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IMPLICIT APPROXIMATION METHODS FOR COMMON FIXED
POINTS OF A FINITE FAMILY OF STRICTLY

PSEUDOCONTRACTIVE MAPPINGS IN BANACH SPACES

Nguyen Buong

Abstract. The purpose of this paper is to present some new implicit approximation methods
for finding a common fixed point of a finite family of strictly pseudocontractive mappings in q-
uniformly smooth and uniformly convex Banach spaces.

1. Introduction

Let X be a q-uniformly smooth Banach space which is also uniformly convex
and its dual space X∗ be strictly convex. For the sake of simplicity, the norms
of X and X∗ are denoted by the symbol ‖ · ‖. We write 〈x, x∗〉 instead of x∗(x)
for x∗ ∈ X∗ and x ∈ X. Let {Ti}N

i=1 be a family of strictly pseudocontractive
mappings in X with the domain of definition D(Ti) = X.

Consider the following problem: find an element

x∗ ∈ S :=
N⋂

i=1

F (Ti), (1.1)

where F (Ti) denotes the set of fixed points of the mapping Ti in X. In this paper
we assume that S 6= ∅.

Recall that a mapping Ti in X is called strictly pseudocontractive in the ter-
minology of Browder and Petryshyn [2] if for all x, y ∈ D(Ti), there exists λi > 0
such that

〈Ti(x)− Ti(y), j(x− y)〉 ≤ ‖x− y‖2 − λi‖x− y − (T (x)− T (y))‖2, (1.2)

where j(x) denotes the normalized duality mapping of the space X. If I denotes
the identity operator in X, then (1.2) can be written in the form

〈(I − Ti)(x)− (I − Ti)(y), j(x− y)〉 ≥ λi‖(I − Ti)(x)− (I − Ti)(y)‖2. (1.3)
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In the Hilbert space H, (1.2) (and hence (1.3)) is equivalent to the inequality

‖Ti(x)− Ti(y)‖2 ≤ ‖x− y‖2 + ki‖(I − Ti)(x)− (I − Ti)(y)‖2, ki = 1− λi.

Clearly, when ki = 0, Ti is nonexpansive, i.e.,

‖Ti(x)− Ti(y)‖ ≤ ‖x− y‖.
Wang [11] proved the following result.

Theorem 1.1. Let H be a Hilbert space, T : H → H a nonexpansive map-
ping with F (T ) 6= ∅, and F : H → H an η-strongly monotone and k-Lipschitzian
mapping. For any x0 ∈ H, {xn} is defined by

xn+1 = αnxn + (1− αn)Tλn+1xn, n ≥ 0,

where {αn} and {λn} ⊂ [0, 1) satisfy the following conditions:
(1) α ≤ αn ≤ β for some α, β ∈ (0, 1); (2)

∑∞
n=1 λn < +∞; (3) 0 < µ < 2η/k2.

Then,
(1) {xn} converges weakly to a fixed point of T ;
(2) {xn} converges strongly to a fixed point of T if and only if

lim inf
n→∞

d(xn, F (T )) = 0.

Zeng and Yao [13] proved the following results.

Theorem 1.2. Let H be a Hilbert space, F : H → H be a mapping such that
for some constants k, η > 0, F is k-Lipschitzian and η-strongly monotone. Let
{Ti}N

i=1 be N nonexpansive self-maps of H such that C =
⋂N

i=1 F (Ti) 6= ∅. Let
µ ∈ (0, 2η/k2), let x0 ∈ H, {λn}∞n=1 ⊂ [0, 1) and {αn}∞n=1 ⊂ (0, 1) satisfying the
conditions:

∑∞
n=1 λn < ∞ and α ≤ αn ≤ β, n ≥ 1, for some α, β ∈ (0, 1). Then

the sequence {xn} defined by

xn = αn−1xn−1 + (1− αn)Tλn
n xn

= αn−1xn−1 + (1− αn)[Tnxn − λnµF (Tnxn)], n ≥ 1,
(1.4)

where Tn = TnmodN , converges weakly to a common fixed point of the mappings
{Ti}N

i=1.

Theorem 1.3. Let H be a Hilbert space, F : H → H be a mapping such that
for some constants k, η > 0, F is k-Lipschitzian and η-strongly monotone. Let
{Ti}N

i=1 be N nonexpansive self-maps of H such that C =
⋂N

i=1 F (Ti) 6= ∅. Let
µ ∈ (0, 2η/k2), let x0 ∈ H, {λn}∞n=1 ⊂ [0, 1) and {αn}∞n=1 ⊂ (0, 1) satisfying the
conditions:

∑∞
n=1 λn < ∞ and α ≤ αn ≤ β, n ≥ 1, for some α, β ∈ (0, 1). Then

the sequence {xn} defined by (1.4) converges strongly to a common fixed point of
the mappings {Ti}N

i=1 if and only if

lim inf
n→∞

d

(
xn,

N⋂

i=1

F (Ti)
)

= 0.
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Xu with Ori [12], and Osilike [9] showed that if X is a Hilbert space, and the
sequence {xn} defined by

xn = αnxn−1 + (1− αn)Tn(xn), x0 ∈ C,

then {xn} converges weakly to a common fixed point of {Ti}N
i=1. Chen, Lin, and

Song [4] extended the above result to a Banach spaces.

Theorem 1.4. Let K be a nonempty closed convex subset of a q-uniformly
smooth and p-uniformly convex Banach space E that has the Opial property. Let s be
any element in (0, 1) and let {Ti}N

i=1 be a finite family of strictly pseudocontractive
self-maps of K such that Ti, 1 ≤ i ≤ N have at least one common fixed point. For
any point x0 in K and any sequence {αn}∞n=0, in (0, s), the sequence

xn = αn−1xn−1 + (1− αn)Tnxn,

converges weakly to a common fixed point of the mappings {Ti}N
i=1.

Further, Gu [5] introduced a new composite implicit iteration process as fol-
lows:

xn = (1− αn − γn)xn−1 + αnTn(yn) + γnun, n ≥ 1,

yn = (1− βn − δn)xn + βnTn(xn) + δnvn, n ≥ 1,
(1.5)

where {αn}, {βn}, {γn}, {δn} are four real sequences in [0, 1] satisfying αn +γn ≤ 1
and βn + δn ≤ 1 for all n ≥ 1, {un} and {vn} are two bounded sequences in C and
x0 is a given point. The following theorem was proved.

Theorem 1.5. Let X be a real Banach space and C be a nonempty closed
convex subset of X. Let {Ti}N

i=1 be N strictly pseudocontractive mappings of C

into C with S :=
⋂N

i=1 F (Ti) 6= ∅. Let {αn}, {βn}, {γn}, {δn} be four real sequences
in [0, 1] satisfying αn + γn ≤ 1 and βn + δn ≤ 1 for all n ≥ 1, {un} and {vn} be
two bounded sequences in C satisfying the following conditions:
(i)

∑∞
i=1 αn = ∞; (ii)

∑∞
i=1 α2

n < ∞; (iii)
∑∞

i=1 αnβn < ∞;
(iv)

∑∞
i=1 αnδn < ∞; (v)

∑∞
i=1 γn < ∞.

Suppose further that and x0 ∈ C be a given point and {xn} be the implicit iteration
sequence defined by (1.5). Then the following conclusions hold:
(i) limn→∞ ‖xn − p‖ exists for all p ∈ S;
(ii) lim infn→∞ ‖xn − Tn(xn)‖ = 0.

Set
Ai = I − Ti.

Obviously, Si := {x ∈ X : Ai(x) = 0} = F (Ti) and problem (1.1) is equivalent to
the one of finding a common solution of the following operator equations

Ai(x) = 0, i = 1, . . . , N,
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where Ai are Lipschitz continuous and λi inverse strongly accretive, i.e. Ai satisfy
condition (1.3).

When X is a Hilbert space, another method is considered in [7] and [6] for the
case N = 1.

In the following section, on the base of [3] we present some new implicit iterative
methods of different type which are the Tychonoff regularization method and the
regularization inertial proximal point algorithm for solving (1.1) in Banach spaces.

In the sequel, the symbols → and ⇀ denote the strong and the weak conver-
gence, respectively.

2. Main results

We formulate the following facts needed in the proof of our results.

Lemma 2.1. [10] Let {an}, {bn}, {cn} be sequences of positive numbers satis-
fying the conditions
(i) an+1 ≤ (1− bn)an + cn, bn < 1,
(ii)

∑∞
n=0 bn = +∞, limn→+∞ cn/bn = 0.

Then, limn→+∞ an = 0.

T is said to be demiclosed at a point p if whenever {xn} is a sequence in D(T )
such that {xn} converges weakly to x ∈ D(T ) and {T (xn)} converges strongly to
p, then T (x) = p. Furthermore, T is said to be demicompact if whenever {xn} is a
bounded sequence in D(T ) such that {xn − T (xn)} converges strongly, then {xn}
has a subsequence which converges strongly.

Theorem 2.1. [8] Let X be a q-uniformly smooth Banach space which is also
uniformly convex. Let K be a nonempty closed convex subset of X and T : K → K
a strictly pseudocontractive map. Then (I − T ) is demiclosed at zero.

Consider the operator version of Tychonoff regularization method in the form

N∑
i=1

αµi
n Ai(x) + αnx = 0, (2.1)

µ1 = 0 < µi < µi+1 < 1, i = 1, 2, . . . , N − 1,

depending on the positive regularization parameter αn that tends to zero as n →
+∞. We will prove the following results.

Theorem 2.2. (i) For each αn > 0, problem (2.1) has a unique solution xn.
(ii) If one of the following conditions is satisfied:

(a) X possesses a weak sequential continuous duality mapping j,
(b) there exists a number i0 ∈ {1, 2, . . . , N} such that Ti0 is demicompact,
then the sequence {xn} possesses a convergent subsequence, and each convergent
subsequence of {xn} converges to a solution of (1.1).
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(iii) If the sequence {αn} is chosen such that

lim
n→+∞

|αn − αp|
αn

= 0, p > n,

then limn→+∞ xn = x∗, x∗ ∈ S.

Proof. (i) Since
∑N

j=1 α
µj
n Aj is Lipschitz continuous and accretive, then it is

m-accretive [1]. Hence, equation (2.1) has a unique solution denoted by xn for each
αn > 0.

From (2.1) it follows

N∑
i=1

αµi
n 〈Ai(xn), j(xn − y)〉+ αn〈xn, j(xn − y)〉 = 0 ∀y ∈ S. (2.2)

Since Ai(y) = 0, i = 1, . . . , N , then

N∑
i=1

αµi
n Ai(y) = 0.

The last equality, (2.2) and the accretive property of Ai give 〈xn, j(xn − y)〉 ≤ 0,
i.e.

〈xn − y, j(xn − y)〉 ≤ 〈−y, j(xn − y)〉 ∀y ∈ S. (2.3)

Consequently,

‖xn − y‖ ≤ ‖y‖ and ‖xn‖ ≤ 2‖y‖, y ∈ S. (2.4)

Hence, {xn} is bounded. Let xnk
⇀ x̃ ∈ X, as k → +∞. First, we prove that

x̃ ∈ S1. Indeed, by virtue of (2.1), (2.4) and the Lipschitz continuity of Ai with
Ai(y) = 0, we can write

‖A1(xnk
)‖ ≤

N∑
i=2

αµi
nk
‖Ai(xnk

)‖+ αnk
‖xnk

‖

≤ L‖y‖
N∑

i=2

αµi
nk

+ 2αnk
‖y‖, L = max1≤i≤N{1/λi}.

Since A1 is demiclosed at zero by Theorem 2.1, then A1(x̃) = 0, i.e., x̃ = T1(x̃). It
means x̃ ∈ F (T1).

Now, we shall prove that x̃ ∈ F (Ti), i = 2, . . . , N . Again, for any y ∈ S from
(1.3), (2.1) and the accretive property of Ai imply that

‖A2(xnk
)‖2 ≤ 〈A2(xnk

), j(xnk
− y)〉/λ2

≤
N∑

i=3

αµi−µ2
nk

〈Ai(y)−Ai(xnk
), j(xnk

− y)〉/λ2

+ α1−µ2
nk

〈−y, j(xnk
− y)〉/λ2,

i.e. ‖A2(xnk
)‖2 ≤ α1−µ2

nk
‖y‖2/λ2. Therefore,

lim
k→∞

‖A2(xnk
)‖2 = 0.
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Again, by virtue of the demiclosed property of A2, we have A2(x̃) = 0, i.e., x̃ ∈
F (T2).

Set S̃m =
⋂m

l=1 F (Tl). Then, S̃m is also closed convex, and S̃m 6= ∅. Now,
suppose that we have proved x̃ ∈ S̃m, and need to show that x̃ belongs to Sm+1.
By virtue of (2.1), for y ∈ S, we can write

‖Am+1(xnk
)‖2 ≤ 〈Am+1(xnk

, j(xnk
− y)〉/λm+1

≤
N∑

i=m+2

α
µi−µm+1
nk 〈Ai(y)−Ai(xnk

), j(xnk
− y)〉/λm+1

+ α1−µm+1
nk

〈−y, j(xnk
− y)〉/λm+1,

i.e. ‖Am+1(xnk
)‖2 ≤ α1−µm

nk
‖y‖2/λm+1. Hence,

lim
k→∞

‖Am+1(xnk
)‖2 = 0.

Again, since Am+1 is demiclosed at zero, then x̃ ∈ Sm+1. It means that x̃ ∈ S.
From the weak sequential continuous property of the duality mapping j and

(2.3) with y = x̃ or the demicompact property of Ti0 it follows

lim
k→+∞

xnk
= x̃ ∈ S.

(iii) Let xp be the solution of (2.1) when αn is replaced by αp. Then,

N∑
i=1

(αµi
n − αµi

p )〈Ai(xn), j(xn − xp)〉+ αn〈xn, j(xn − xp)〉+ αp〈xp, j(xp − xn)〉 ≤ 0.

Hence,

‖xn − xp‖ ≤ |αn − αp|
αn

2‖y‖+
L‖y‖
αn

N∑
i=2

|αµi
n − αµi

p |.

Using the Lagrange’s mean-value theorem for the function α(t) = t−µ, 0 < µ < 1,
t ∈ [1,+∞) on the interval [a, b] with a = αn, b = αp or a = αp, b = αn, we have
the estimation

‖xn − xp‖ ≤ M
|αn − αp|

αn

with M = 2‖y‖+ L‖y‖(N − 1). Clearly, if

lim
n→+∞

|αn − αp|
αn

= 0, p > n,

then {xn} is a Cauchy sequence in the Banach space X. Therefore, limn→+∞ xn =
x∗ ∈ S. The theorem is proved.

Theorem 2.3. Assume that parameters c̃n, γn and αn are chosen such that
(i) 0 < c0 < c̃n < C0, 0 ≤ γn < γ0, αn ↘ 0,
(ii)

∑∞
n=1 bn = +∞, bn = αnc̃n/(1 + αnc̃n),

∑∞
n=1 γnb−1

n ‖zn − zn−1‖ < +∞,
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(iii) limn→∞
αn−αn+1

αnbn
= 0.

Then, the sequence {zn} defined by

c̃n

(
N∑

i=1

αµi
n Ai(zn+1) + αnzn+1

)
+ zn+1 − zn = γn(zn − zn−1), z0, z1 ∈ X,

(2.5)
converges to an element in S.

Proof. We rewrite equations (2.5) and (2.1) in their equivalent forms

dn

N∑
i=1

αµi
n Ai(zn+1) + zn+1 = βnzn + βnγn(zn − zn−1),

dn

N∑
i=1

αµi
n Ai(xn) + xn = βnxn,

dn = βnc̃n, βn = 1/(1 + αnc̃n).

After subtracting the second equality from the first one and multiplying by
j(zn+1 − xn) we get

dn〈
N∑

i=1

αµi
n (Ai(zn+1)−Ai(xn)), j(zn+1 − xn)〉+ 〈zn+1 − xn, j(zn+1 − xn)〉

= βn〈zn − xn, j(zn+1 − xn)〉+ βnγn〈zn − zn−1, j(zn+1 − xn)〉.
Again, by virtue of the property of Ai and j it is not difficult to verify the following
inequality

‖zn+1 − xn‖ ≤ βn‖zn − xn‖+ βnγn‖zn − zn−1‖.
Consequently,

‖zn+1 − xn+1‖ ≤ ‖zn+1 − xn‖+ ‖xn+1 − xn‖
≤ βn‖zn − xn‖+ βnγn‖zn − zn−1‖+ M

αn − αn+1

αn

≤ (1− bn)‖zn − xn‖+ cn,

where cn = βnγn‖zn − zn−1‖ + M(αn − αn+1)/αn. Since the series in (ii) is
convergent, γnb−1

n ‖zn − zn−1‖ → 0, as n → +∞. Lemma 2.1 guarantees that
‖zn+1 − xn+1‖ → 0 as n → +∞. On the other hand, from

lim
n→+∞

αn − αn+1

αnbn
= 0,

it follows that limn→+∞
αn − αn+1

αn
= 0. Therefore, for any p > n we have

0 ≤ lim
n→+∞

αn − αp

αn
= lim

n→+∞

[
αn − αn+1

αn
+

αn+1 − αn+2

αn
+ · · ·+ αp−1 − αp

αn

]

≤ lim
n→+∞

[
αn − αn+1

αn
+

αn+1 − αn+2

αn+1
+ · · ·+ αp−1 − αp

αp−1

]

= 0 + · · ·+ 0 = 0.
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Theorem 2.2 permits us to conclude that the sequence {xn} converges to an element
in S. Hence, {zn} also converges to an element in S. The theorem is proved.

Remark The sequences {αn} and {γn} defined by αn = α0(1 + n)−α and

γn = b0(1 + n)−γ 1
1 + ‖zn − zn−1‖ ,

where α0, b0 are some positive constants and 0 < α < 1
2 , γ > α + 1, satisfy all

conditions in the theorem.
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