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ON THE UNIQUENESS OF BOUNDED WEAK SOLUTIONS
TO THE NAVIER-STOKES CAUCHY PROBLEM

Paolo Maremonti

Abstract. In this note we give a uniqueness theorem for solutions (u, π) to the Navier-
Stokes Cauchy problem, assuming that u belongs to L∞((0, T ) × Rn) and (1 + |x|)−n−1π ∈
L1(0, T ; L1(Rn)), n ≥ 2. The interest to our theorem is motivated by the fact that a possible

pressure field π̃, belonging to L1(0, T ; BMO), satisfies in a suitable sense our assumption on the
pressure, and by the fact that the proof is very simple.

1. Introduction

In the recent paper [5], for the solutions (u, π) of the Navier-Stokes Cauchy
problem, the uniqueness is stated assuming that the kinetic field u belongs to
L∞((0, T ) × Rn), n ≥ 2, and that the pressure field π belongs to L1(0, T ; BMO).
The quoted paper is a continuation of paper [3] where existence and uniqueness
results are stated under slightly different assumptions. The quoted papers concern
a special problem related to Navier-Stokes equations, which has been studied during
the last century by several authors with different aims. We mention just [1], [2],
[9], [10], [16]. The first contributions on existence and uniqueness of solutions with
a bounded kinetic field were given in [9], [10], [16]. The Cauchy problem was
studied in [9], [10], and the initial boundary value problem in exterior domains was
studied in [16], the existence and uniqueness being stated in the Hölder class. In [1],
[2] the problem is slightly different and is related to a problem of uniqueness. The
question is to furnish uniqueness of solutions in a sufficient wide set, whose boundary
is recognized by physically reasonable conditions for the dynamical variables or by
mathematical counterexamples for the uniqueness of the solutions. In the paper
[2], the uniqueness is achieved for smooth solutions (u, π) assuming that u belongs
to C(0, T ; C(Rn)) and ∇π belongs to Lp(0, T ; Lp(Rn)), p ∈ (1,∞). In the paper
[1], the uniqueness is achieved for smooth solutions (u, π) assuming that u belongs
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to C(0, T ; C(Rn)) and, for any t > 0, π(x, t) = O(|x|1−ε), ε > 0. We stress that in
the papers [1], [2] the assumption that solutions are smooth is just an exemplifying
condition, and also that in [1] the problem is related with an initial boundary
value problem for the Navier-Stokes system. In [1], [2], [9] the assumptions for the
uniqueness are seen as sharpness by virtue of the following counterexample to the
uniqueness: u ≡ sin t(1, 0, 0) and π = − cos t x1. The counterexample is exhibited
in [11].

In this note we are just interested to give a uniqueness theorem for solutions
(u, π) to the Navier-Stokes Cauchy problem, assuming that u belongs to L∞((0, T )×
Rn) and (1 + |x|)−n−1π ∈ L1(0, T ; L1(Rn)), n ≥ 2. The interest to our theorem is
motivated by the fact that a possible pressure field π̃ belonging to L1(0, T ; BMO)
satisfies in a suitable sense our assumption on the pressure, and by the fact that
our proof is very simple.

The plan of the paper is the following. In section 2 we give the statement of
our result; in section 3 we prove some preliminary results and in section 4 we give
the proof of the uniqueness theorem.

2. Statement of the problem

We study the uniqueness of solutions for the following Cauchy problem:

ut −∆u + u · ∇u = −∇π, ∇ · u = 0, in (0, T )× Rn,

u(0, x) = u0(x), in Rn,
(2.1)

where u(t, x) is the kinetic field and π(t, x) is the pressure field; u·∇ui = uk
∂ui

∂xk
, i =

1, . . . , n; u0(x) is the initial data. As it is usual, by (f, ψ) we mean
∫
Ω

f(x)·ψ(x) dx.
In order to state our uniqueness result in a weak form, we give the following

Definition 2.1. A pair (u, π) is said to be a bounded weak solution to the
Navier-Stokes Cauchy problem in (0, T )×Rn, T > 0, corresponding to u0 ∈ L∞(Rn)
with divergence free in weak sense, if the following hold:
a) u(t, x) ∈ L∞((0, T )×Rn) and almost everywhere u has weakly divergence free;

(1 + |x|)−n−1π(t, x) ∈ L1(0, T ;L1(Rn));
b) (u, π) satisfies the following equation:

∫ T

0

[(u, ϕτ ) + (u, ∆ϕ) + (u⊗ u,∇ϕ) + (π,∇ · ϕ)] dτ = −(u0, ϕ(0)),

provided that ϕ ∈ C1([0, T ); C∞0 (Rn)) with ϕ(x, t) = 0 in a neighborhood of T ;

c) for each ψ ∈ C∞0 (Rn), limt→0
1
t

∫ t

0
[(u(τ), ψ)− (u0, ψ)] dτ = 0.

Remark 2.1. In the item c) of the above definition we require that t = 0 is
a Lebesgue point for the function (u(t), ψ), for any ψ ∈ C∞0 (Ω). As a consequence
of Lemma 3.3, proving formula (3.8), each pair (u, π) which satisfies conditions
a)–b), redefined in a suitable way, enjoys the property: for each ψ ∈ C∞0 (Rn),
limt→0(u(t), ψ) = (u0, ψ); which of course implies c).
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Remark 2.2. We point out that an element of L1(0, T ; BMO) satisfies our
assumption a) of integrability related to the pressure π(x, t) and, as a pressure field,
it can be possibly a pressure field for a bounded weak solution (for the definition
and properties related to the BMO space see [17]).

The aim of this paper is to prove

Theorem 2.1. Let (u, π) be a bounded weak solution corresponding to u0.
Then, (u, π) is the unique bounded weak solution corresponding to u0.

Remark 2.4. The uniqueness of solutions of problem 2.1 (or, more generally,
the uniqueness of solutions of an initial boundary value problem in an unbounded
domain), stated with no condition at infinity (|x| → ∞), establishes that the behav-
ior at infinity is just recognized from one of the initial data, that is by its behavior
in a neighborhood of infinity. In other words, given an initial data u0(x) in some
functional space X, denoted by (u, π), the uniqueness theorem proves that (u, π) is
unique in a set of solutions a priori having behavior at infinity not comparable with
the one of the existence of (u, π). In the case of the Cauchy problem the boundary
of the wider set of uniqueness of solutions is established by the following coun-
terexample to the uniqueness (u, π) ≡ (sin t(1, 0, . . . , 0), cos tx1). But, our theorem
is not able to furnish uniqueness in the set of solutions delimited by two fami-
lies of weak solutions, locally bounded, (u, π) ≡ (1(t)(1, 0, . . . , 0),−′1(t)x1) and
(ū, π̄) ≡ (2(t)(x1, 0, . . . , 0,−xn), − 1

2 ′2(t)(x
2
1 − x2

n)− 1
2 22(t)(x

2
1 + x2

n)), where 1(t)
and 2(t) are two arbitrary Lipschitzian functions on (0, T ) with 1(0) = 2(0) = 0.
It is worth noting that counterexamples to the uniqueness are solutions of poten-
tial type, as well as to the Euler equation. It is also worth stressing that the last
question achieves a special interest in relation with the recent results of existence
given in [6], [7], [14].

3. Some preliminary results

In this section we state some results concerning a bounded weak solution. Lem-
mas 3.2 and 3.3 are concerned with qualitative properties of u ∈ L∞(0, T ; L2

loc(Ω))
analogous to the ones of weak solutions of the L2-theory due to Prodi [12] and
Serrin [15]. Lemma 3.4 is concerned with a weight energy inequality of the same
kind as the ones proved in [1], [2]. We start with the following

Lemma 3.1. Let u(t, x) ∈ L∞((0, T )×Rn). Then, there exists a set Tu ⊆ (0, T )
such that for t ∈ Tu and for ψ ∈ C∞0 (Rn)

lim
h→0

1
h

∫ t+h

t

(u(τ), ψ) dτ = (u(t), ψ), (3.1)

and meas((0, T )− Tu) = 0.

Proof. Let {Ω(k)} be a sequence of bounded domains in Rn such that Ω(k) ⊂
Ω(k+1) and limk Ω(k) = Rn. Since u(t, x) ∈ L∞((0, T )×Rn), then, for each k ∈ N
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and p, q ≥ 1, u(t, x) ∈ Lq(0, T ; Lp(Ω(k)). Hence, by virtue of Corollary 2 (p. 88) of
[8], there exists a set Tu(k) such that meas((0, T )− Tu(k)) = 0 and for

t ∈ Tu(k), lim
h→0

1
h

∫ t+h

t

|u(τ)− u(t)|Lp(Ω(k)) dτ = 0. (3.2)

Set T ′u(k) = (0, T ) − Tu(k); then T ′u(k) ⊆ T ′u(k + 1) and meas
⋃

k T ′u(k) =
limk meas T ′u(k) = 0. We set T ′u =

⋃
k∈N T ′u(k) and Tu = (0, T ) − T ′u. If t ∈ Tu,

then t ∈ Tu(k) uniformly in k ∈ N; if ψ ∈ C∞0 (Rn)), then supp ψ ⊆ Ω(k) for any k
greater than some k0. We have

∣∣∣∣
1
h

∫ t+h

t

(u(τ), ψ) dτ − (u(t), ψ)
∣∣∣∣ =

∣∣∣∣
1
h

∫ t+h

t

(u(τ)− u(t), ψ) dτ

∣∣∣∣.

Thus, from (3.2) the limit property (3.1).

Lemma 3.2. Let (u, π) be a bounded weak solution. Then, there exists a
Lebesgue measurable set Tu ⊆ (0, T ) such that meas((0, T )− Tu) = 0 and for each
t ∈ Tu

∫ t

0

[(u, ϕτ ) + (u, ∆ϕ) + (u⊗ u,∇ϕ) + (π,∇ · ϕ)] dτ = (u(t), ϕ(t))− (u0, ϕ(0)),

(3.3)
for any ϕ ∈ C1([0, T ); C∞0 (Rn)) with ϕ(t, x) = 0 in a neighborhood of T .

Proof. The proof is analogous to the one given by Prodi and Serrin. Let Tu

be the subset determined in Lemma 3.1. Let t ∈ Tu and let θε(s) be a smooth
cut-off function such that θε(s) = 1 for s ∈ [0, t], θε(s) = 0 for s ≥ t + ε with
−θ′ε ≤ c/ε and

∫ T

0
θ′ε(s) ds = −1. We consider the relation b) of Definition 2.1 with

φ(x, τ) = θε(τ)ψ(x, τ), ψ ∈ C1([0, T ); C∞0 (Rn)):
∫ t+ε

0

[((u, ψτ )θε + (u, ψ)θ′ε + (u,∆ψ)θε + (u⊗ u,∇ψ)θε + (π,∇ · ψ)θε] dτ

= −(u0, ψ(0)). (3.4)

By virtue of condition a) concerning the definition of a bounded weak solution
(u, π), applying the dominate convergence theorem, each integral term with θε is
convergent for ε → 0 and the limit is

∫ t

0

[(u, ψτ ) + (u, ∆ψ) + (u⊗ u,∇ψ) + (π,∇ · ψ)] dτ. (3.5)

Now we evaluate the convergence of the integral term with θ′ε. We have
∫ t+ε

t

(u, ψ)θ′ε dτ

=
∫ t+ε

t

[(u(τ), ψ(τ)− ψ(t)) + (u(τ)− (u(t), ψ(t))] θ′ε dτ − (u(t), ψ(t)). (3.6)
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Employing the properties of θε and Lemma 3.1, from (3.6) we deduce

lim
ε→0

∫ t+ε

t

(u, ψ)θ′ε dτ = −(u(t), ψ(t)). (3.7)

Passing to the limit when ε → 0 in (3.4), via (3.5) and (3.7) we deduce (3.1).

Lemma 3.3. Let (u, π) be a bounded weak solution. Then, it is possible to
redefine by U(t, x) the field u(t, x) on (0, T ) in such a way that U(t, x) = u(t, x) for
any t ∈ Tu and U(t, x) ∈ L2

loc(Rn) for any t ∈ (0, T ) − Tu, U(t, x) has divergence
free in a weak sense. Moreover, equation (3.3) holds with U(t, x) for any t ∈ (0, T ):
∫ t

0

[(U,ϕτ ) + (U,∆ϕ) + (U ⊗ U,∇ϕ) + (π,∇ · ϕ)] dτ

= (U(t), ϕ(t))− (u0, ϕ(0)), (3.8)

for any t ∈ (0, T ) and for any ϕ ∈ C1([0, T ); C∞0 (Rn)) with ϕ(x, t) = 0 in a
neighborhood of T . Finally, for any ψ ∈ C∞0 (Rn), (U(t), ψ) is a continuous function
on (0, T ).

Proof. Let t ∈ (0, T ) and let {t+i } ⊂ Tu and {t−i } ⊂ Tu be two sequences con-
verging to t. Then, equation (3.3) implies that, for ϕ(t, x) = θ(t)ψ(x) ∈ C∞0 (Rn),
where θ(t) C1-smooth function with θ(τ) = 1 for τ ∈ [0, t + δ],

(u(t−i )− u(t+i ), ψ) =
∫ t+

i

t−
i

[(u,∆ψ) + (u⊗ u,∇ψ) + (π,∇ · ψ)] dτ → 0 for i →∞.

(3.9)
Since u(t, x) ∈ L∞(0, T ; L2

loc(Rn)), then, denoting by {ti} ⊂ Tu a sequence con-
verging to t ∈ (0, T ), taking (3.9) into account, {u(ti, x)} weakly converges to a
function U(t, x) belonging to L2

loc(Rn). Moreover, U(t, x) has divergence free in
weak sense. Hence, U(t, x) redefines u(t, x) on (0, T ) and the weak convergence of
u(ti, x) → U(t, x) in L2

loc(Rn), for any t ∈ (0, T ), ensures the validity of (3.3) for
any t ∈ (0, T ). Finally, the continuity of the function (U(t), ψ) is a consequence of
(3.8), which implies, for ϕ = θψ,

(U(t)− U(s), ψ) =
∫ t

s

[(U,∆ψ) + ((U ⊗ U,∇ψ) + (π,∇ · ψ)] dτ.

In the following we are interested to employ the property (3.8). Since there is
no confusion, we denote the field U by u again.

Lemma 3.4 Let (u, π) and (ū, π̄) be two bounded weak solutions. Then,

|gw(t)|22 +
∫ t

0

|g∇w(τ)|22 dτ < +∞, for any t ∈ (0, T ), (3.10)

where g = (1 + |x|)−n
2 and w = ū− u.
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Proof. We set p = π − π. From equation (3.8) we deduce
∫ t

0

[(w, ϕτ ) + (w, ∆ϕ) + (w ⊗ (w + u),∇ϕ) + (u⊗ w,∇ϕ) + (p,∇ · ϕ)] dτ

= (w(t), ϕ(t)). (3.11)

Let hR(|z|/R) with h(r) ∈ [0, 1] a nonnegative smooth cut-off function such that
h(r) = 1 for r ∈ [0, 1] and h(r) = 0 for r ≥ 2, |h′(r)| ≤ c. By J [ψ](x) we mean the
convolution

∫
Rn J(x− y)ψ(y) dy. We set:

wR(s, z) = hR(z)g(z)w(s, z),

wεR(s, y) = Jε[wR(s)](y),

ϕηεR(s, x) =
∫ t

0

Jη(s− τ)hR(x)g(x)Jε[wεR(τ)](x) dτ,

where Jδ[·](ξ) is the Friederichs mollifier. The following relations hold:
E1) Since Jη[·](τ) is an even function, then, for any η > 0,

∫ t

0

(w,ϕs) ds =
∫ t

0

∫ t

0

∂

∂s
Jη(s− τ)(wεR(s), wεR(τ)) ds dτ = 0;

E2) since (wεR(t), ψ), ψ ∈ C∞0 (Rn), is a continuous function on (0, T ), then,

lim
η→0

(w(t), ϕηεR(t)) =
1
2
|wεR(t)|22.

The following inequalities hold:
I1) Since w has free divergence in a weak sense, then,

|∇ · ϕηεR| =
∣∣∣∣
∫ t

0

Jη(s− τ)∇[hR(x)g(x)] ·
∫

Rn

Jε(x− y)wεR(τ, y) dy dτ

∣∣∣∣
≤ c(1 + |x|)−n−1,

uniformly with respect to η, ε and R > 0; thus, by virtue of condition a) of
Definition 2.1, we have
∣∣∣∣
∫ t

0

(p,∇ · ϕηεR) ds

∣∣∣∣ ≤ c

∫ t

0

∫

Rn

|p(s, x)|(1 + |x|)−n−1 dx ds < +∞, t ∈ (0, T );

I2) since wεR ∈ L2(0, T ; W 1,2(Rn)), then,

lim
η→0

∫ t

0

(w, ∆ϕηεR(s)) ds = −
∫ t

0

|∇wεR(s)|22ds

+
∫ t

0

∫

Rn

w(s, x) ·∆[hR(x)g(x)]Jε(x)[wεR] dx ds

+
∫ t

0

∫

Rn

w(s, x) · ∇[hr(x)g(x)] · ∇Jε(x)[wεR] dx ds;
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applying the Hölder inequality we get

lim
η→0

∫ t

0

(w, ∆ϕηεR(s)) ds ≤ −
∫ t

0

|∇wεR(s)|22 ds

+ c

∫ t

0

|w∆(hRg)|2|wR|2 ds + c(δ)
∫ t

0

|w∇(hRg)|22 + δ

∫ t

0

|∇wεR|22 ds;

I3) since (w ⊗ (w + u) + u⊗ w)∇i(hRg) ∈ L2(0, T ; L2(Rn)) and
wεR ∈ L2(0, T ; W 1,2(Rn)), then

lim
η→0

∫ t

0

(w ⊗ (w + u) + u⊗ w,∇ϕηεR) ds

=
∫ t

0

(w ⊗ (w + u) + u⊗ w,
1∑

`=0

∇`(hRg)⊗ Jε(x)[∇1−`wεR]) ds;

applying the Hölder inequality, we obtain

lim
η→0

∫ t

0

(w⊗(w+u)+u⊗w,∇ϕηεR) ds ≤
∫ t

0

||w|(|w|+2|u|)∇(hRg)|2|wεR|2 ds

+ c(δ)
∫ t

0

|(|w|2 + 2|w||u|)hRg|22 + δ

∫ t

0

|∇wεR|22 ds.

We substitute ϕηεR in (3.8); taking relations E1)–E2) and inequalities I1)–I3)
into account, choosing a suitable δ, we get

|wεR(t)|22 +
∫ t

0

|∇wεR(s)|22 ds ≤ c

∫ t

0

|p(s)(1 + |x|)−n−1|1 ds

+ c

∫ t

0

|w(s)∆(hRg)|2|wεR(s)|2 ds + c

∫ t

0

|w(s)∇(hRg)|22 ds

+c

∫ t

0

∣∣|w|(|w|+2|u|)
∣∣∇(hRg)||2|wεR(s)|2 ds+c

∫ t

0

∣∣|w(s)|(|w(s)|+2|u(s)|)hRg
∣∣2
2
ds.

Since w, u ∈ L∞(0, T ; L∞(Rn)) and (1 + |x|)−n−1p ∈ L1(0, T ; L1(Rn)), uniformly
in ε > 0, the above inequality furnishes

|wεR(t)|22 +
∫ t

0

|∇wεR(s)|22 ds ≤ c(T ) +
∫ t

0

|wR(s)|22 ds, (3.12)

with c(T ) independent of R. Since, for each t ∈ (0, T ), {wεR} strongly converges to
wR in L2(Rn), then, it weakly converges to wR in L2(0, T ; W 1,2(Rn)). From (3.12),
taking the limit for ε → 0, we deduce

|wR(t)|22 +
∫ t

0

|∇wR(s)|22 ds ≤ c(T ) +
∫ t

0

|wR(s)|22 ds.

By integrating, uniformly with respect to R, we obtain

|wR(t)|22 +
∫ t

0

|∇wR(s)|22 ds ≤ c(T ).

Applying the monotone convergence theorem we deduce (3.10). The lemma is
completely proved.
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4. Proof of Theorem 2.1

In this section, we assume the Euclidean dimension n ≥ 3. The fundamental
solution of the Stokes equations is denoted by E. The components of E are the
following:

Eij(x− y, t− τ) = −∆φ(|x− y|, t− τ)δij + D2
xixj

φ(|x− y|, t− τ),

where

φ(r, t) =
1
2

1√
π

n
1

rn−2

∫ r/2
√

t

0

ρn−3e−ρ2
dρ.

Denoting by Ej(x− y, t− τ) the j-th column of the tensor E, for t− τ > 0, the pair
(Ej(x − y, t − τ), p), with p = 0, in the (x, t) variables is a solution of the Stokes
equations and in the (y, τ) variables it is a solution of the adjoint equations:

Φτ + ∆Φ +∇p = 0, ∇ · Φ = 0, on (0, t)× Rn.

We recall some properties of E:

Eij(z, s) ∈ C∞(Rn × (0,∞));

∆φ(z, s) = −(4πs)−
n
2 e−

|z|2
4s , |∇φ(z, s)| ≤ c

(|z|2 + s
) 1

2−n
2 ; (4.1)

|E(z, s)| ≤ c
(|z|2 + s

)−n
2 , |∇E(z, s)| ≤ c

(|z|2 + s
)−n

2− 1
2 .

For any x-smooth field m(x, τ) with compact support such that, for each x ∈ Rn,
limτ→t− ∇ ·m(x, τ) = ∇ ·m(x, t) and limτ→t− m(x, τ) = m(x, t), we have

lim
τ→t−

∫

Rn

Ei(x− y, t− τ) ·m(y, τ) dy = lim
τ→t−

[
(4π(t− τ))−

n
2

∫

Rn

e
− |x−y|2

4(t−τ) mi(y, τ)

+
∫

Rn

∂

∂xi
φ(x− y, t− τ)∇ ·m(y, τ) dy

]

= mi(x, t) +
∫

Rn

∂

∂xi
φ(x− y, 0)∇ ·m(y, t) dy. (4.2)

We define
ϕµεR = θµ(τ)hR(y)

∫

Rn

Jε(y − z)Ei(x− z, t− τ) dz,

where hR is the space cut-off function introduced in section 3; θµ(τ) is a time cut-off
function such that θµ(τ) = 1 for τ ≤ t− µ and θµ(τ) = 0 for τ ≥ t− 1

4µ; finally, Jε

is the Friedrich mollifier. We consider (3.8) on (0, t − µ) with ϕµεR(x, τ). Hence,
taking properties of tensor E into account, for w = ū− u, p = π − π we get
∫ t−µ

0

[
(w ⊗ (w + u),∇ϕµεR) + (u⊗ w,∇ϕµεR) + (p,∇ · ϕµεR)

]

+
∫ t−µ

0

[
2(w,∇hR · ∇Jε[Ei(x, t))] + (w∆hR, Jε[Ei(x, t)])

]
dτ

= (wεR(t− µ), Ei(x, µ)), (4.3)
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where wεR(z, τ) =
∫
Rn Jε(y − z)hR(y)w(y, τ) dy. Taking the properties of E and

cut-off function hR into account, then, the following estimates hold:
I1) for R > 2|x|, for τ ∈ (0, t), uniformly with respect to µ, we have

|∇ϕµεR(y, τ)| ≤ c|∇hR|
[
(|x−y|2+t−τ)

n
2
]−1+c

∫

Rn

Jε(w)(|x−y+w|2+t−τ)−
n
2− 1

2 dw;

hence, uniformly with respect to µ and ε,
∣∣[(w ⊗ (w + u),∇ϕµεR) + (u⊗ w,∇ϕµεR)

∣∣ ≤ c|w(τ)|∞(|w(τ)|∞ + 2|u(τ)|∞)×[
R−1

∫

R≤|y|≤2R

|y|−n dy +
∫

Rn

Jε(w)
∫

Rn

(|x− y + w|2 + t− τ)−
n
2− 1

2 dy dw

]

≤ c|w(τ)|∞(|w(τ)|∞ + 2|u(τ)|∞)
[
(cR−1 + (t− τ)−

1
2
]
;

I2) for R > 2|x|, for τ ∈ (0, t), uniformly with respect to µ and ε, we have

|∇·ϕµεR(y, τ)| ≤ c|∇hR|
∫

Rn

Jε(w)|E(x−y+w, t−τ)| dw ≤ c|∇hR|(|x−y|2+t−τ)−
n
2 ,

hence, uniformly with respect to µ, ε and R > 0, almost everywhere in τ ∈ (0, t),

∣∣(p(τ),∇ · ϕµεR(τ))
∣∣ ≤

∫

R≤|y|≤2R

∣∣p(x, τ)
∣∣(1 + |y|)−n−1 dy;

I3) for R > 2|x|, for τ ∈ (0, t), uniformly with respect to µ and ε, we have
∣∣2(w,∇hR · ∇Jε[Ei(x, t))] + (w∆hR, Jε[Ei(x, t)])

∣∣

≤ 2c|w(τ)|∞
[
R−1

∫

R≤|y|≤2R

|y|−n−1 dy+R−2

∫

R≤|y|≤2R

|y|−n dy

]
≤ 2cR−2|w(τ)|∞.

By virtue of Lemma 3.3, for each z ∈ Rn, wεR(z, τ) is a continuous function
of τ . Employing (4.2), we deduce

lim
µ→0+

(wεR(t− µ), Ei(x, µ)) = lim
µ→0+

∫

Rn

Ei(x− z, µ) · wεR(z, t− µ) dz

= wiεR
(x, t) +

∫

Rn

∂

∂xi
φ(x− z, 0)

∫

Rn

Jε(y − z)∇hR(y) · w(y, t) dy dz. (4.4)

Moreover, from (4.1)22 and properties of hR, since 2|x| < R, for R > 0 sufficiently
large we get
∣∣∣∣
∫

Rn

∂

∂xi
φ(x− z, 0)

∫

Rn

Jε(y − z)∇hR(y) · w(y, t) dy dz

∣∣∣∣

≤ c

∫

R−1≤|z|≤2R+1

|z|n−1

∫

Rn

Jε(y − z)|∇hR(y)| |w(y, t)| dy dz

≤ c

∫

R−1≤|z|≤2R+1

(1 + |z|+ ε)
n
2

|z|n−1

∫

Rn

Jε(y − z)
|∇hR(y)| |w(y, t)|

(1 + |y|)n
2

dy dz.
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Applying the Hölder inequality to the right hand side, we obtain
∣∣∣∣
∫

Rn

∂

∂xi
φ(x− z, 0)

∫

Rn

Jε(y − z)∇hR(y) · w(y, t) dy dz

∣∣∣∣ ≤ cR|∇hR|w(t)|g|2,

where g = (1 + |y|)−n
2 . Hence, by virtue of energy weight estimate (3.10), the last

estimate implies, uniformly with respect to ε,
∣∣∣∣
∫

Rn

∂

∂xi
φ(x− z, 0)

∫

Rn

Jε(y − z)∇hR(y) · w(y, t) dy dz

∣∣∣∣
≤ c|w(t)g|L2(R−1≤|y|≤2R+1), (4.5)

Taking estimates E1–E3 into account, and also (4.4)–(4.5), passing to the limit
when µ → 0+, uniformly with respect to ε, we get

|wεR(x, t)| ≤ c|w(t)g|L2(R−1≤|y|≤2R+1) +
∫ t

0

|p(τ)(1 + |y|)−n−1|L1(R≤|y|≤2R) dτ

+ 2cR−2

∫ t

0

|w(τ)|∞ dτ + c

∫ t

0

(|w(τ |L∞(Rn) + 2|u(τ)|∞)|w(τ)|∞(t− τ)−
1
2 dτ.

Since for each t ∈ (0, T ) wεR(x, t) converges to hR(x)w(x, t) in L2(Rn), then there
exists a subsequence converging almost everywhere in x to hR(x)w(x, t). Hence,
from the above inequality, since R > 2|x|, along a suitable sequence of ε → 0, we
deduce that almost everywhere in |x| < R/2

|w(x, t)| ≤ c|w(t)g|L2(R−1≤|y|≤2R+1) +
∫ t

0

|p(y, τ)(1 + |y|)−n−1|L1(R≤|y|≤2R) dτ

+ 2cR−2

∫ t

0

|w(τ)|∞ dτ + c

∫ t

0

|w(τ)|L∞(Rn) + 2|u(τ)|∞)|w(τ)|∞(t− τ)−
1
2 dτ.

By virtue of condition a) for the pressure field of a bounded weak solution and the
weight energy estimate (3.10), applying the dominate convergence theorem, in the
limit for R → +∞, almost everywhere in x ∈ Rn, we get that

|w(x, t)| ≤ c

∫ t

0

(|w(τ)|L∞(Rn) + 2|u(τ)|L∞(Rn))|w(τ)|∞(t− τ)−
1
2 dτ,

which implies

|w(t)|∞ ≤ c

∫ t

0

(|w(τ)|L∞(Rn) + 2|u(τ)|L∞(Rn))|w(τ)|∞(t− τ)−
1
2 dτ,

which implies the uniqueness. The theorem is completely proved.
Remark 4.1. We conclude remarking that the proof of the uniqueness theorem

is developed assuming the Euclidean dimension n ≥ 3. In order to recover the 2-
dimensional case, it is enough to modify the fundamental solution of the Cauchy
problem. However, we do not study the 2-dimensional case. We just indicate that
the fundamental solution of the Cauchy problem and its qualitative properties can
be found in [4].
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