10]. In a personal communication, the first author
of [16] informs that it seems to be difficult to obtain “nice” characterizations of
π-images of locally separable metric spaces (instead of metric). Related to these
characterizations, we are interested in the following question.

Question 1.1. How are sequence-covering π-s-images of locally separable
metric spaces characterized?

In this paper, we introduce the notion of double cs-cover and establish the
characterization of locally separable metric spaces under sequence-covering π-s-
mappings by means of double cs-covers having π-property of ℵ0-spaces.

Throughout this paper, all spaces are assumed to be regular and T1, all map-
pings are assumed continuous and onto, a convergent sequence includes its limit
point, N denotes the set of all natural numbers, and ω = N∪{0}. Let f : X −→ Y
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be a mapping, x ∈ X, and P be a collection of subsets of X, we denote

Px = {P ∈ P : x ∈ P},
⋃
P =

⋃
{P : P ∈ P},

st(x,P) =
⋃
Px, f(P) = {f(P ) : P ∈ P}.

We say that a convergent sequence {xn : n ∈ N}∪{x} converging to x is eventually
in A if {xn : n ≥ n0} ∪ {x} ⊂ A for some n0 ∈ N.

Let P be a collection of subsets of a space X. For each x ∈ X, P is a network
at x [2], if x ∈ P for every P ∈ P, and if x ∈ U with U open in X, there exists
P ∈ P such that x ∈ P ⊂ U .

P is point-countable [7], if for each x ∈ X, Px is countable. P is a cs-cover
for X [11], if for each convergent sequence S converging to x in X, there exists
some P ∈ P such that S is eventually in P . P is a cs-network for X [8], if for each
convergent sequence S converging to x ∈ U with U open in X, there exists some
P ∈ P such that S is eventually in P ⊂ U .

It is clear that if P is a cs-network for X, then P is a cs-cover for X.
A space X is an ℵ0-space [13], if X has a countable cs-network. For each

n ∈ N, let Pn be a cover for X. {Pn : n ∈ N} is a refinement sequence for X,
if Pn+1 is a refinement of Pn for each n ∈ N. A refinement sequence for X is a
refinement of X in the sense of [5].

Let {Pn : n ∈ N} be a refinement sequence for X. {Pn : n ∈ N} is a point-star
network for X, if {st(x,Pn) : n ∈ N} is a network at x for each x ∈ X. Note that
this notion is used without the assumption of a refinement sequence in [12], and in
[9],

⋃{Pn : n ∈ N} is a σ-strong network for X.
Let {Pn : n ∈ N} be a point-star network for X. For every n ∈ N, put

Pn = {Pα : α ∈ An}, and An is endowed with the discrete topology. Put

M =
{
a = (αn) ∈

∏

n∈N

An : {Pαn : n ∈ N}

forms a network at some point xa in X
}
.

Then M , which is a subspace of the product space
∏

n∈N An, is a metric space
with metric d described as follows. Let a = (αn), b = (βn) ∈ M , if a = b, then
d(a, b) = 0, and if a 6= b, then d(a, b) = 1/(min{n ∈ N : αn 6= βn}).

Define f : M −→ X by choosing f(a) = xa, then f is a mapping, and
(f, M, X, {Pn}) is a Ponomarev’s system [12], and if without the assumption of
a refinement sequence in the notion of point-star networks, then (f,M,X, {Pn}) is
a Ponomarev’s system in the sense of [16].

Let f : X −→ Y be a mapping. f is a sequence-covering mapping [14], if for
every convergent sequence S of Y , there is a convergent sequence L of X such that
f(L) = S. f is a pseudo-open mapping [1], if y ∈ intf(U) whenever f−1(y) ⊂ U
with U open in X.

f is a π-mapping [2], if for every y ∈ Y and for every neighborhood U of y in
Y , d(f−1(y), X − f−1(U)) > 0, where X is a metric space with a metric d. f is an
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s-mapping [2], if f−1(y) is separable for every y ∈ Y . f is a π-s-mapping [10], if f
is both π-mapping and s-mapping.

Let X be a space. We recall that X is sequential [4], if a subset A of X is
closed if and only if any convergent sequence in A has a limit point in A. Also, X
is Fréchet if for each x ∈ A, there exists a sequence in A converging to x.

For terms which are not defined here, please refer to [3, 15].

2. Results

Lemma 2.1. Let f : X −→ Y be a mapping, and P be a collection of subsets
of X. If f is a sequence-covering mapping and P is a cs-cover for X, then f(P) is
a cs-cover for Y .

Proof. Let S be a convergent sequence in Y . Then S = f(L) for some conver-
gent sequence L in X. Since P is a cs-cover for X, L is eventually in some P ∈ P.
It implies that S is eventually in f(P ) ∈ f(P). Then f(P) is a cs-cover for Y .

Let {Xλ : λ ∈ Λ} be a cover for a space X such that each Xλ has a refinement
sequence {Pλ,n : n ∈ N}. {Xλ : λ ∈ Λ} is a double cs-cover for X, if {Xλ : λ ∈ Λ}
is a cs-cover for X, and each Pλ,n is a countable cs-cover for Xλ.

{Xλ : λ ∈ Λ} has π-property, if {Pn}n∈N is a point-star network of X, where
Pn =

⋃
λ∈Λ Pλ,n for each n ∈ N.

Theorem 2.2. The following are equivalent for a space X.
(1) X is a sequence-covering π-s-image of a locally separable metric space,
(2) X has a point-countable double cs-cover {Xλ : λ ∈ Λ} having π-property of

ℵ0-spaces (i.e., each Xλ is an ℵ0-space).

Proof. (1) ⇒ (2). Let f : M −→ X be a sequence-covering π-s-mapping from
a locally separable metric space M with metric d onto X. Since M is a locally
separable metric space, M =

⊕
λ∈Λ Mλ where each Mλ is a separable metric space

by [3, 4.4.F]. For each λ ∈ Λ, let Dλ be a countable dense subset of Mλ, and put

fλ = f |Mλ
, Xλ = fλ(Mλ).

For each a ∈ Mλ and n ∈ N, put

Bλ(a, 1/n) = {b ∈ Mλ : d(a, b) < 1/n},
Bλ,n = {Bλ(a, 1/n) : a ∈ Dλ}, Qλ,n = fλ(Bλ,n).

Then {Qλ,n : n ∈ N} is a cover sequence of countable covers for Xλ, and for each
λ ∈ Λ and n ∈ N, Qλ,n+1 is a refinement of Qλ,n.

For each λ ∈ Λ, put Λλ = {α ∈ Λ : Xα ∩ f(Dλ) 6= ∅}, for each λ ∈ Λ and
n ∈ N, put

Pλ,n = {Q ∩Xλ : Q ∈ Qα,n, α ∈ Λλ},
and for each n ∈ N, put Pn =

⋃{Pλ,n : λ ∈ Λ}.
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It is clear that {Xλ : λ ∈ Λ} is a cover for X such that each Xλ has a refinement
sequence {Pλ,n : n ∈ N}.

(a) {Xλ : λ ∈ Λ} is point-countable.

Since f is an s-mapping, {Xλ : λ ∈ Λ} is point-countable.

(b){Xλ : λ ∈ Λ} is a cs-cover for X.

Note that {Mλ : λ ∈ Λ} is a cs-cover for M , then {Xλ : λ ∈ Λ} is a cs-cover
for X by Lemma 2.1.

(c) For every λ ∈ Λ and n ∈ N, Pλ,n is a countable cs-cover for Xλ.

Since Dλ is countable and {Xα : α ∈ Λ} is point-countable, Λλ is countable.
Then Pλ,n is countable. Let {xi : i ∈ ω} be a convergent sequence converging to
x0 in Xλ. Since Mλ = Dλ, there exists a sequence {ai : i ∈ N} ⊂ Dλ such that
ai → a0. Then {f(ai) : i ∈ N} ⊂ f(Dλ) and f(ai) → x0. For every i ∈ N, put

z2i = xi, z2i+1 = f(ai).

Then S = {zi : i ∈ N} ∪ {x0} is a convergent sequence converging to x0 in Xλ.
Since f is sequence-covering, S = f(L) for some convergent sequence in M . Thus,
there exists some α ∈ Λ, and some a ∈ Mα such that L is eventually in Bα(a, 1/n).
It implies that S is eventually in f(Bα(a, 1/n)) ∈ Qα,n, and then, S is eventually
in f(Bα(a, 1/n)) ∩ Xλ. From this fact we get that α ∈ Λλ, and {xi : i ∈ ω} is
eventually in f(Bα(a, 1/n)) ∩Xλ ∈ Pλ,n.

Hence, Pλ,n is a countable cs-cover for Xλ.

(d) {Xλ : λ ∈ Λ} has π-property.

Since {Pλ,n : n ∈ N} is a refinement sequence for Xλ for each λ ∈ Λ, {Pn :
n ∈ N} is a refinement sequence for X. For each x ∈ U with U open in X.
Since f is a π-mapping, d(f−1(x),M − f−1(U)) > 2/n for some n ∈ N. Then,
for each λ ∈ Λ with x ∈ Xλ, we get d(f−1

λ (x),Mλ − f−1
λ (Uλ)) > 2/n where

Uλ = U ∩ Xλ. Let a ∈ Dλ and x ∈ fλ(Bλ(a, 1/n)) ∈ Qλ,n. We shall prove that
Bλ(a, 1/n) ⊂ f−1

λ (Uλ). In fact, if Bλ(a, 1/n) 6⊂ f−1
λ (Uλ), then pick b ∈ Bλ(a, 1/n)−

f−1
λ (Uλ). Note that f−1

λ (x) ∩ Bλ(a, 1/n) 6= ∅, pick c ∈ f−1
λ (x) ∩ Bλ(a, 1/n), then

d(f−1
λ (x),Mλ−f−1

λ (Uλ)) ≤ d(c, b) ≤ d(c, a)+d(a, b) < 2/n. It is a contradiction. So
Bλ(a, 1/n) ⊂ f−1

λ (Uλ), then fλ(Bλ(a, 1/n)) ⊂ Uλ. It implies that st(x,Qλ,n) ⊂ Uλ,
and hence st(x,Qn) =

⋃{st(x,Qλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U . For every
P ∈ Pλ,n with x ∈ P , we have P = Q ∩ Xλ for some Q ∈ Qα,n with α ∈ Λλ.
It implies that P ⊂ Q and x ∈ Q. Then st(x,Pλ,n) ⊂ st(x,Qn). Therefore
st(x,Pn) =

⋃{st(x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ st(x,Qn) =
⋃{st(x,Qλ,n) : λ ∈

Λ with x ∈ Xλ} ⊂ U .

Hence, {Pn}n∈N is a point-star network for X, i.e., {Xλ : λ ∈ Λ} has π-
property.

(e) For every λ ∈ Λ, Xλ is an ℵ0-space.

We shall prove that Pλ =
⋃{Pλ,n : n ∈ N} is a countable cs-network for Xλ.

Since each Pλ,n is countable, Pλ is countable. Let {xi : i ∈ ω} be a convergent
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sequence converging to x0 ∈ Uλ with Uλ open in Xλ, and let x0 = f(a0) for some
a0 ∈ Mλ. Since Mλ = Dλ, there exists a sequence {ai : i ∈ N} ⊂ Dλ such that
ai → a0. Then {f(ai) : i ∈ N} ⊂ f(Dλ) and f(ai) → x0. For every i ∈ N, put

z2i = xn, z2i+1 = f(ai).

Then S = {zi : i ∈ N} ∪ {x0} is a convergent sequence converging to x0 in Xλ.
Since f is sequence-covering, S = f(L) for some convergent sequence in M . Thus,
there exists some α ∈ Λ, some a ∈ Mα, and some n ∈ N such that L is eventually in
Bα(a, 1/n) ⊂ f−1(U), where U is open in X and U ∩Xλ = Uλ. It implies that S is
eventually in f(Bα(a, 1/n)) ⊂ U , and then, S is eventually in f(Bα(a, 1/n))∩Xλ ⊂
U ∩ Xλ = Uλ. From this fact we get α ∈ Λλ, and {xi : i ∈ ω} is eventually in
f(Bα(a, 1/n)) ∩Xλ ⊂ Uλ. Then Pλ is a countable cs-network for Xλ.

(2) ⇒ (1). For each λ ∈ Λ, since each Xλ is an ℵ0-space, Xλ has a countable
cs-network Qλ. For each λ ∈ Λ and n ∈ N, put

Rλ,n = Pλ,n ∩Qλ = {P ∩Q : P ∈ Pλ,n, Q ∈ Qλ}.
Then each Rλ,n is countable and, for each λ ∈ Λ, {Rλ,n : n ∈ N} is a refinement
sequence for Xλ. Let x ∈ Uλ with Uλ open in Xλ. We get Uλ = U ∩Xλ with some
U open in X. Since st(x,Pn) ⊂ U for some n ∈ N, st(x,Pλ,n) ⊂ Uλ. Note that
st(x,Rλ,n) ⊂ st(x,Pλ,n), then st(x,Rλ,n) ⊂ Uλ. It implies that {Rλ,n : n ∈ N} is
a point-star network for Xλ. Then the Ponomarev’s system (fλ,Mλ, Xλ, {Rλ,n})
exists. Since each Rλ,n is countable, Mλ is a separable metric space with metric
dλ described as follows. For a = (αn), b = (βn) ∈ Mλ, if a = b, then dλ(a, b) = 0,
and if a 6= b, then dλ(a, b) = 1/(min{n ∈ N : αn 6= βn}).

Put M = ⊕λ∈ΛMλ and define f : M −→ X by choosing f(a) = fλ(a) for every
a ∈ Mλ with some λ ∈ Λ. Then f is a mapping and M is a locally separable metric
space with metric d as follows. For a, b ∈ M , if a, b ∈ Mλ for some λ ∈ Λ, then
d(a, b) = dλ(a, b), and otherwise, d(a, b) = 1.

We shall prove that f is a sequence-covering π-s-mapping.
(a) f is a π-mapping.
Let x ∈ U with U open in X, then st(x,Pn) ⊂ U for some n ∈ N. So, for each

λ ∈ Λ with x ∈ Xλ, we get st(x,Rλ,n) ⊂ st(x,Pλ,n) ⊂ Uλ where Uλ = U ∩Xλ. It
is implies that dλ(f−1

λ (x),Mλ − f−1
λ (Uλ)) ≥ 1/n. In fact, if a = (αk) ∈ Mλ such

that dλ(f−1
λ (x), a) < 1/n, then there is b = (βk) ∈ f−1

λ (x) such that dλ(a, b) < 1/n.
So αk = βk if k ≤ n. Note that x ∈ Rβn ⊂ st(x,Rλ,n) ⊂ Uλ. Then fλ(a) ∈ Rαn =
Rβn ⊂ st(x,Rλ,n) ⊂ Uλ. Hence a ∈ f−1

λ (Uλ). It implies that dλ(f−1
λ (x), a) ≥ 1/n

if a ∈ Mλ − f−1
λ (Uλ), i.e., dλ(f−1

λ (x),Mλ − f−1
λ (Uλ)) ≥ 1/n. Therefore

d(f−1(x),M − f−1(U)) = inf{d(a, b) : a ∈ f−1(x), b ∈ M − f−1(U)}
= min

{
1, inf{dλ(a, b) : a ∈ f−1

λ (x), b ∈ Mλ − f−1
λ (Uλ), λ ∈ Λ}} ≥ 1/n > 0.

It implies that f is a π-mapping.
(b) f is an s-mapping.
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For each x ∈ X, since {Xλ : λ ∈ Λ} is point-countable, Λx = {λ ∈ Λ : x ∈ Xλ}
is countable. Then, for each λ ∈ Λx, f−1

λ (x) is separable by the fact that Mλ is
separable metric. Therefore f−1(x) =

⋃{f−1
λ (x) : λ ∈ Λx} is separable. It implies

that f is an s-mapping.

(c) f is sequence-covering.

For each λ ∈ Λ, let S be a convergent sequence in Xλ. For each n ∈ N, since
Pλ,n and Qλ are cs-covers for Xλ, S is eventually in P ∩Q for some P ∈ Pλ,n and
some Q ∈ Qλ. Then Rλ,n is a cs-cover for Xλ. It follows from [16, Lemma 2.2]
that fλ is sequence-covering.

Let L be a convergent sequence in X. Since {Xλ : λ ∈ Λ} is a cs-cover for X,
L is eventually in some Xλ. Since fλ is sequence-covering, L ∩ Xλ = fλ(Lλ) for
some convergent sequence Lλ in Mλ. On the other hand, L−Xλ = f(F ) for some
finite F in M . Put K = F ∪ Lλ, then K is a convergent sequence in M satisfying
f(K) = L. It implies that f is sequence-covering.

Corollary 2.3. The following are equivalent for a space X.

(1) X is a sequence-covering quotient (resp. pseudo-open) π-s-image of a locally
separable metric space,

(2) X is a sequential (resp. Fréchet) space with a point-countable double cs-cover
{Xλ : λ ∈ Λ} having π-property of ℵ0-spaces.
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