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FINITE DIMENSIONS MODULO SIMPLICIAL
COMPLEXES AND ANR-COMPACTA

V. V. Fedorchuk

Abstract. New dimension functions G-dim and R-dim, where G is a class of finite simplicial
complexes and R is a class of ANR-compacta, are introduced. Their definitions are based on the
theorem on partitions and on the theorem on inessential mappings to cubes, respectively. If R is a
class of compact polyhedra, then for its arbitrary triangulation τ , we have Rτ - dim X = R- dim X
for an arbitrary normal space X. To investigate the dimension function R-dim we apply results
of extension theory. Internal properties of this dimension function are similar to those of the
Lebesgue dimension. The following inequality R- dim X ≤ dim X holds for an arbitrary class R.
We discuss the following Question: When R-dim X < ∞⇒ dim X < ∞?

Introduction

The following two theorems give us main characterizations of the Lebesgue
dimension.

Theorem A. A normal space X satisfies the inequality dim X ≤ n ≥ 0 if and
only if for every sequence (F 1

1 , F 1
2 ), (F 2

1 , F 2
2 ), . . . , (Fn+1

1 , Fn+1
2 ) of n + 1 pais of

disjoint closed subsets of X there exist partitions Pi between F i
1 and F i

2 such that⋂n+1
i=1 Pi = ∅.

Theorem B. A normal space X satisfies the inequality dim X ≤ n ≥ 0 if and
only if every continuous mapping f : X → In+1 is inessential.

Pairs (F i
1, F

i
2) from Theorem A are families Φi of sets such that their nerves

N(Φi) coincide with the two point set {0, 1} which is zero-dimensional simplicial
complex. Changing the two point set to arbitrary simplicial complexes Gi we get
a definition of a dimension function G-dim (see Definition 3.4).
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The cube In+1 from Theorem B is homeomorphic to cone Sn and the sphere
Sn is homeomorphic to the join

n+1∗ S0. Changing the sphere S0 to arbitrary ANR-
compacta Ri we get a definition of a dimension function R-dim (see Definition
3.9).

Proposition 3.15 establishes a link between dimension function R-dim, where
R is an ANR-compactum, and extension dimension e-dim:

R- dim X ≤ n ⇐⇒ e- dimX ≤ n+1∗ R. (0.1)

According to Proposition 4.5 for homotopy equivalent classes R1 and R2 of
ANR-compacta we have

R1- dim X = R2- dim X for every normal space X. (0.2)

Theorem 4.8 states that if K is a class of compact polyhedra and τ is some of
its triangulations, then

K- dim X = Kτ - dim X (0.3)

for arbitrary normal space X, where Kτ is the class of simplicial complexes defined
by the triangulation τ .

In view of (0.2), (0.3), and West’s theorem on homotopy types of ANR-
compacta, it is sufficient to consider only dimension functions R-dim with R con-
sisting of compact polyhedra. Property (0.1) allows us to apply results of extension
theory introduced by A. Dranishnikov [3].

An internal theory of dimension R-dim is similar to this of the Lebesgue di-
mension. For example, the following statements hold.

Countable sum theorem 5.1.

Point-finite sum theorem 5.3.

Addition theorem 5.7: R-dim(X1 ∪X2) ≤ R-dim X1 +R-dim X2 + 1.

Čech-Stone compactification theorem 5.11.

Universal compact space theorem 5.12.

Decomposition theorem 5.15: If X is a separable metrizable space with R-
dim X ≤ m + n + 1, the X can be represented as the union X = A ∪ B so that
R-dim A ≤ m, R-dim B ≤ n.

Completion theorem 5.18.

Inverse system theorems 5.19, 5.20, 5.21.

§ 6 is devoted to comparison of dimensions. Theorem 6.3 states that

R- dim X ≤ dim X (0.4)

for an arbitrary class R and every space X. As for the equality

R- dim X = dim X, (0.5)
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it holds if and only if R contains a disconnected ANR-compactum. In connection
with the inequality (0.4) we study the following problem: When

R- dim X < ∞⇒ dim X < ∞ (0.6)

for every space X?

ANR-compacta R satisfying condition (0.6) are called efd-compacta (nota-
tion: R ∈ efd-C). We give a list of results concerning the class efd-C. In particu-
lar, Theorem 6.11 states that if H∗(R,Q) = 0, then R /∈ efd-C.

Hypothesis. R ∈ efd-C ⇐⇒ H∗(R,Q) 6= 0.

In § 7 we investigate dimension of products. The inequality

R- dim(X × Y ) ≤ R- dim X + R- dim Y + 1 (0.7)

holds for finite-dimensional compact Hausdorff spaces X and Y and a connected
ANR-compactum R (Theorem 7.3).

Inequality (0.7) is not improvable. As an example one can take X = Y = R =
S1.

§§ 1,2 have an auxiliary character. There we recall some topological construc-
tions and notions and facts of extension theory. All spaces are assumed to be
normal (+T1). All mappings are continuous. Compacta stand for metrizable com-
pact spaces. By FinA (FinsA) we denote the set of all finite subsets of A (finite
sequences of elements from A). The symbol t denotes a union of disjoint sets. For
a space X by exp X we denote the set of all closed subsets of X (including ∅). The
set of all finite indexed open covers of X is denoted by cov∞(X). The symbol '
stands for a homotopy equivalence.

The author is grateful to Sasha Karassev for pointing out errors in the first
draft of the paper.

1. Simplicial complexes, polyhedra, and ANR-compacta.
Cones, joins, and smash products

1.1. We consider only finite simplicial complexes, so that one can identify an
abstract simplicial complex G with its geometric realization, i.e. with an Euclidean
complex G̃ with the same vertex scheme. In this context it is clear what is a
simplicial subdivision of a simplicial complex G.

Recall that a simplicial complex G is said to be complete if every face of each
simplex from G belongs to G. In what follows complexes stand for finite com-
plete simplicial complexes. Hence, geometric realizations of complexes are compact
polyhedra.

For a complex G by v(G) we denote the set of all its vertices. Let u be a
finite family of sets and let u0 = {U ∈ u : U 6= ∅}. The nerve of the family u is
a complex N(u) such that v(N(u)) = {aU : U ∈ u0} and a set ∆ ⊂ v(N(u)) is a
simplex of N(u) if and only if

⋂{U : aU ∈ ∆} 6= ∅.
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In what follows polyhedra stands for compact polyhedra. Every compact poly-
hedron is an ANR-space (for normal spaces).

1.2. Theorem [23]. Every ANR-compactum is homotopy equivalent to some
compact polyhedron.

1.3. The cone of a space X is the space coneX which is the quotient space
X × I/X × 0. The set X × 1 ⊂ coneX is called the base of the coneX. As a rule
we shall identify X × 1 and X. Let qX : X × I → coneX be the quotient mapping.
The point qX(X × 0) is said to be the peak of the cone of X and is usually denoted
by aX .

If ∆ is an n-dimensional simplex with vertices a0, . . . , an, then cone∆ is an
(n + 1)-dimensional simplex with vertices a0, . . . , an, a∆. Hence the cone of a
complex is a complex.

The join of spaces X and Y is the space X ∗ Y which is the quotient space of
X × I × Y with respect to the decomposition whose members are sets x × 0 × Y ,
X × 1× y (x ∈ X, y ∈ Y ) and singletons of the set X × (0; 1)× Y .

The boundary join (or Bd-join) of spaces X and Y is the following subset X∗Y
of the product cone X × coneY : X∗Y = cone(X)× Y

⋃
X × cone Y .

1.4. Proposition ([19]), Lecture 5). If X and Y are locally compact Haus-
dorff spaces, then the spaces X ∗ Y and X∗Y are canonically homeomorphic.

1.5. Proposition ([20], Ch. 1). If X and Y are compact Hausdorff spaces,
then there exists a canonic homeomorphism h : cone(X ∗ Y ) → coneX × cone Y
such that h(acone(X∗Y )) = (aX , aY ) and h(X ∗ Y ) = X∗Y .

By induction we define the iterated join

(. . . ((X1 ∗X2) ∗X3) . . . ) ∗Xn

and the iterated Bd-join

(. . . ((X1∗X2)∗X3) . . . )∗Xn.

The operations ∗ and ∗ are commutative and associative up to homeomorphism.
Thus, for compact Hausdorff spaces X1, . . . , Xn there defined their multiple join

X1 ∗ . . . ∗Xn ≡
n

∗
i=1

Xi

and their multiple Bd-join

X1∗ . . . ∗Xn ≡
n

∗
i=1

Xi.

There exists a canonical homeomorphism

X1∗ . . . ∗Xn =
n⋃

i=1

(
Xi ×

∏

j 6=i

cone Xj

)
. (1.1)

Proposition 1.5 is generalized as follows.
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1.6. Proposition. If X1, . . . , Xn are compact Hausdorff spaces, then there
is a homeomorphism

g : cone X1 × . . .× cone Xn → cone(X1 ∗ . . . ∗Xn)

such that

g
( n⋃

i=1

(Xi ×
∏

j 6=i

cone Xj)
)

= X1 ∗ . . . ∗Xn (1.2)

and g(a1, . . . , an) = acone(X1∗...∗Xn), where ai is the peak of coneXi, i = 1, . . . , n.

1.7. Remark. In what follows we shall identify the multiple join X1 ∗ . . .∗Xn

of compact Hausdorff spaces X1, . . . , Xn with their multiple Bd-join, i.e. with the
set (1.1). Sometimes, we shall use a short notation:

B(X1, . . . , Xn) ≡
n⋃

i=1

(
Xi ×

∏

j 6=i

coneXj

)
. (1.3)

For mappings fi : Xi → Yi, let

c(f1, . . . , fn) = cone f1 × . . .× cone fn :
n∏

i=1

coneXi →
n∏

i=1

coneYi.

Then

c(f1, . . . , fn)(B(X1, . . . , Xn)) ⊂ B(Y1, . . . , Yn); (1.4)

c(f1, . . . , fn)−1B(Y1, . . . , Yn) = B(X1, . . . , Xn). (1.5)

Taking into consideration our agreement X1 ∗ . . . ∗Xn = B(X1, . . . , Xn), put

f1 ∗ . . . ∗ fn = c(f1, . . . , fn)|B(X1,... ,Xn). (1.6)

From properties of cones and products, and equalities (1.4), (1.5) we get

1.8. Proposition. The operation of the multiple join

(X1, . . . , Xn) → X1 ∗ . . . ∗Xn, (f1, . . . , fn) → f1 ∗ . . . ∗ fn

is a covariant functor of several variables in the category Comp of compact Haus-
dorff spaces. Moreover, it preserves homotopy equivalences of spaces and map-
pings.

The next statement is also well known.

1.9. Proposition. If X1, . . . , Xn are ANR-compacta (polyhedra), then their
multiple join X1 ∗ . . . ∗Xn is also an ANR-compactum (a polyhedron).

1.10. For pointed spaces (X, x0) and (Y, y0) their wedge (X, x0) ∨ (Y, y0) is
defined as the quotient space X t Y/{x0, y0}. The smash product (X,x0) ∧ (Y, y0)
is the quotient space X × Y/X × {y0} ∪ {x0} × Y .
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1.11. Proposition [19]. If X and Y are connected ANR-compacta, then for
arbitrary pairs (xi, yi) ∈ X,Y , i = 0, 1, the spaces (X, x0) ∧ (Y, y0) and (X, x1) ∧
(Y, y1) are homotopy equivalent.

In view of Proposition 1.11 we shall denote the smash product (X, x0)∧ (Y, y0)
(X,Y are connected ANR-compacta) by X ∧ Y .

1.12. Proposition [19]. If X and Y are connected ANR-compacta, then
Σ(X ∧ Y ) ' X ∗ Y .

1.13. Proposition. If X and Y are polyhedra (ANR-compacta), then X ∧Y
is a polyhedron (ANR-compactum).

1.14. Proposition. If X is an ANR-compactum, then cone X ∈ AR.

2. Main notions of extension theory

Recall that the Homotopy Extension Theorem is fulfilled for a pair (X, Y ) of
spaces if, for every closed set F ⊂ X, each mapping f : (X × 0) ∪ (F × I) → Y
extends over X × I.

2.1. Theorem (Borsuk’s theorem on extension of homotopy) (see [15], [22]).
Homotopy Extension Theorem is fulfilled for every pair (X, R), where X is a space
and R is an ANR-compactum.

2.2. Definition. Let X and Y be spaces and let Z ⊂ X. The property that
all partial mappings f : Z → Y extend over X will be denoted by Y ∈ AE(X,Z).
If every mapping f : Z → Y extends over an open set Uf ⊃ Z, then we write
Y ∈ ANE(X, Z). If Y ∈ A(N)E(X, Z) for every closed Z ⊂ X, then Y is called
an absolute (neighbourhood) extensor of X (notation: Y ∈ A(N)E(X)). If Y ∈
A(N)E(X) for all spaces X, then Y is said to be an absolute (neighbourhood)
extensor (notation: Y ∈ A(N)E).

Brouwer-Tietze-Urysohn theorem on extension of functions yields
2.3. Theorem. If Y is an A(N)R-compactum, then Y ∈ A(N)E.
2.4. Factorization theorem [4]. Let X be a compact Hausdorff space and

let R be an ANR-compactum such that R ∈ AE(X). Then for every mapping f :
X → Y to a metric space Y there exist a compactum X ′ and mappings f ′ : X → X ′

and g : X ′ → Y such that R ∈ AE(X ′) and f = g ◦ f ′.
2.5. Proposition. Let X be a space and let Y be a compact Hausdorff space.

If Y ∈ AE(βX), then Y ∈ AE(X).
Recall that a space X is dominated by a space Y (notation: X ≤h Y ) if there

exist mappings f : X → Y and g : Y → X such that g ◦ f ' idX .
2.6. Theorem. Let X be a space and let Y be a compact Hausdorff space. If

Y is dominated by an ANR-compactum, then Y ∈ AE(X) ⇐⇒ Y ∈ AE(βX).
Proof. In view of Proposition 2.5 it suffices to check the implication ⇒. Let

F be a closed subset of βX and let f : F → Y be a mapping. There exist an
ANR-compactum R and mappings ϕ : Y → R and ψ : R → Y such that ψ ◦ ϕ '
idY . By Theorem 2.3 the mapping ϕ ◦ f extends over some neighbourhood OF .
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Consequently, there exist a regular closed set F1 ⊂ βX and a mapping f1 : F1 → R
such that F ⊂ F1 and f1|F = ϕ ◦ f (we recall that a set H is said to be regular
closed if H = ClU , where U is open). Let F2 = F1 ∩X and f2 = ψ ◦ f1 : F2 → Y .
Since Y ∈ AE(X), there exists a mapping f3 : X → Y such that f3|F2 = ψ ◦ f1|F2 .
Put f4 = βf3 : βX → Y . According to Theorem 2.1 it remains to show that

f4|F ' f. (2.1)

Since F1 is regular closed,
βF2 = [F2]βX = F1. (2.2)

We have f4|F2 = f3|F2 = ψ◦f1|F2 . Consequently, from (2.2) we get f4|F1 = ψ◦f1|F1 .
Then f4|F = ψ◦f1|F = ψ◦(f1|F ) = ψ◦(ϕ◦f) = (ψ◦ϕ)◦f ' f because ψ◦ϕ ' idY .
This the equivalence (2.1) is proved.

The next statement is well known and based on Theorem 2.1 and Stone-
Weierstrass theorem.

2.7. Theorem. Let R be an ANR-compactum and let X be the limit space
of an inverse system {Xα, πα

β , A} of compact Hausdorff spaces Xα such that R ∈
AE(Xα). Then R ∈ AE(X).

Recall that an inverse system S = {Xα, πα
β , A} is said to be a σ-spectrum [21]

if
1) all Xα are compacta;
2) the indexing set A is ω-complete, i.e. for every countable chain B ⊂ A there

is sup B in A;
3) the system S is continuous, i.e. for each countable chain B in A with supB =

β, the diagonal product 4{πβ
α : α ∈ B} maps the space Xβ homeomorphically onto

the space lim(S|B).
Applying Theorems 2.4 and 2.7 we get
2.8. Theorem [17]. Let X be a compact Hausdorff space and let R be an

ANR-compactum such that R ∈ AE(X). Then X is the limit space of a σ-spectrum
S = {Xα, πα

β , A} such that R ∈ AE(Xα) for every α ∈ A.
Theorem 2.1 yields
2.9. Proposition. Let R1 and R2 be ANR-compacta such that R1 ≤h R2.

Then R2 ∈ AE(X) ⇒ R1 ∈ AE(X) for every space X.
2.10. Definition. Let A be a subclass of the class N of all normal spaces.

We define a preorder ≤A on the class ANR(MC) of all ANR-compacta in the
following way: R1 ≤A R2 if and only if R1 ∈ AE(X) ⇒ R2 ∈ AE(X) for every
space X ∈ A.

The following statement is an immediate corollary of definitions.
2.11. Proposition. If A1 ⊂ A2 ⊂ N , then R1 ≤A2 R2 ⇒ R1 ≤A1 R2 for

arbitrary ANR-compacta R1 and R2.
Let the symbols C, MC, Sep stand for the classes of all compact Hausdorff

spaces, metrizable compacta, separable metrizable spaces. The next statement is
well known. We give its proof for convenience of readers.
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2.12. Theorem. For arbitrary ANR-compacta R1 and R2 the following
conditions are equivalent:

1) R1 ≤N R2; 2) R1 ≤C R2; 3) R1 ≤MC R2; 4) R1 ≤Sep R2.
Proof. Proposition 2.11 implies that 1) ⇒ 2) ⇒ 3). The implication 2) ⇒ 1) is

a corollary of Theorem 2.6. Now the implication 3) ⇒ 2). Let R1 ≤MC R2 and let
R1 ∈ AE(X) for some compact Hausdorff space X. By Theoren 2.8 X is the limit
space of an inverse system S = {Xα, πα

β , A} of compacta such that R1 ∈ AE(Xα)
for all α ∈ A. Since R1 ≤MC R2, we have R2 ∈ AE(Xα), α ∈ A. Applying
Theorem 2.7 we get R2 ∈ AE(X), i.e. R1 ≤C R2. At last, Proposition 2.11, the
equivalence 3) ⇐⇒ 1), and condition MC ⊂ Sep ⊂ N yield the equivalence 4)
⇐⇒ 3).

In what follows we shall denote the equivalent relations ≤N , ≤C , ≤MC , and
≤Sep simply by ≤.

Now we define an equivalence relation ∼ on the class ANR(MC). Name-
ly: R1 ∼ R2 if both R1 ≤ R2 and R2 ≤ R1 hold. An equivalence class of an
ANR-compactum R under this relation is called an extension type of R or ext(R).
Proposition 2.9 yields

2.13. Proposition. If ANR-compacta R1 and R2 are homotopy equivalent,
then ext(R1) = ext(R2).

The set of all extension types is denoted by E. Clearly, the preorder ≤ on
ANR(MC) implies a partial order on E. If it is not ambiguous, we denote this
partial order simply by ≤. Proposition 2.9 implies

2.14. Proposition. If R1 ≤h R2, then ext(R1) ≥ ext(R2).
2.15. Definition. Let R ∈ ANR(MC). Recall that the extension dimension

of a topological space X is less than or equal to R (notation: e-dim X ≤ R),
provided the property R ∈ AE(X) holds.

If ext(R1) = ext(R2), then the conditions e-dim X ≤ R1 and e-dim X ≤ R2

are obviously equivalent. So sometimes instead of e-dim X ≤ R we shall write
e-dim X ≤ ext(R).

Proposition 2.14 yields
2.16. Proposition. If ANR-compacta R1 and R2 are homotopy equivalent,

then e-dim X ≤ R1 if and only if e-dim X ≤ R2 for an arbitrary space X.
Theorem 2.6 implies
2.17. Proposition. For an arbitrary topological space X and an arbitrary

ANR-compactum R the following conditions are equivalent:
1) e-dim X ≤ R; 2) e-dim(βX) ≤ R.
2.18. Definition. Let X and Y be spaces. We write e-dim X ≤ e-dim Y if

and only if e-dim Y ≤ R implies e-dim X ≤ R for every R ∈ ANR(MC). We say
that e-dim X = e-dimY if both e-dim X ≤ e-dim Y and e-dim Y ≤ e-dim X hold.

2.19. Theorem [5]. Let X and K be spaces. If X can be represented as
the union of a sequence F1, F2, . . . of closed subsets, then K ∈ AE(X) provided
K ∈ AE(Fn) for all n and K ∈ ANE(X).
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By analogy with Theorem 3.1.13 from [9] we get
2.20. Theorem. Let K be a compact polyhedron and let a space X can be

represented as the union of a family {Fα : α ∈ A} of closed subspaces such that
K ∈ AE(Fα) for α ∈ A, and let there exist a point-finite open cover u = {Uα : α ∈
A} of X such that Fα ⊂ Uα for α ∈ A. Then K ∈ AE(X).

The proof of the next theorem is similar to that of Theorem 1.2 from [8].
2.21. Theorem. Let K and L be compact polyhedra and let X be a hereditarily

normal space. If X = A∪B and K ∈ AE(A), L ∈ AE(B), then K ∗L ∈ AE(X).
Theorem 2.3 yields
2.22. Proposition. Let R be an ANR-compactum and let X be a space

satisfying the following condition:
there exists a closed set F ⊂ X such that R ∈ AE(F ) and R ∈ AE(C) for

every closed set C ⊂ X which does not meet F .
Then R ∈ AE(X).
2.23. Definition [9]. A hereditarily normal space X is said to be strongly

hereditarily normal if every regular open set U ⊂ X can be represented as the union
of a point-finite family of open Fσ-sets of X.

By analogy with Theorem 3.1.19 from [9] we get
2.24. Theorem. If X is a strongly hereditarily normal space and K is a

compact polyhedron, then K ∈ AE(X) ⇒ K ∈ AE(A) for any A ⊂ X.
2.25. Factorization theorem for compact Hausdorff spaces [17].

Let X be a compact Hausdorff space and let R be an ANR-compactum such that
R ∈ AE(X). Then for every mapping f : X → Y to a compact Hausdorff space Y
there exist a compact Hausdorff space X ′ and mappings f ′ : X → X ′ and g : X ′ → Y
such that R ∈ AE(X ′), wX ′ = wY and f = g ◦ f ′.

2.26. Theorem ([16], see [7] for a separable case). Let K, L be countable CW
complexes and let X be a metrizable space. If K ∗ L ∈ AE(X), then X = A ∪ B,
where K ∈ AE(A), L ∈ AE(B).

2.27. Theorem [16]. Let K be a countable CW complex and let λ be an
infinite cardinal number. Then there exists a completely metrizable space MK

λ such
that wMK

λ ≤ λ, K ∈ AE(MK
λ ), and MK

λ contains topologically every metrizable
space X with wX ≤ λ and K ∈ AE(X).

For λ = ω0 this theorem was proved by W. Olszewski [18]. A. Chigogidze and
V. Valov [2] got a stronger result. Namely, MK

λ can be chosen so that for any
completely metrizable space X of weight ≤ λ and K ∈ AE(X) the set of closed
embeddinds X → MK

λ is dense in the space C(X, MK
λ ) of all continuous mappings

from X to MK
λ endowed with source limitation topology.

2.28. Proposition. Let Ri, Si, i = 1, 2, be ANR-compacta such that R1 ≤
R2, S1 ≤ S2. Then R1 ∗ S1 ≤ R2 ∗ S2.

Proof. According to Proposition 2.13 we may assume that Ri, Si are polyhe-
dra. In this case our assertion is proved in ([7], Proposition 3.3) with respect to
the order ≤Sep. Applying Theorem 2.12 we complete the proof.
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2.29. Theorem ([6], Theorem 7.10). Let h∗ be a reduced continuous co-
homology theory such that h∗(K) = 0 for some countable simplicial complex K.
Then there exists a strongly infinite-dimensional compactum X having the property
K ∈ AE(X).

2.30. Proposition [12]. Let R = R1 ∪ R2. If Ri ∈ AE(X), i = 1, 2, and
R1 ∩R2 ∈ AE(X), then R ∈ AE(X).

2.31. Proposition [12]. Let R = R1∪R2 and let R ∈ AE(X) and R1∩R2 ∈
AE(X). Then Ri ∈ AE(X), i = 1, 2.

2.32. Proposition [12]. R1 × R2 ∈ AE(X) if and only if Ri ∈ AE(X),
i = 1, 2.

2.33. Proposition [3]. Let R1 ⊃ R2 and let R1, R2 be ANR-compacta. If
Ri ∈ AE(X), i = 1, 2, then R1/R2 ∈ AE(X).

2.34. Proposition [3]. Let f : Z → Y be a mapping of ANR-compacta such
that f−1(y) ∈ ANR for all y ∈ Y . Assume that Y ∈ AE(X) and f−1(y) ∈ AE(X)
for a compactum X and all y ∈ Y . Then Z ∈ AE(X).

Propositions 2.30, 2.32, 2.33, and 2.34 yield
2.35. Proposition. If Ri ∈ AE(X), i = 1, 2, then R1 ∧ R2 ∈ AE(X) and

R1 ∗R2 ∈ AE(X).
Proposition 2.32 and 2.33 imply
2.36. Proposition. If R ∈ AE(X), then Σ(R) ∈ AE(X).
Since R1 ∗R2 = Σ(R1 ∧R2), Proposition 2.36 yields
2.37. Proposition. If R1 ∧R2 ∈ AE(X), then R1 ∗R2 ∈ AE(X).
2.38. Theorem [7]. Let X and Y be metrizable spaces of finite dimension and

let Y be compact. If K ∈ AE(X) and L ∈ AE(Y ) are connected CW complexes,
then K ∧ L ∈ AE(X × Y ).

The next statement is well known.
2.39. Open enlargement lemma. Let Φ = (F1, . . . , Fm) ∈ Fins(exp X).

Then there exists a family u = (U1, . . . , Um) of open subsets of X such that N(u) =
N(Φ) and Fj ⊂ Uj , j = 1, . . . ,m.

3. Definitions of dimension invariants
by means of partitions and essential mappings

Recall that a simplicial complex G is said to be complete if every face of each
simplex from G belongs to G. In what follows complexes stand for finite complete
simplicial complexes.

Symbols G,H,G1 and so on denote non-empty classes of complexes.
3.1. Definition [10]. Let X be a space, G be a complex, and Φ =

(F1, . . . , Fm) ∈ Fins(exp X). A family u = {U1, . . . , Uk} k ≥ m, of open sub-
sets of X is called a G-neighbourhood of Φ if Fj ⊂ Uj and N(u) ⊂ G.

3.2. Definition. A set P ⊂ X is said to be a G-partition of Φ ∈ Fins(exp X)
(notation: P ∈ Part(Φ, G)) if P = X \⋃

u, where u is a G-neighbourhood of Φ.
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Put ExpG(X) = {Φ ∈ Fins(exp X) : N(Φ) ⊂ G}.
3.3. Definition. A sequence G = (G1, . . . , Gr) of complexes is called inessen-

tial in X if for every sequence (Φ1, . . . , Φr) such that Φi ∈ ExpGi
(X) there exist

Gi-partitions Pi of Φi such that
⋂{Pi : i = 1, . . . , r} = ∅.

3.4. Definition. Let G be a class of complexes. To every space X one assigns
the dimension G-dimX, which is an integer ≥ −1 or ∞. The dimension function
G-dim is defined in the following way:

(1) G-dim X = −1 ⇐⇒ X = ∅;
(2) G-dim X ≤ n, where n = 0, 1, . . . , if every sequence (G1, . . . , Gn+1), Gi ∈

G, i = 1, . . . , n + 1, is inessential in X;
(3) G-dim X = ∞, if G-dim X > n for all n = −1, 0, 1, . . . .
If the class G contains only one complex G we write G = G and G-dim X = G-

dim X.
Let {0, 1} be a two point set and let ∆n be an n-dimensional simplex. The

next assertion is evident.
3.5. Proposition. For every space X we have ∆n-dim X ≤ 0.
From a characterization of Lebesgue dimension by means of partitions we get
3.6. Theorem. For every space X we have {0, 1}-dim X = dim X.
3.7. Symbols R, R1 and so on denote non-empty classes of metrizable ANR-

compacta. If R contains only one ANR-compactum R we write R = R. Put
C(X, coneR) =

⋃{C(X, cone R) : R ∈ R}.
3.8. Definition [10]. Let σ = (f1, . . . , fn) be a finite sequence of mappings
fi : X → cone Ri, R ∈ R,
f = f14 . . .4fn : X → ∏n

i=1 cone Ri,
and let F = f−1(R1 ∗ . . . ∗ Rn) (see Remark 1.7). The sequence σ is said to be
R-inessential if the mapping f |F : F → R1 ∗ . . . ∗Rn extends over X.

3.9. Definition. Let R be a non-empty class of metrizable ANR-compacta.
To every space X one assigns the dimension R-dim X which is an integer ≥ −1 or
∞. The dimension function R-dim is defined in the following way:

(1) R-dim X = −1 ⇐⇒ X = ∅;
(2) R-dim X ≤ n, where n = 0, 1, . . . , if every sequence σ = (f1, . . . , fn+1),

fi ∈ C(X, coneR), is R-inessential;
(3) R-dim X = ∞, if R-dim X > n for all n ≥ −1.
If the class R contains only one compactum R we write R = R and R-dim X =

R-dim X.
From a characterization of Lebesgue dimension by means of essential mappings

we get
3.10. Theorem. For every space X {0, 1}-dim X = dim X.
3.11. Remark. At a glance the assertions of Theorems 3.6 and 3.10 coincide.

But these theorems deal with different dimension functions: G-dim and R-dim.
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For a class Z of compacta and an integer m ≥ 1, we put
m∗Z = {Z1 ∗ . . . ∗ Zm : Zi ∈ Z}.

We shall write R ⊂ AE(X) if R ∈ AE(X) for every R ∈ R.
3.12. Proposition. For arbitrary R and X, we have R-dim X ≤ n ⇐⇒

n+1∗ R ⊂ AE(X).
Proof. Implication ⇒. Let R-dimX ≤ n, R1, . . . , Rn+1 ∈ R, and let f0 : F →

R1 ∗ . . . ∗ Rn+1 be a mapping of a closed set F ⊂ X. Propositions 1.9, 1.14 and
2.3 imply that cone(R1 ∗ . . . ∗Rn+1) ≡ R ∈ AE(X). Hence there exists a mapping
f : X → R such that f |F = f0. By Proposition 1.6, R =

∏n+1
i=1 coneRi. Let

pj :
n+1∏

i=1

coneRi → coneRj , j = 1, . . . , n + 1,

be projections onto factors. Let fj = pj ◦ f . Then f = f14 . . .4fn+1. Since
f |F = f0,

F ⊂ F1 ≡ f−1(R1 ∗ . . . ∗Rn+1). (3.3)

FromR-dim X ≤ n, it follows that the sequence (f1, . . . , fn+1) isR-inessential and,
consequently, there exists a mapping g : X → R1 ∗ . . . ∗ Rn+1 such that g|F1 = f .
Hence the equality f |F = f0 and condition (3.3) imply that g|F = f0. So g is a
required extension of f0 over X and R1 ∗ . . . ∗Rn+1 ∈ AE(X).

Implication ⇐. Let
n+1∗ R ⊂ AE(X). We have to prove that an arbitrary

sequence
fi : X → cone Ri, Ri ∈ R, i = 1, . . . , n + 1,

is R-inessential. Put

f = f14 . . .4fn+1 : X →
n+1∏

i=1

cone Ri = cone(R1 ∗ . . . ∗Rn+1)

and F = f−1(R1 ∗ . . . ∗ Rn+1). Since R1 ∗ . . . ∗ Rn+1 ∈ AE(X), the mapping
f0 = f |F : F → R1 ∗ . . . ∗Rn+1 extends over X. Thus the sequence (f1, . . . , fn+1)
is R-inessential.

3.13. Corollary. For an arbitrary ANR-compactum R, R-dim X ≤ n ⇐⇒
n+1∗ R ∈ AE(X). In particular, R-dim X ≤ 0 ⇐⇒ R ∈ AE(X).

Another corollary of Proposition 3.12 is
3.14. Proposition. If R-dim X ≤ n and F is a closed subset of X, then

R-dim F ≤ n.
From Definition 2.15 and Corollary 3.13 we get
3.15. Proposition. For arbitrary space X, R-dim X ≤ n ⇐⇒ e-dim X ≤

n+1∗ R. In particular, R-dim X ≤ 0 ⇐⇒ e-dim X ≤ R.
3.16. Remark. Definition 3.4 of dimension function G-dim is based on Defini-

tion 3.2 and the definition of the set ExpG(X). In these definitions the embeddings
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N(Φ) ⊂ G and N(u) ⊂ G do not depend on each other. It is possible to give
another definition of dimension function G-dim, where the embedding N(u) ⊂ G is
an extension of the embedding N(Φ) ⊂ G. We shall show that this new approach
gives us the same dimension function.

3.17. Definition. Let G be a complex and let X be a space. Denote by
Expθ

G(X) the set of all triples T = (ΦT , αT , eT ), where:
ΦT = Φ = (F1, . . . , Fm) ∈ Fins(exp X),m ≤ |v(G)|;
αT = α : (1, . . . , m) → v(G) is an embedding;
eT = e : N(ΦT ) → G is a simplicial embedding

such that e(Fj) = α(j).
3.18. Definition. Let T ∈ Expθ

G(X) and let ΦT = (F1, . . . , Fm). A family
u = (U1, . . . , Uk), k ≥ m, of open subsets of X is said to be a G-neighbourhood of
T if Fj ⊂ Uj and there exists an embedding α′ : (1, . . . , k) → v(G), α′|(1,... ,m) = α,
and a mapping e′ : N(u) → G, defined by the equality e′(Uj) = α′(j), is a simplicial
embedding.

3.19. Definition. A set P ⊂ X is called a G-partition of T ∈ Expθ
G(X)

(notation: P ∈ Part(T, G)) if P = X \⋃
u, where u is a G-neighbourhood of T .

3.20. Definition. A sequence (G1, . . . , Gr) of complexes is called θ-
inessential in X if for every sequence (T1, . . . , Tr), Ti ∈ Expθ

Gi
(X), there exist

Gi-partitions Pi of Ti such that
⋂{Pi : i = 1, . . . , r} = ∅.

The inclusion Part(T,G) ⊂ Part(ΦT , G) yields
3.21. Proposition. If a sequence (G1, . . . , Gr) is θ-inessential in X, then it

is inessential in X.
3.22. Definition. The dimension function G-dimθ is defined as the function

G-dim (Definition 3.4). The only difference is that in the item (2) we require a
θ-inessentiality of a sequence (G1, . . . , Gn+1) instead of its inessentiality.

3.23. Theorem. For every space X we have G-dim X = G-dimθ X.
To prove Theorem 3.23 we need an additional information.
3.24. Lemma. Let Φ = (F1, . . . , Fm) ∈ Fins(exp X) be a sequence such that

the set X \⋃
Φ is infinite. Let G be a complex with v(G) = {a1, . . . , ak}, k ≥ m.

Assume that the correspondence Fj 7→ aj , j = 1, . . . , m, generates the embedding
N(Φ) → G. Then there exists a sequence Φ1 = (F 1

1 , . . . , F 1
k ) ∈ Fins(exp X) such

that Fj ⊂ F 1
j , j = 1, . . . ,m, and the correspondence F 1

j 7→ aj , j = 1, . . . , k,
generates the isomorphism N(Φ1) → G.

Proof. Let G̃ be a geometric realization of G and let ã1, . . . , ãk be vertices of
G̃. Denote by H the set of barycenters of all simplices of G̃. Let β : H → X \⋃

Φ
be some injection. Put

Oj = β(H ∩Oãj), j = 1, . . . , k,

where Oãj is the star of ãj in G̃. Let Ω = (O1, . . . , Ok). From the definition of
H we get that the correspondence Oj → aj generated an isomorphism N(Ω) → G.
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Put
F 1

j = Fj ∪Oj , j = 1, . . . , m; F 1
j = Oj , j = m + 1, . . . , k.

Then Φ1 = (F 1
1 , . . . , F 1

k ) is the required sequence.
3.25. Lemma. Let Φ = (F1, . . . , Fm) ∈ Fins(exp X) be a sequence such that

X =
⋃

Φ. Then
Part(Φ, G) = {∅} = Part(T, G),

where T = (ΦT , αT , eT ) ∈ Expθ
G(X) is an arbitrary triple with ΦT = Φ.

3.26. Lemma. Let Φ = (F1, . . . , Fm) ∈ Fins(exp X) be a sequence such that
N(Φ) = G. Then Part(Φ, G) ⊂ Part(T, G) for an arbitrary triple T ∈ Expθ

G(X)
with ΦT = Φ.

Proof. Let P ∈ Part(Φ, G). It means that there is a one-to-one correspondence
αΦ : (1, . . . , m) → v(G) such that the correspondence

eΦ(Fj) = αΦ(j)

generates the simplicial isomorphism eΦ : N(Φ) → G, and there is a neighbourhood
u = (U1, . . . , Um) of Φ, P = X \ ⋃

u, with another one-to-one correspondence
α′Φ : (1, . . . , m) → v(G) generating an isomorphism e′Φ : N(u) → G by means of
the correspondence e′Φ(Uj) = α′Φ(j). Put T = (Φ, αΦ, eΦ). Then u becomes a
G-neighbourhood of Φ if we put α′ = α. Since eΦ is an isomorphism, the mapping
e′ : N(u) → G, defined by e′(Uj) = α′(j), is an isomorphism as well.

Proof of Theorem 3.23. The inequality ≤ is a consequence of Proposition 3.21.
Now let G-dim X ≤ n and let (G1, . . . , Gn+1) be a sequence of complexes from
G. We have to prove that this sequence is θ-inessential. Let Ti ∈ Expθ

G(X), i =
1, . . . , n + 1. Let ΦTi = (F i

1, . . . , F i
mi

). We enlarge the sequences ΦTi to sequences
Φ1

i in the following way. If X \⋃
ΦTi is finite, then we put F i,1

1 = F i
1 ∪ (X \⋃

ΦTi),
F i,1

j = F i
j , j = 2, . . . ,mi. If X \⋃

Φi is infinite, then we take a sequence Φ1
i from

Lemma 3.24. Since G-dim X ≤ n there exist partitions Pi ⊂ Part(Φ1
i , Gi) with

P1 ∩ . . . ∩ Pn+1 = ∅. Applying Lemmas 3.25 and 3.26 we finish the proof.

4. Equality K-dim X = Kτ -dim X

4.1. Definition. Let R be a class of ANR-compacta and let X be a space.
According to Definition 2.15 we write e-dim X ≤ R, provided R ⊂ AE(X), i.e. the
property R ∈ AE(X) holds for every R ∈ R.

Proposition 3.12 implies
4.2. Proposition. For arbitrary R and X, we have R-dim X ≤ n ⇐⇒

e-dim X ≤ n+1∗ R.
4.3. Definition. We say that R1 is dominated by R2 (notation: R1 ≤h R2)

if every R1 ∈ R1 is dominated by some R2 ∈ R2. A class R1 is homotopy equivalent
to a class R2 (notation: R1 ' R2) if both R1 ≤h R2 and R2 ≤h R1 hold.

4.4. Proposition. If R1 ≤h R2, then R1-dim X ≤ R2-dim X for an arbi-
trary space X.



Finite dimensions modulo simplicial complexes and ANR-compacta 39

Proof. The assertion is obvious if R2-dim X = ∞. Let R2-dim X = n < ∞.
To prove that R1-dim X ≤ n it suffices, according to Proposition 4.2, to show
that e-dim X ≤ n+1∗ R1. Let R1

1, . . . , R1
n+1 ∈ R1. Since R1 ≤h R2, there exist

R2
j ∈ R2 such that R1

j ≤h R2
j , j = 1, . . . , n + 1. From Proposition 1.8 we get

n+1

∗
j=1

R1
j ≤h

n+1

∗
j=1

R2
j . The equality R2-dim X = n and Proposition 4.2 imply that

R2
1 ∗ . . . ∗R2

n+1 ∈ AE(X).

Consequently, in view of Proposition 2.9,
n+1

∗
j=1

R1
j ∈ AE(X). Applying Propo-

sition 4.2 once more we get R1-dim X ≤ n.

As a corollary we have

4.5. Proposition. If R1 ' R2, then R1-dim X = R2-dim X for every X.

Theorem 1.2 and Proposition 4.5 yield

4.6. Proposition. For every class R of ANR-compacta there exists a class
K = K(R) of polyhedra such that R-dim X = K-dim X for every space X.

So, when we investigate dimension functions of type R-dim, we can consider
only classes R consisting of compact polyhedra. These classes we shall denote by
K,L and so on. In what follows all polyhedra are assumed to be compact.

Another corollary of Proposition 4.5 is

4.7. Proposition. Let K and L be homotopy equivalent polyhedra. Then
K-dim X = L-dim X for every space X.

Let K be a class of polyhedra. For each K ∈ K we fix a triangulation t = t(K)
of K. The pair (K, t) is a simplicial complex which is denoted by Kt. The family
τ = {t(K) : K ∈ K} is said to be a triangulation of the class K. Let Kτ = {Kt :
t ∈ τ}.

4.8. Theorem. Let K be a class of polyhedra and let τ be some its triangula-
tion. Then Kτ -dim X = K-dim X for every space X.

To prove Theorem 4.8 we need some additional information.

Let u = (U1, . . . , Um) ∈ cov∞(X). Recall that a mapping f : X → N(u)
is said to be u-barycentric, if f(x) = (ϕ1(x), . . . , ϕm(x)), where (ϕ1, . . . , ϕm) is
some partition of unity subordinated to the cover u, and ϕj(x) is the barycentric
coordinate of f(x) corresponding to the vertex aj ≡ Uj ∈ v(N(u)).

Let G be a simplicial complex with vertices a1, . . . , am. By Oaj ≡ Oj we
denote the star of aj in G, that is the union of all open simplices σ from G such
that aj ∈ v(σ). Put ω = ω(G) = (Oa1, . . . , Oam).

For g ∈ G, let µj(g) be the barycentric coordinate of the point g cor-
responding to the vertex aj . The function µj : G → [0; 1] is continuous and
supp µj ≡ µ−1

j (0; 1] = Oaj .

4.9. Proposition. The mapping µ : G → N(ω(G)) defined as µ(g) =
(µ1(g), . . . , µm(g)) is a simplicial isomorphism and an ω(G)-barycentric mapping.
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If Φ = (F1, . . . , Fm) is a sequence of closed subsets of a space X, then a
sequence u = (U1, . . . , Um) of open subsets of X is called an open enlargement of
Φ if Fj ⊂ Uj , j = 1, . . . , m. Every finite sequence Φ of closed subsets of X has an
open enlargement u with N(u) = N(Φ) (Lemma 2.39).

4.10. Definition. Let Φ = (F1, . . . , Fm) be a closed cover of X. A mapping
f : X → N(Φ) ≡ G is said to be a Φ-barycentric, if it is u-barycentric for some
open enlargement u of Φ such that N(u) = N(Φ) and

Cl(f(Fj)) ⊂ Oaj , j = 1, . . . , m. (4.1)

4.11. Proposition. For every finite closed cover Φ of X there exists a
Φ-barycentric mapping f : X → N(Φ).

4.12. Definition. Let Φ = (F1, . . . , Fm) ∈ Fins(exp X) and let F = F1 ∪
. . .∪Fm. Let u = (U1, . . . , Um) be an open enlargement of Φ. A mapping f : F →
N(Φ) ≡ G is said to be (u,Φ)-barycentric if it is (u|F )-barycentric and satisfies
condition (4.1).

4.13. Lemma [10]. Let G be a simplicial complex with vertices a1, . . . , ak

and let u = (U1, . . . , Uk) be a G-neighbourhood of a sequence Φ = (F1, . . . , Fm) ∈
Fins(exp X), m ≤ k. Put F = F1 ∪ . . . ∪ Fm, U = U1 ∪ . . . ∪ Uk, and let B
be a closed set such that F ⊂ B ⊂ U . Then every (u,Φ)-barycentric mapping
f0 : F → N(u|F ) ⊂ N(u) ⊂ G extends to a mapping f : X → cone G such that

f−1(Oaj) ⊂ Uj , Cl(f(Fj)) ⊂ Oaj ; (4.2)

f−1(a) ∩B = ∅, (4.3)

where Oaj is the star of the vertex aj in coneG and a is the peak of coneG.
4.14. Lemma. Let R1, . . . , Rn be ANR-compacta, let F1, . . . , Fn be closed

subsets of a space X, and let hi : X → cone Ri, i = 1, . . . , n, be mappings such that

hi(Fi) ⊂ Ri. (4.4)

Then the mapping h = h14 . . .4hn satisfies the condition

h(Y ) ⊂ B(R1, . . . , Rn), (4.5)

where Y = F1 ∪ . . . ∪ Fn.
Proof. According to (1.3)

B ≡ B(R1, . . . , Rn) = B1 ∪ . . . ∪Bn, (4.6)

where Bi = Ri ×
∏

j 6=i coneRj . So it suffices to check that

h(Fi) ⊂ Bi. (4.7)

Let pi :
∏n

j=1 cone Rj → cone Ri be the projection onto the factor. Then

hi = pi ◦ h; (4.8)

Bi = p−1
i (Ri). (4.9)
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From (4.8) and (4.9) we get that (4.7) is equivalent to (4.4).
4.15. Lemma. Let f0, f1 : X → R be mappings to an AR-compactum and let

f0|F = f1|F for some closed set F ⊂ X. Then there exists a homotopy ft : X → R,
0 ≤ t ≤ 1, such that ft|F = f0|F for all t ∈ I.

4.16. Lemma. Let fi : X → cone Ri, i = 1, . . . , n, be mappings, where
R1, . . . , Rn are ANR-compacta. Suppose there exist mappings gi : X → coneRi

and homotopies f t
i : X → cone Ri such that

f0
i = fi, f1

i = gi; (4.10)

(f t
i )
−1(Ri) ⊃ Fi ≡ f−1

i (Ri); (4.11)

g(X) ⊂
n∏

i=1

coneRi \ {(a1, . . . , an)}, (4.12)

where g = g14 . . .4gn and ai is the peak of cone Ri. Then there exists a mapping
f : X → B(R1, . . . , Rn) ≡ B such that f |Y = f , where f = f14 . . .4fn and
Y = F1 ∪ . . . ∪ Fn.

Proof. According to Proposition 1.6 there exists a retraction

r :
n∏

i=1

cone Ri \ {(a1, . . . , an)} → B.

Put h = r ◦ g and hi = pi ◦ h. Then

hi|g−1
i

(Ri)
= gi|g−1

i
(Ri)

. (4.13)

Indeed, let x ∈ g−1
i (Ri). Then Ri 3 gi(x) = (pi ◦ g)(x). Consequently, g(x) ∈

p−1
i (Ri) = (by (4.9)) = Bi ⊂ B. Since r|B = id, we have h(x) = g(x). Hence

hi(x) = gi(x). Thus equality (4.13) is checked.

The conditions (4.10) and (4.11) imply that Fi ⊂ g−1
i (Ri). Hence (4.13) yields

gi|Fi = hi|Fi . (4.14)

Lemma 4.15 and the equality (4.14) imply an existence of a homotopy gt
i : X →

cone Ri such that

g0
i = gi, g1

i = hi; (4.15)

gt
i |Fi = gi|Fi = hi|Fi . (4.16)

From (4.11) and (4.16) we get condition (4.4) for the homotopies gt
i . Consequent-

ly, in accordance with Lemma 4.14 the homotopy gt = gt
14 . . .4gt

n satisfies the
condition

gt(Y ) ⊂ B(R1, . . . , Rn). (4.5)′

In view of (4.15) the homotopy gt connects the mappings g and h. On the other
hand, according to (4.10) the homotopy f t = f t

14 . . .4f t
n connects the mappings
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f and g and satisfies the condition f t(Y ) ⊂ B(R1, . . . , Rn) because of (4.11) and
Lemma 4.14. Thus we can define a homotopy ht : Y → B putting

ht(y) =
{

f2t(y) for t ≤ 1
2 ;

g2t−1(y) for t ≥ 1
2 .

This homotopy connects the mappings f |Y = h0 and h|Y = h1. By Theorem 2.1
the homotopy ht can be extended to a homotopy h

t
: X → B so that h

1
= h. Then

f = h
0

is the required mapping.
Proof of Theorem 4.8. Denote the class Kτ by G = G(K) and its members Kt

by G = G(K). We have to prove the inequalities

G- dim X ≤ K- dim X, (4.17)

K- dim X ≤ G- dim X. (4.18)

Let K-dim X ≤ n and (G1, . . . , Gn+1) ∈ FinsG, Φi ∈ ExpGi
(X), i = 1, . . . , n +

1. To prove inequality (4.17) we have to find Gi-partitions Pi of Φi such that⋂n+1
i=1 Pi = ∅. Let Φi = (F i

1, . . . , F i
mi

). By definition of ExpGi(X) we have N(Φi) ⊂
Gi. Let v(Gi) = {ai

1, . . . , ai
ki
}, mi ≤ ki. Put Fi = F i

1 ∪ . . . ∪ F i
mi

. According to
Proposition 4.11 there exists a Φi-barycentric mapping f0

i : Fi → N(Φi) ⊂ Gi. This
mapping extends to a mapping fi : X → coneGi. Since K-dim X ≤ n, the mapping

f = f14 . . .4fn+1 : X →
n+1∏

i=1

cone Gi = cone
( n+1

∗
i=1

Gi

)

is inessential. Consequently, there exists a mapping g : X →
n+1

∗
i=1

Gi = B =

B(G1, . . . , Gn+1) such that
g|Y = f |Y , (4.19)

where Y = f−1(B). In view of Definition 4.10 we have

Cl
(
fi(F i

j )
)

= Cl
(
f0

i (F i
j )

)
⊂ Oai

j , j ≤ mi, (4.20)

where Oai
j is the star of ai

j in Gi. From (4.20) it follows the existence of closed sets
Γi

j , j ≤ ki, such that

Cl
(
fi(F i

j )
)
⊂ Γi

j ⊂ Oai
j , j ≤ mi, (4.21)

and the family γi = {Γi
1, . . . , Γi

ki
} is a cover of Gi. Put n+1Γi

j = p−1
i (Γi

j), where
pi :

∏n+1
j=1 cone Gj → cone Gi is the projection onto the factor. Recall that B =

B1 ∪ . . . ∪Bn+1, where

Bi = Gi ×
∏
{coneGj : j 6= i} = p−1

i (Gi). (4.22)

Since γi cover Gi, condition (4.22) implies that Bi =
⋃{n+1Γi

j : 1 ≤ j ≤ ki} and
hence

g−1Bi = {g−1(n+1Γi
j) : 1 ≤ j ≤ ki}. (4.23)



Finite dimensions modulo simplicial complexes and ANR-compacta 43

Put
1F i

j = g−1(n+1Γi
j) = g−1p−1

i (Γi
j). (4.24)

The mapping g : X → B ⊂ ∏n+1
i=1 coneGi is the diagonal product of the mappings

gi = pi ◦ g : X → coneGi. Thus from (4.19) we get

gi|Y = fi|Y , (4.25)

Conditions (4.21), (4.24), and (4.25) yield

F i
j ⊂ 1F i

j , j ≤ mi. (4.26)

Since X = g−1(B), from (4.23) and (4.24) we get

X =
⋃
{1F i

j : 1 ≤ j ≤ ki, 1 ≤ i ≤ n + 1}. (4.27)

Put Φ1
i = {1F i

1, . . . , 1F i
ki
}. Proposition 4.9 and conditions (4.21) and (4.24) imply

that
N(Φ1

i ) ⊂ Gi. (4.28)

But the closed family Φ1
i has a neighbourhood OΦ1

i = {O1F 1
i , . . . , O1F 1

ki
} with

N(OΦ1
i ) = N(Φ1

i ). Consequently, (4.26) and (4.28) imply that OΦ1
i is a Gi-

neighbourhood of Φi. Further, (4.27) implies that
⋃{OF 1

i : 1 ≤ i ≤ n + 1} ∈
cov (X). Hence P1 ∩ . . . ∩ Pn+1 = ∅, where Pi = X \ ⋃

OΦ1
i . Thus Pi are the

required Gi-partitions of Φi and inequality (4.17) is proved.
Now let Kτ -dim X ≤ n and let fi : X → coneKi ∈ K, i = 1, . . . , n + 1, be

mappings. To prove (4.18) we have to show that the family σ = {f1, . . . , fn+1} is
K-inessential. Denote a simplicial complex (Ki)t by Gi. Let v(Gi) = {ai

1, . . . , ai
mi
}.

There exist closed sets Γi
j ⊂ Gi such that Γi

j ⊂ Oai
j ∈ ω(Gi), γi = {Γi

1, . . . , Γi
mi
}

is a cover of Gi, and
N(γi) = Gi. (4.29)

Put

F i
j = f−1

i (Γi
j), (4.30)

Φi = {F i
1, . . . , F i

mi
}. (4.31)

If follows from (4.29)–(4.31) that Φi ∈ ExpGi(X) and N(Φi) ⊂ Gi. Since G-
dim X ≤ n, there exist families ui = (U i

1, . . . , U i
mi

), i = 1, . . . , n + 1, of open
subsets of X such that

F i
j ⊂ U i

j ; (4.32)

X =
⋃

i,j

U i
j ; (4.33)

N(ui) ⊂ Gi. (4.34)

Put Ui = U i
1 ∪ . . . ∪ U i

mi
and Fi = F i

1 ∪ . . . ∪ F i
mi

. From (4.33) we get X =
U1 ∪ . . . ∪ Un+1. There exist closed sets B1, . . . , Bn+1 such that

Fi ⊂ Bi ⊂ Ui, (4.35)

X = B1 ∪ . . . ∪Bn+1. (4.36)
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In view of (4.30) and (4.32) fi is an (ui,Φi)- barycentric mapping, i = 1, . . . , n+1.
According to Lemma 4.13 there exist mappings gi : X → cone Gi, i = 1, . . . , n + 1,
such that

gi|Fi
= fi|Fi

. (4.37)

F i
j ⊂ g−1

i (Oai
j) ⊂ U i

j , (4.38)

g−1
i (ai) ∩Bi = ∅, (4.39)

where Oai
j is the star of ai

j in cone Gi and ai is the peak of cone Gi. Put g =

g14 . . .4gn+1 : X =
∏n+1

i=1 cone Gi = cone
( n+1

∗
j=1

Gi

)
.

Conditions (4.36) and (4.39) imply that

g(X) ⊂ cone
( n+1

∗
j=1

Gi

)
\ {(a1, . . . , an+1)}.

Applying Lemma 4.15 to the pair (fi, gi) (see (4.37)) we get a homotopy f t
i con-

necting fi = f0
i and gi = f1

i so that f t
i |Fi

= fi|Fi
. Condition (4.30) implies that

Fi = f−1
i (Gi). Hence we can apply Lemma 4.16 which yields an existence of a

mapping f : X → G1 ∗ . . . ∗Gn+1 such that f |F1∪...∪Fn+1 = f14 . . .4fn+1. Hence
the family σ is inessential.

4.17. Remark. An analysis of the proof of Theorem 4.8 shows that we
actually used Definition 3.22.

4.18. Theorem. Let K be class of polyhedra and let [K] =
⋃{[K] : K ∈

K},where [K] be the class of all simplicial complexes which are triangulations of K.
Then K-dim X = [K]-dim X for every space X.

Proof. If we consider a triangulation t of a polyhedron K as a pair (G, h),where
h = h(t) : G → K is a homeomorphism between a simplicial complex G and K,
then the set T (K) of all triangulations of K has cardinality ≤ 2ℵ0 . Take some set
Γ with card Γ = 2ℵ0 and denote by K1 the class of all indexed polyhedra from K:

K1 = {Kγ : K ∈ K, γ ∈ Γ}.
Clearly, K ' K1. Hence

K- dim X = K1- dim X, (4.40)

because of Proposition 4.5. Let T (K) = {(Gγ , hγ) : γ ∈ Γ}. If we consider hγ as a
homeomorphism hγ : Gγ → Kγ , then τ =

⋃{T (K) : K ∈ K} is a triangulation of
the class K1. Hence according to Theorem 4.8 we have

K1- dim X = (K1)τ - dim X. (4.41)

On the other hand, one can identify the class (K1)τ with the class

[K] = {Gγ : (Gγ , hγ) ∈ T (K), K ∈ K}.
Consequently, [K]-dimX = (K1)τ -dim X = (4.41) = K1-dim X = (4.40) = K-
dim X.
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Let G be a class of complexes. For each G ∈ G we fix a simplicial subdivision
s = s(G) of G. This subdivision can be considered as a triangulation of an Euclidean
complex G̃ which is a geometric realization of G. The pair (G̃, s) is a simplicial
complex which is denoted by Gs. The family σ = {s(G) : G ∈ G} is said to be a
simplicial subdivision of the class G. Let Gσ = {Gs : s ∈ σ}.

Theorem 4.8 yields
4.19. Theorem. Let G be class of a complexes and let Gσ be some its simplicial

subdivision. Then G-dim X = Gσ-dim X for every space X.

5. Dimension R-dim

Dimension functions R-dim have intrinsic properties similar to those of the
classical Lebesgue dimension dim. In what follows X is a space and R is a class of
ANR-compacta.

5.1. Countable sum theorem. If X can be represented as the union of a
sequence F1, F2, . . . of closed subsets with R-dim Fi ≤ n for all i, then R-dim X ≤
n.

Proof. Let R1, . . . , Rn+1 ∈ R. Since R-dimFi ≤ n, we have
n+1

∗
j=1

Rj ∈ AE(Fi)

in view of Proposition 3.12. According to Proposition 1.9 and Theorem 2.3,
n+1

∗
j=1

Rj ∈ ANE(X). Consequently,
n+1

∗
j=1

Rj ∈ AE(X) in accordance with Theo-

rem 2.19. Applying Proposition 3.12 once more we get R-dim X ≤ n.
Theorem 5.1 yields
5.2. σ-discrete sum theorem. Let ϕi = {F i

α : α ∈ Ai}, i ∈ N, be discrete
families of closed subsets of X such that R-dim F i

α ≤ n and X =
⋃

i,α F i
α. Then

R-dim X ≤ n.
5.3. Point-finite sum theorem. If a space X can be represented as the

union of a family {Fα : α ∈ A} of closed subsets such that R-dim Fα ≤ n for α ∈ A,
and if there exists a point-finite open cover {Uα : α ∈ A} of X such that Fα ⊂ Uα

for α ∈ A, then R-dim X ≤ n.
Proof. By Proposition 4.6 there exists a class K of polyhedra such that

R- dim Y = K- dim Y for every space Y, (5.1)

in particular,
K- dimFα ≤ n, α ∈ A. (5.2)

Let K1, . . . ,Kn+1 ∈ K. From (5.2) and Corollary 3.13 we get
n+1

∗
i=1

Ki ∈ AE(Fα)

for all α ∈ A. Theorem 2.20 implies that
n+1

∗
i=1

Ki ∈ AE(X). Applying Corollary

3.13 we get K-dim X ≤ n. Hence R-dim X ≤ n, because of (5.1).
5.4. Definition. We say that loc-R-dim X ≤ n if for every point x ∈ X

there is a neighbourhood Ox such that R-dimCl(Ox) ≤ n.
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Theorem 5.3 yields
5.5 Theorem. If X is a weakly paracompact space, then loc-R-dim X =

R-dim X.
5.6. Remark. For the Lebesgue dimension dim(R = {0, 1}) Theorems 5.3

and 5.5 were proved by A. Zarelua [24].
5.7. Addition (Urysohn-Menger) theorem. If a hereditarily normal

space X is the union of its subsets A and B such that R-dim A ≤ m and
R-dim B ≤ n, then R- dim X ≤ m + n + 1.

Proof. According to Proposition 4.6 we can assume that R consists of polyhe-
dra. Let R1, . . . , Rm+n+2 ∈ R. Proposition 3.12 yields

R1 ∗ . . . ∗Rm+1 ∈ AE(A), Rm+2 ∗ . . . ∗Rm+n+2 ∈ AE(B). (5.3)

It follows from Theorem 2.21 and (5.3) that (R1∗. . .∗Rm+1)∗(Rm+2∗. . .∗Rm+n+2) ∈
AE(X), i.e.

m+n+2

∗
i=1

Ri ∈ AE(X). Consequently, Proposition 3.12 implies that

R-dim X ≤ m + n + 1.
5.8. Definition. Let A be a subset of a space X. We say that rd-R-

dim A ≤ n if R-dim F ≤ n for every F ⊂ A and F is closed X.
Propositions 2.22, 3.12, and 4.6 yield
5.9. Dowker’s type theorem. Let F be a closed subset of X such that

R-dim F ≤ n and rd-R-dim(X \ F ) ≤ n. Then R-dim X ≤ n.
Theorem 2.24 and Propositions 3.12 and 4.6 imply
5.10. Subspase theorem. If X is strongly hereditarily normal, then

R-dim A ≤ R-dim X for any A ⊂ X.
Theorem 2.6 and Proposition 3.12 yield
5.11. Theorem. R-dim X = R-dim βX.
From Theorem 2.25, Corollary 3.13, and Theorem 5.11 we get
5.12. Theorem [17]. Let λ be an infinite cardinal, number, n be a non-

negative integer, and let R be an ANR-compactum. Then there is a compact
Hausdorff space ΠR,n

λ such that wΠR,n
λ = λ, R-dimΠR,n

λ = n, and ΠR,n
λ contains

topologically every space X with wX ≤ λ and R-dim X ≤ n.
An immediate corollary of Theorem 5.12 is
5.13. Theorem. For every space X with R-dim X ≤ n there exists a com-

pactification bX such that wbX = wX and R-dim bX ≤ n.
5.14. Remark. For λ = ω0 Theorems 5.12 and 5.13 were proved by J.

Dydak [8].
Theorem 2.26 and Propositions 3.12 and 4.6 imply
5.15. Decomposition theorem. Let X be a metrizable space such that R-

dim X ≤ m + n + 1. Then X can be represented as the union X = A ∪ B so that
R-dim A ≤ m and R-dim B ≤ n.
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5.16. Corollary. Let X be a metrizable space with R-dim X ≤ n. Then X
can be represented as the union X = X1 ∪ . . . ∪ Xn+1 so that R-dim Xi ≤ 0, i =
1, . . . , n + 1.

Theorem 2.27 and Propositions 3.12 and 4.6 yield
5.17. Theorem. Let R be an ANR-compactum, λ be an infinite cardinal

number, n be a non-negative integer. Then there exists a completely metrizable
space MR,n

λ such that wMR,n
λ = λ, R-dim MR,n

λ = n, and MR,n
λ contains topologi-

cally every metrizable space Xλ with wX ≤ λ and R-dim X ≤ n.
As a corollary we get
5.18. Completion theorem. Let X be a metrizable space with R-dim X ≤

n. Then there is a completely metrizable space X̃ containing X with R-dim X̃ ≤ n.
Theorem 2.7 and Proposition 3.12 imply
5.19. The first inverse system theorem. Let X be the limit space of an

inverse system {Xα, πα
β , A} of compact Hausdorff spaces Xα such that R-dim Xα ≤

n. Then R-dim X ≤ n.
Theorem 2.8 and Corollary 3.13 yield
5.20. The second inverse system theorem. Let X be a compact Haus-

dorff space such that R-dim X ≤ n. Then X is the limit space of a σ-spectrum
S = {Xα, πα

β , A} such that R-dim Xα ≤ n for every α ∈ A.

Theorem 5.20 and Shchepin’s spectral theorem [21] imply
5.21. The third inverse system theorem. Let X be the limit space of

a σ-spectrum S = {Xα, πα
β , A} such that R-dim Xα ≥ n for every α ∈ A. Then

R-dim X ≥ n.

6. Comparison of dimensions

6.1. Definition. Let R1, R2 be classes of ANR-compacta. We say that
R1 ≤ R2 if for every R2 ∈ R2 there is R1 ∈ R1 such that R1 ≤ R2.

6.2. Proposition. If R1 ≤ R2, then R2-dim X ≤ R1-dim X for every
space X.

Proof. Let R1-dim X ≤ n and R2
1, . . . , R2

n+1 ∈ R2. Since R1 ≤ R2, there are
R1

i ∈ R1, i = 1, . . . , n + 1, such that R1
i ≤ R2

i . According to Proposition 2.28 we
have

R1
1 ∗ . . . ∗R1

n+1 ≤ R2
1 ∗ . . . ∗R2

n+1. (6.1)

From R1-dim X ≤ n and Proposition 3.12 we get

R1
1 ∗ . . . ∗R1

n+1 ∈ AE(X). (6.2)

Conditions (6.1) and (6.2) yield the condition R2
1 ∗ . . . ∗ R2

n+1 ∈ AE(X). Hence
R2-dim X ≤ n in view of Proposition 3.12.

6.3. Theorem. For an arbitrary class R and for every space X we have

R- dim X ≤ dim X. (6.3)
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Proof. In [4] it was noticed that {0, 1} ≤ R for every ANE-space R. Hence
{0, 1} ≤ R for every ANR-compactum R by Theorem 2.3. Consequently {0, 1} ≤
R. Applying Theorem 3.10 and Proposition 6.2 we complete the proof.

Proposition 3.12 (or 6.2) yields
6.4. Proposition. If R1 ⊂ R2, then R1-dim X ≤ R2-dim X.
In connection with inequality (6.3) two problems arise.
Problem 1. When

R- dim X = dim X (6.4)

for every space X?
Problem 2. When

R- dim X < ∞⇒ dim X < ∞ (6.5)

for every space?
We start with the first problem.
6.5. Theorem. Equality (6.4) holds for every space X if and only if R

contains a disconnected ANR-compactum R.
Proof. ⇒. Our condition implies

R- dim X ≤ 0 ⇒ dim X ≤ 0. (6.6)

Assume that all R ∈ R are connected. Take an arbitrary metric space X with
dim X = 1. Then R ∈ AE(X) by Kuratowski-Dugundji theorem (see [1], Theo-
rem 9.1). So R-dim X ≤ 0 < 1 = dim X. This contradicts to (6.6). Thus the
implication ⇒ is checked.

⇐. Let R contains a disconnected ANR-compactum R. Then {0, 1} = S0 ≤h

R. Let X be an arbitrary space. We have

dim X = S0- dim X ≤ (by Proposition 4.4) ≤ R- dim X ≤ (in accordance with

Proposition 6.4) ≤ R- dim X ≤ (in view of Theorem 6.3) ≤ dim X.

Thus R-dim X = dim X.
As for the second problem, it reduces to the zero-dimensional case.
6.6. Theorem. The condition

R- dim X < ∞⇒ dim X < ∞ (6.7)

holds if and only if
R- dim X ≤ 0 ⇒ dim X < ∞ (6.8)

for every space X.
Proof. It suffices to check that (6.8) ⇒ (6.7). Moreover, in view of Proposition

6.4 we can assume that R = R. Let R-dim X ≤ n. We start with compact
metrizable spaces X. According to Corollary 5.16, X = X1 ∪ . . . ∪ Xn+1, where
R-dim Xi ≤ 0. In view of (6.8) dim Xi < ∞ and, consequently, dimX < ∞.



Finite dimensions modulo simplicial complexes and ANR-compacta 49

Now let X be a compact Hausdorff space. By Theorem 5.20 X is the limit
space of a σ-spectrum S = {Xα, πα

β , A} such that R- dim Xα ≤ n for all α ∈ A.
Consequently, condition (6.8) for compacta implies that dim Xα < ∞. Let Bm =
{α ∈ A : dim Xα ≤ m}. Clearly,

A =
⋃
{Bm : m ∈ ω}. (6.9)

Since A is ω-complete, (6.9) implies that Bm is cofinal for some m ∈ ω. Hence
X = lim(S|Bm) and dim X ≤ m. Thus implication (6.8) ⇒ (6.7) is proved for
compact Hausdorff space X.

Now let condition (6.8) holds for every space X and let Y be a space with
R-dim Y < ∞. By Theorem 5.11 we have R-dim βY < ∞. Then condition (6.8)
for compact spaces implies that dim βY < ∞. The equality dim Y = dim βY
completes the proof.

6.7. Definition. An ANR-compactum R is said to be an extensionally
finite-dimensional compactum or efd-compactum (notation: R ∈ efd-C) if

R- dim X ≤ 0 ⇒ dim X < ∞ (6.10)

for every space X.
From the proof of Theorem 6.6 we get
6.8. Proposition. If (6.10) holds for every compactum X, then R ∈ efd-C.
Theorem 2.29 implies
6.9. Theorem. Let H∗(R,Q) = 0. Then R /∈ efd-C.
6.10. Corollary. All Moore complexes M(Zp, n), in particular the real

projective plane RP 2, are not efd-compacta.
6.11. Hypothesis. If H∗(R,Q) 6= 0, then R ∈ efd-C.
Theorem B yields
6.12. Proposition. Sn ∈ efd-C for all n ≥ 0.
Proposition 6.2 implies
6.13. Proposition. If R1 ≤ R2 and R2 ∈ efd-C, then R1 ∈ efd-C.
From Proposition 4.4 we get
6.14. Proposition. If R1 ≤h R2 and R1 ∈ efd-C, then R2 ∈ efd-C.
6.15. Proposition. If S is a classical compact surface, then S ∈ efd-

C ⇐⇒ S 6= RP 2.
Proof. Corollary 6.10 yields the implication ⇒. On the other hand, it is well

known that if S 6= RP 2, then S1 ≤ S. So applying Propositions 6.12 and 6.14 we
complete the proof.

An immediate corollary of Proposition 6.14 is
6.16. Proposition. If R ∈ efd-C, then R × S ∈ efd-C, R ∨ S ∈ efd-C for

an arbitrary ANR-compactum S.
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6.17. Proposition. For an arbitrary ANR-compactum R the following con-
ditions are equivalent:

1) R ∈ efd-C; 2) R ∨R ∈ efd-C; 3) R ∗R ∈ efd-C.
Proof. According to Propositions 2.35 and 2.37 we have R ≤ R ∨ R ≤ R ∗ R.

Consequently, Proposition 6.15 implies that 3) ⇒ 2) ⇒ 1). It remains to check the
implication 1) ⇒ 3). Let R ∈ efd-C and let X be a space such that R∗R-dim X ≤
n. Hence,

n+1∗ (R∗R) ∈ AE(X) in view of Corollary 3.13. But
n+1∗ (R∗R) =

2n+2∗ R.
Applying Corollary 3.13 once again we get R-dim X ≤ 2n + 1. Thus dim X < ∞,
because R ∈ efd-C.

A partial case of Hypothesis 6.11 is
6.18. Question. Let M be an orientable closed manifold. Is it true that

M ∈ efd-C?

7. Dimension of products

7.1. Theorem. Let X and Y be finite-dimensional metrizable spaces. Then

R- dim(X × Y ) ≤ R- dimX + R- dim Y + 1. (7.1)

To prove this theorem we need an auxiliary information.
7.2. Definition [11]. A mapping f : X → Y from a metric space X to a

space Y is said to be strongly 0-dimensional if for every ε > 0 and every y ∈ f(X)
there exists an open neighbourhood V of y such that f−1V splits into the union of
disjoint open sets of diam < ε.

The next statement is rather obvious.
7.3. Lemma. Let fi : Xi → Yi be strongly 0-dimensional mappings of metric

spaces Xi = (Xi, ρi), i = 1, 2. Then the mapping f = f1×f2 : X1×X2 → Y1×Y2 is
strongly 0-dimensional with respect to the metric ρ in X1×X2 which is the l2-product
of the metrics ρ1 and ρ2, i.e. ρ2((x1

1, x
1
2), (x

2
1, x

2
2)) = ρ2

1(x
1
1, x

2
1) + ρ2

2(x
1
2, x

2
2).

7.4. Theorem [16]. Let K be a countable CW -complex and let X be a metric
space. Then e-dimX ≤ K if and only if there exists a strongly 0-dimensional
mapping f : X → Y to a separable metrizable space Y of e-dim Y ≤ K.

Proof of Theorem 7.1. Assume that X and Y are compact spaces with R-
dim X = m, R-dimY = n. If R is disconnected, then R-dim = dim by Theorem
6.7. Hence inequality (7.1) is a corollary of the logarithmic law

dim(X × Y ) ≤ dim X + dim Y

proved by M. Katětov [11] and K. Morita [14]. If R is connected, then in view of

Corollary 3.13 we have
m+1∗ R ∈ AE(X),

n+1∗ R ∈ AE(Y ).

Put R1 = (
m+1∗ R) ∧ (

n+1∗ R). Theorem 2.38 implies that R1 ∈ AE(X × Y ).

Hence, in view of Proposition 2.37, we have
m+n+2∗ R ∈ AE(X × Y ). Applying

Corollary 3.13 once again we complete the proof.
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Consider now a general case. We may again assume that R-dim X = m, R-
dim Y = n; m,n < ∞. Fix metrics in X and Y . According to Theorem 7.4 and
Proposition 3.15, 4.5 there exist strongly 0-dimensional mappings f : X → X0

and g : Y → Y0 to separable metrizable spaces X0 and Y0 of R-dim X0 ≤ m and
R-dim Y0 ≤ n. In view of Theorem 5.13 there exist metrizable compactifications
bX0 and bY0 of R-dim bX0 ≤ m and R-dim bY0 ≤ n. In accordance with (7.1) for
compact spaces we have

R- dim(bX0 × bY0) ≤ m + n + 1. (7.2)

Theorem 5.10 and (7.2) yield

R- dim X0 × Y0 ≤ m + n + 1. (7.3)

Then
R- dimX × Y ≤ m + n + 1

because of Theorem 7.4, Propositions 3.15, 4.5, Lemma 7.3, and condition (7.3).
7.5. Remark. Inequality (7.1) is not improvable. In fact, S1-dim X = 0 for

every one-dimensional compactum X. But S1-dim(X ×X) = 1 = 0 + 0 + 1.
Theorems 5.19, 5.20, and 7.1 imply
7.6. Theorem. Let X and Y be finite-dimensional compact Hausdorff spaces.

Then R-dim(X × Y ) ≤ R-dimX + R-dim Y + 1.
7.7. Proposition. If X is a metrizable space of finite dimension, then

R- dim(X × I) ≤ R- dim X + 1 (7.4)

for an arbitrary ANR-compactum R.
Proof. If R is disconnected then R-dim = dim according to Theorem 6.7.

Thus (7.4) is a usual inequality of the Lebesgue dimension. If R is connected, then
R ∈ AE(I), i.e. R-dim I = 0. Applying Theorem 7.1 we complete the proof.
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