FINITE DIMENSIONS MODULO SIMPLICIAL COMPLEXES AND ANR-COMPACTA

V. V. Fedorchuk

Abstract

New dimension functions \mathcal{G} - dim and \mathcal{R}-dim, where \mathcal{G} is a class of finite simplicial complexes and \mathcal{R} is a class of $A N R$-compacta, are introduced. Their definitions are based on the theorem on partitions and on the theorem on inessential mappings to cubes, respectively. If \mathcal{R} is a class of compact polyhedra, then for its arbitrary triangulation τ, we have \mathcal{R}_{τ} - $\operatorname{dim} X=\mathcal{R}$ - $\operatorname{dim} X$ for an arbitrary normal space X. To investigate the dimension function \mathcal{R}-dim we apply results of extension theory. Internal properties of this dimension function are similar to those of the Lebesgue dimension. The following inequality \mathcal{R} - $\operatorname{dim} X \leq \operatorname{dim} X$ holds for an arbitrary class \mathcal{R}. We discuss the following Question: When \mathcal{R} - $\operatorname{dim} X<\infty \Rightarrow \operatorname{dim} X<\infty$?

Introduction

The following two theorems give us main characterizations of the Lebesgue dimension.

Theorem A. A normal space X satisfies the inequality $\operatorname{dim} X \leq n \geq 0$ if and only if for every sequence $\left(F_{1}^{1}, F_{2}^{1}\right),\left(F_{1}^{2}, F_{2}^{2}\right), \ldots,\left(F_{1}^{n+1}, F_{2}^{n+1}\right)$ of $n+1$ pais of disjoint closed subsets of X there exist partitions P_{i} between F_{1}^{i} and F_{2}^{i} such that $\bigcap_{i=1}^{n+1} P_{i}=\varnothing$.

Theorem B. A normal space X satisfies the inequality $\operatorname{dim} X \leq n \geq 0$ if and only if every continuous mapping $f: X \rightarrow I^{n+1}$ is inessential.

Pairs $\left(F_{1}^{i}, F_{2}^{i}\right)$ from Theorem A are families Φ_{i} of sets such that their nerves $N\left(\Phi_{i}\right)$ coincide with the two point set $\{0,1\}$ which is zero-dimensional simplicial complex. Changing the two point set to arbitrary simplicial complexes G_{i} we get a definition of a dimension function \mathcal{G}-dim (see Definition 3.4).

[^0]The cube I^{n+1} from Theorem B is homeomorphic to cone S^{n} and the sphere S^{n} is homeomorphic to the join ${ }^{n+1} S^{0}$. Changing the sphere S^{0} to arbitrary $A N R$ compacta R_{i} we get a definition of a dimension function \mathcal{R}-dim (see Definition 3.9).

Proposition 3.15 establishes a link between dimension function R-dim, where R is an $A N R$-compactum, and extension dimension e-dim:

$$
\begin{equation*}
R-\operatorname{dim} X \leq n \Longleftrightarrow e-\operatorname{dim} X \leq{ }^{n+1} R . \tag{0.1}
\end{equation*}
$$

According to Proposition 4.5 for homotopy equivalent classes \mathcal{R}_{1} and \mathcal{R}_{2} of $A N R$-compacta we have

$$
\begin{equation*}
\mathcal{R}_{1^{-}} \operatorname{dim} X=\mathcal{R}_{2^{-}} \operatorname{dim} X \text { for every normal space } X \tag{0.2}
\end{equation*}
$$

Theorem 4.8 states that if \mathcal{K} is a class of compact polyhedra and τ is some of its triangulations, then

$$
\begin{equation*}
\mathcal{K}-\operatorname{dim} X=\mathcal{K}_{\tau^{-}} \operatorname{dim} X \tag{0.3}
\end{equation*}
$$

for arbitrary normal space X, where \mathcal{K}_{τ} is the class of simplicial complexes defined by the triangulation τ.

In view of (0.2), (0.3), and West's theorem on homotopy types of $A N R$ compacta, it is sufficient to consider only dimension functions \mathcal{R}-dim with \mathcal{R} consisting of compact polyhedra. Property (0.1) allows us to apply results of extension theory introduced by A. Dranishnikov [3].

An internal theory of dimension \mathcal{R}-dim is similar to this of the Lebesgue dimension. For example, the following statements hold.

Countable sum theorem 5.1.
Point-finite sum theorem 5.3.
Addition theorem 5.7: \mathcal{R} - $\operatorname{dim}\left(X_{1} \cup X_{2}\right) \leq \mathcal{R}$ - $\operatorname{dim} X_{1}+\mathcal{R}$ - $\operatorname{dim} X_{2}+1$.
Čech-Stone compactification theorem 5.11.
Universal compact space theorem 5.12.
Decomposition theorem 5.15: If X is a separable metrizable space with R $\operatorname{dim} X \leq m+n+1$, the X can be represented as the union $X=A \cup B$ so that R - $\operatorname{dim} A \leq m, R$ - $\operatorname{dim} B \leq n$.

Completion theorem 5.18.
Inverse system theorems 5.19, 5.20, 5.21.
$\S 6$ is devoted to comparison of dimensions. Theorem 6.3 states that

$$
\begin{equation*}
\mathcal{R}-\operatorname{dim} X \leq \operatorname{dim} X \tag{0.4}
\end{equation*}
$$

for an arbitrary class \mathcal{R} and every space X. As for the equality

$$
\begin{equation*}
\mathcal{R}-\operatorname{dim} X=\operatorname{dim} X \tag{0.5}
\end{equation*}
$$

it holds if and only if \mathcal{R} contains a disconnected $A N R$-compactum. In connection with the inequality (0.4) we study the following problem: When

$$
\begin{equation*}
R-\operatorname{dim} X<\infty \Rightarrow \operatorname{dim} X<\infty \tag{0.6}
\end{equation*}
$$

for every space X ?
$A N R$-compacta R satisfying condition (0.6) are called efd-compacta (notation: $R \in e f d-C)$. We give a list of results concerning the class ef $d-C$. In particular, Theorem 6.11 states that if $H_{*}(R, \mathbb{Q})=0$, then $R \notin e f d-C$.

Hypothesis. $R \in e f d-C \Longleftrightarrow H_{*}(R, \mathbb{Q}) \neq 0$.
In $\S 7$ we investigate dimension of products. The inequality

$$
\begin{equation*}
R-\operatorname{dim}(X \times Y) \leq R-\operatorname{dim} X+R-\operatorname{dim} Y+1 \tag{0.7}
\end{equation*}
$$

holds for finite-dimensional compact Hausdorff spaces X and Y and a connected $A N R$-compactum R (Theorem 7.3).

Inequality (0.7) is not improvable. As an example one can take $X=Y=R=$ S^{1}.
$\S \S 1,2$ have an auxiliary character. There we recall some topological constructions and notions and facts of extension theory. All spaces are assumed to be normal $\left(+T_{1}\right)$. All mappings are continuous. Compacta stand for metrizable compact spaces. By $\operatorname{Fin} A\left(\operatorname{Fin}_{s} A\right)$ we denote the set of all finite subsets of A (finite sequences of elements from A). The symbol \sqcup denotes a union of disjoint sets. For a space X by $\exp X$ we denote the set of all closed subsets of X (including \varnothing). The set of all finite indexed open covers of X is denoted by $\operatorname{cov}_{\infty}(X)$. The symbol \simeq stands for a homotopy equivalence.

The author is grateful to Sasha Karassev for pointing out errors in the first draft of the paper.

1. Simplicial complexes, polyhedra, and $A N R$-compacta. Cones, joins, and smash products

1.1. We consider only finite simplicial complexes, so that one can identify an abstract simplicial complex G with its geometric realization, i.e. with an Euclidean complex \tilde{G} with the same vertex scheme. In this context it is clear what is a simplicial subdivision of a simplicial complex G.

Recall that a simplicial complex G is said to be complete if every face of each simplex from G belongs to G. In what follows complexes stand for finite complete simplicial complexes. Hence, geometric realizations of complexes are compact polyhedra.

For a complex G by $v(G)$ we denote the set of all its vertices. Let u be a finite family of sets and let $u_{0}=\{U \in u: U \neq \varnothing\}$. The nerve of the family u is a complex $N(u)$ such that $v(N(u))=\left\{a_{U}: U \in u_{0}\right\}$ and a set $\Delta \subset v(N(u))$ is a simplex of $N(u)$ if and only if $\bigcap\left\{U: a_{U} \in \Delta\right\} \neq \varnothing$.

In what follows polyhedra stands for compact polyhedra. Every compact polyhedron is an $A N R$-space (for normal spaces).
1.2. ThEOREM [23]. Every ANR-compactum is homotopy equivalent to some compact polyhedron.
1.3. The cone of a space X is the space cone X which is the quotient space $X \times I / X \times 0$. The set $X \times 1 \subset$ cone X is called the base of the cone X. As a rule we shall identify $X \times 1$ and X. Let $q_{X}: X \times I \rightarrow$ cone X be the quotient mapping. The point $q_{X}(X \times 0)$ is said to be the peak of the cone of X and is usually denoted by a_{X}.

If Δ is an n-dimensional simplex with vertices a_{0}, \ldots, a_{n}, then cone Δ is an $(n+1)$-dimensional simplex with vertices $a_{0}, \ldots, a_{n}, a_{\Delta}$. Hence the cone of a complex is a complex.

The join of spaces X and Y is the space $X * Y$ which is the quotient space of $X \times I \times Y$ with respect to the decomposition whose members are sets $x \times 0 \times Y$, $X \times 1 \times y(x \in X, y \in Y)$ and singletons of the set $X \times(0 ; 1) \times Y$.

The boundary join (or Bd-join) of spaces X and Y is the following subset $X \nexists Y$ of the product cone $X \times$ cone $Y: X \neq Y=\operatorname{cone}(X) \times Y \bigcup X \times \operatorname{cone} Y$.
1.4. Proposition ([19]), Lecture 5). If X and Y are locally compact Hausdorff spaces, then the spaces $X * Y$ and $X \mp Y$ are canonically homeomorphic.
1.5. Proposition ([20], Ch. 1). If X and Y are compact Hausdorff spaces, then there exists a canonic homeomorphism $h: \operatorname{cone}(X * Y) \rightarrow$ cone $X \times$ cone Y such that $h\left(a_{\operatorname{cone}(X * Y)}\right)=\left(a_{X}, a_{Y}\right)$ and $h(X * Y)=X \mp Y$.

By induction we define the iterated join

$$
\left(\ldots\left(\left(X_{1} * X_{2}\right) * X_{3}\right) \ldots\right) * X_{n}
$$

and the iterated Bd-join

$$
\left(\ldots\left(\left(X_{1} \bar{\not} X_{2}\right) \bar{*} X_{3}\right) \ldots\right) \bar{*} X_{n}
$$

The operations $*$ and $\bar{*}$ are commutative and associative up to homeomorphism. Thus, for compact Hausdorff spaces X_{1}, \ldots, X_{n} there defined their multiple join

$$
X_{1} * \ldots * X_{n} \equiv \stackrel{n}{*}{ }_{i=1}^{*} X_{i}
$$

and their multiple Bd-join

$$
X_{1} \bar{*} \ldots \bar{*} X_{n} \equiv{ }_{i=1}^{n} X_{i} .
$$

There exists a canonical homeomorphism

$$
\begin{equation*}
X_{1} \bar{*} \ldots \bar{*} X_{n}=\bigcup_{i=1}^{n}\left(X_{i} \times \prod_{j \neq i} \operatorname{cone} X_{j}\right) . \tag{1.1}
\end{equation*}
$$

Proposition 1.5 is generalized as follows.
1.6. Proposition. If X_{1}, \ldots, X_{n} are compact Hausdorff spaces, then there is a homeomorphism

$$
g: \text { cone } X_{1} \times \ldots \times \operatorname{cone} X_{n} \rightarrow \operatorname{cone}\left(X_{1} * \ldots * X_{n}\right)
$$

such that

$$
\begin{equation*}
g\left(\bigcup_{i=1}^{n}\left(X_{i} \times \prod_{j \neq i} \text { cone } X_{j}\right)\right)=X_{1} * \ldots * X_{n} \tag{1.2}
\end{equation*}
$$

and $g\left(a_{1}, \ldots, a_{n}\right)=a_{\text {cone }\left(X_{1} * \ldots * X_{n}\right)}$, where a_{i} is the peak of cone $X_{i}, i=1, \ldots, n$.
1.7. Remark. In what follows we shall identify the multiple join $X_{1} * \ldots * X_{n}$ of compact Hausdorff spaces X_{1}, \ldots, X_{n} with their multiple Bd-join, i.e. with the set (1.1). Sometimes, we shall use a short notation:

$$
\begin{equation*}
B\left(X_{1}, \ldots, X_{n}\right) \equiv \bigcup_{i=1}^{n}\left(X_{i} \times \prod_{j \neq i} \operatorname{cone} X_{j}\right) \tag{1.3}
\end{equation*}
$$

For mappings $f_{i}: X_{i} \rightarrow Y_{i}$, let

$$
c\left(f_{1}, \ldots, f_{n}\right)=\text { cone } f_{1} \times \ldots \times \text { cone } f_{n}: \prod_{i=1}^{n} \text { cone } X_{i} \rightarrow \prod_{i=1}^{n} \text { cone } Y_{i}
$$

Then

$$
\begin{align*}
c\left(f_{1}, \ldots, f_{n}\right)\left(B\left(X_{1}, \ldots, X_{n}\right)\right) & \subset B\left(Y_{1}, \ldots, Y_{n}\right) \tag{1.4}\\
c\left(f_{1}, \ldots, f_{n}\right)^{-1} B\left(Y_{1}, \ldots, Y_{n}\right) & =B\left(X_{1}, \ldots, X_{n}\right) . \tag{1.5}
\end{align*}
$$

Taking into consideration our agreement $X_{1} * \ldots * X_{n}=B\left(X_{1}, \ldots, X_{n}\right)$, put

$$
\begin{equation*}
f_{1} * \ldots * f_{n}=\left.c\left(f_{1}, \ldots, f_{n}\right)\right|_{B\left(X_{1}, \ldots, X_{n}\right)} \tag{1.6}
\end{equation*}
$$

From properties of cones and products, and equalities (1.4), (1.5) we get
1.8. Proposition. The operation of the multiple join

$$
\left(X_{1}, \ldots, X_{n}\right) \rightarrow X_{1} * \ldots * X_{n}, \quad\left(f_{1}, \ldots, f_{n}\right) \rightarrow f_{1} * \ldots * f_{n}
$$

is a covariant functor of several variables in the category Comp of compact Hausdorff spaces. Moreover, it preserves homotopy equivalences of spaces and mappings.

The next statement is also well known.
1.9. Proposition. If X_{1}, \ldots, X_{n} are ANR-compacta (polyhedra), then their multiple join $X_{1} * \ldots * X_{n}$ is also an ANR-compactum (a polyhedron).
1.10. For pointed spaces $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ their wedge $\left(X, x_{0}\right) \vee\left(Y, y_{0}\right)$ is defined as the quotient space $X \sqcup Y /\left\{x_{0}, y_{0}\right\}$. The smash product $\left(X, x_{0}\right) \wedge\left(Y, y_{0}\right)$ is the quotient space $X \times Y / X \times\left\{y_{0}\right\} \cup\left\{x_{0}\right\} \times Y$.
1.11. Proposition [19]. If X and Y are connected $A N R$-compacta, then for arbitrary pairs $\left(x_{i}, y_{i}\right) \in X, Y, i=0,1$, the spaces $\left(X, x_{0}\right) \wedge\left(Y, y_{0}\right)$ and $\left(X, x_{1}\right) \wedge$ $\left(Y, y_{1}\right)$ are homotopy equivalent.

In view of Proposition 1.11 we shall denote the smash product $\left(X, x_{0}\right) \wedge\left(Y, y_{0}\right)$ (X, Y are connected $A N R$-compacta) by $X \wedge Y$.
1.12. Proposition [19]. If X and Y are connected $A N R$-compacta, then $\Sigma(X \wedge Y) \simeq X * Y$.
1.13. Proposition. If X and Y are polyhedra (ANR-compacta), then $X \wedge Y$ is a polyhedron (ANR-compactum).
1.14. Proposition. If X is an $A N R$-compactum, then cone $X \in A R$.

2. Main notions of extension theory

Recall that the Homotopy Extension Theorem is fulfilled for a pair (X, Y) of spaces if, for every closed set $F \subset X$, each mapping $f:(X \times 0) \cup(F \times I) \rightarrow Y$ extends over $X \times I$.
2.1. Theorem (Borsuk's theorem on extension of homotopy) (see [15], [22]). Homotopy Extension Theorem is fulfilled for every pair (X, R), where X is a space and R is an ANR-compactum.
2.2. Definition. Let X and Y be spaces and let $Z \subset X$. The property that all partial mappings $f: Z \rightarrow Y$ extend over X will be denoted by $Y \in A E(X, Z)$. If every mapping $f: Z \rightarrow Y$ extends over an open set $U_{f} \supset Z$, then we write $Y \in A N E(X, Z)$. If $Y \in A(N) E(X, Z)$ for every closed $Z \subset X$, then Y is called an absolute (neighbourhood) extensor of X (notation: $Y \in A(N) E(X)$). If $Y \in$ $A(N) E(X)$ for all spaces X, then Y is said to be an absolute (neighbourhood) extensor (notation: $Y \in A(N) E$).

Brouwer-Tietze-Urysohn theorem on extension of functions yields
2.3. Theorem. If Y is an $A(N) R$-compactum, then $Y \in A(N) E$.
2.4. Factorization theorem [4]. Let X be a compact Hausdorff space and let R be an $A N R$-compactum such that $R \in A E(X)$. Then for every mapping f : $X \rightarrow Y$ to a metric space Y there exist a compactum X^{\prime} and mappings $f^{\prime}: X \rightarrow X^{\prime}$ and $g: X^{\prime} \rightarrow Y$ such that $R \in A E\left(X^{\prime}\right)$ and $f=g \circ f^{\prime}$.
2.5. Proposition. Let X be a space and let Y be a compact Hausdorff space. If $Y \in A E(\beta X)$, then $Y \in A E(X)$.

Recall that a space X is dominated by a space Y (notation: $X \leq_{h} Y$) if there exist mappings $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $g \circ f \simeq \operatorname{id}_{X}$.
2.6. Theorem. Let X be a space and let Y be a compact Hausdorff space. If Y is dominated by an ANR-compactum, then $Y \in A E(X) \Longleftrightarrow Y \in A E(\beta X)$.

Proof. In view of Proposition 2.5 it suffices to check the implication \Rightarrow. Let F be a closed subset of βX and let $f: F \rightarrow Y$ be a mapping. There exist an $A N R$-compactum R and mappings $\varphi: Y \rightarrow R$ and $\psi: R \rightarrow Y$ such that $\psi \circ \varphi \simeq$ id_{Y}. By Theorem 2.3 the mapping $\varphi \circ f$ extends over some neighbourhood $O F$.

Consequently, there exist a regular closed set $F_{1} \subset \beta X$ and a mapping $f_{1}: F_{1} \rightarrow R$ such that $F \subset F_{1}$ and $\left.f_{1}\right|_{F}=\varphi \circ f$ (we recall that a set H is said to be regular closed if $H=C l U$, where U is open). Let $F_{2}=F_{1} \cap X$ and $f_{2}=\psi \circ f_{1}: F_{2} \rightarrow Y$. Since $Y \in A E(X)$, there exists a mapping $f_{3}: X \rightarrow Y$ such that $\left.f_{3}\right|_{F_{2}}=\left.\psi \circ f_{1}\right|_{F_{2}}$. Put $f_{4}=\beta f_{3}: \beta X \rightarrow Y$. According to Theorem 2.1 it remains to show that

$$
\begin{equation*}
\left.f_{4}\right|_{F} \simeq f \tag{2.1}
\end{equation*}
$$

Since F_{1} is regular closed,

$$
\begin{equation*}
\beta F_{2}=\left[F_{2}\right]_{\beta X}=F_{1} . \tag{2.2}
\end{equation*}
$$

We have $\left.f_{4}\right|_{F_{2}}=\left.f_{3}\right|_{F_{2}}=\left.\psi \circ f_{1}\right|_{F_{2}}$. Consequently, from (2.2) we get $\left.f_{4}\right|_{F_{1}}=\left.\psi \circ f_{1}\right|_{F_{1}}$. Then $\left.f_{4}\right|_{F}=\left.\psi \circ f_{1}\right|_{F}=\psi \circ\left(\left.f_{1}\right|_{F}\right)=\psi \circ(\varphi \circ f)=(\psi \circ \varphi) \circ f \simeq f$ because $\psi \circ \varphi \simeq \operatorname{id}_{Y}$. This the equivalence (2.1) is proved.

The next statement is well known and based on Theorem 2.1 and StoneWeierstrass theorem.
2.7. Theorem. Let R be an $A N R$-compactum and let X be the limit space of an inverse system $\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ of compact Hausdorff spaces X_{α} such that $R \in$ $A E\left(X_{\alpha}\right)$. Then $R \in A E(X)$.

Recall that an inverse system $S=\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ is said to be a σ-spectrum [21] if

1) all X_{α} are compacta;
2) the indexing set A is ω-complete, i.e. for every countable chain $B \subset A$ there is $\sup B$ in A;
3) the system S is continuous, i.e. for each countable chain B in A with $\sup B=$ β, the diagonal product $\triangle\left\{\pi_{\alpha}^{\beta}: \alpha \in B\right\}$ maps the space X_{β} homeomorphically onto the space $\lim (S \mid B)$.

Applying Theorems 2.4 and 2.7 we get
2.8. Theorem [17]. Let X be a compact Hausdorff space and let R be an ANR-compactum such that $R \in A E(X)$. Then X is the limit space of a σ-spectrum $S=\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ such that $R \in A E\left(X_{\alpha}\right)$ for every $\alpha \in A$.

Theorem 2.1 yields
2.9. Proposition. Let R_{1} and R_{2} be $A N R$-compacta such that $R_{1} \leq_{h} R_{2}$. Then $R_{2} \in A E(X) \Rightarrow R_{1} \in A E(X)$ for every space X.
2.10. Definition. Let \mathcal{A} be a subclass of the class \mathcal{N} of all normal spaces. We define a preorder $\leq_{\mathcal{A}}$ on the class $A N R(\mathcal{M C})$ of all $A N R$-compacta in the following way: $R_{1} \leq_{\mathcal{A}} R_{2}$ if and only if $R_{1} \in A E(X) \Rightarrow R_{2} \in A E(X)$ for every space $X \in \mathcal{A}$.

The following statement is an immediate corollary of definitions.
2.11. Proposition. If $\mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \mathcal{N}$, then $R_{1} \leq_{\mathcal{A}_{2}} R_{2} \Rightarrow R_{1} \leq_{\mathcal{A}_{1}} R_{2}$ for arbitrary $A N R$-compacta R_{1} and R_{2}.

Let the symbols $\mathcal{C}, \mathcal{M C}$, Sep stand for the classes of all compact Hausdorff spaces, metrizable compacta, separable metrizable spaces. The next statement is well known. We give its proof for convenience of readers.
2.12. Theorem. For arbitrary $A N R$-compacta R_{1} and R_{2} the following conditions are equivalent:

1) $R_{1} \leq_{\mathcal{N}} R_{2}$;
2) $R_{1} \leq_{\mathcal{C}} R_{2}$;
3) $R_{1} \leq{ }_{\mathcal{M C}} R_{2}$;
4) $R_{1} \leq_{\text {Sep }} R_{2}$.

Proof. Proposition 2.11 implies that 1$) \Rightarrow 2) \Rightarrow 3$). The implication 2$) \Rightarrow 1$) is a corollary of Theorem 2.6. Now the implication 3) $\Rightarrow 2$). Let $R_{1} \leq_{\mathcal{M C}} R_{2}$ and let $R_{1} \in A E(X)$ for some compact Hausdorff space X. By Theoren $2.8 X$ is the limit space of an inverse system $S=\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ of compacta such that $R_{1} \in A E\left(X_{\alpha}\right)$ for all $\alpha \in A$. Since $R_{1} \leq \mathcal{M c} R_{2}$, we have $R_{2} \in A E\left(X_{\alpha}\right), \alpha \in A$. Applying Theorem 2.7 we get $R_{2} \in A E(X)$, i.e. $R_{1} \leq_{\mathcal{C}} R_{2}$. At last, Proposition 2.11, the equivalence 3$) \Longleftrightarrow 1$, and condition $\mathcal{M C} \subset \operatorname{Sep} \subset \mathcal{N}$ yield the equivalence 4) $\Longleftrightarrow 3$).

In what follows we shall denote the equivalent relations $\leq_{\mathcal{N}}, \leq_{\mathcal{C}}, \leq_{\mathcal{M C}}$, and $\leq_{\text {Sep }}$ simply by \leq.

Now we define an equivalence relation \sim on the class $A N R(\mathcal{M C})$. Namely: $R_{1} \sim R_{2}$ if both $R_{1} \leq R_{2}$ and $R_{2} \leq R_{1}$ hold. An equivalence class of an $A N R$-compactum R under this relation is called an extension type of R or $\operatorname{ext}(R)$. Proposition 2.9 yields
2.13. Proposition. If $A N R$-compacta R_{1} and R_{2} are homotopy equivalent, then $\operatorname{ext}\left(R_{1}\right)=\operatorname{ext}\left(R_{2}\right)$.

The set of all extension types is denoted by \mathbb{E}. Clearly, the preorder \leq on $A N R(\mathcal{M C})$ implies a partial order on \mathbb{E}. If it is not ambiguous, we denote this partial order simply by \leq. Proposition 2.9 implies
2.14. Proposition. If $R_{1} \leq{ }_{h} R_{2}$, then $\operatorname{ext}\left(R_{1}\right) \geq \operatorname{ext}\left(R_{2}\right)$.
2.15. Definition. Let $R \in A N R(\mathcal{M C})$. Recall that the extension dimension of a topological space X is less than or equal to R (notation: e - $\operatorname{dim} X \leq R$), provided the property $R \in A E(X)$ holds.

If $\operatorname{ext}\left(R_{1}\right)=\operatorname{ext}\left(R_{2}\right)$, then the conditions e - $\operatorname{dim} X \leq R_{1}$ and e - $\operatorname{dim} X \leq R_{2}$ are obviously equivalent. So sometimes instead of $e-\operatorname{dim} X \leq R$ we shall write $e-\operatorname{dim} X \leq \operatorname{ext}(R)$.

Proposition 2.14 yields
2.16. Proposition. If $A N R$-compacta R_{1} and R_{2} are homotopy equivalent, then $e-\operatorname{dim} X \leq R_{1}$ if and only if $e-\operatorname{dim} X \leq R_{2}$ for an arbitrary space X.

Theorem 2.6 implies
2.17. Proposition. For an arbitrary topological space X and an arbitrary ANR-compactum R the following conditions are equivalent:

1) $e-\operatorname{dim} X \leq R ; \quad$ 2) $e-\operatorname{dim}(\beta X) \leq R$.
2.18. Definition. Let X and Y be spaces. We write $e-\operatorname{dim} X \leq e-\operatorname{dim} Y$ if and only if $e-\operatorname{dim} Y \leq R$ implies $e-\operatorname{dim} X \leq R$ for every $R \in A N R(\mathcal{M C})$. We say that $e-\operatorname{dim} X=e-\operatorname{dim} Y$ if both $e-\operatorname{dim} X \leq e-\operatorname{dim} Y$ and $e-\operatorname{dim} Y \leq e-\operatorname{dim} X$ hold.
2.19. Theorem [5]. Let X and K be spaces. If X can be represented as the union of a sequence F_{1}, F_{2}, \ldots of closed subsets, then $K \in A E(X)$ provided $K \in A E\left(F_{n}\right)$ for all n and $K \in A N E(X)$.

By analogy with Theorem 3.1.13 from [9] we get
2.20. ThEOREM. Let K be a compact polyhedron and let a space X can be represented as the union of a family $\left\{F_{\alpha}: \alpha \in A\right\}$ of closed subspaces such that $K \in A E\left(F_{\alpha}\right)$ for $\alpha \in A$, and let there exist a point-finite open cover $u=\left\{U_{\alpha}: \alpha \in\right.$ $A\}$ of X such that $F_{\alpha} \subset U_{\alpha}$ for $\alpha \in A$. Then $K \in A E(X)$.

The proof of the next theorem is similar to that of Theorem 1.2 from [8].
2.21. Theorem. Let K and L be compact polyhedra and let X be a hereditarily normal space. If $X=A \cup B$ and $K \in A E(A), L \in A E(B)$, then $K * L \in A E(X)$.

Theorem 2.3 yields
2.22. Proposition. Let R be an $A N R$-compactum and let X be a space satisfying the following condition:
there exists a closed set $F \subset X$ such that $R \in A E(F)$ and $R \in A E(C)$ for every closed set $C \subset X$ which does not meet F.

Then $R \in A E(X)$.
2.23. Definition [9]. A hereditarily normal space X is said to be strongly hereditarily normal if every regular open set $U \subset X$ can be represented as the union of a point-finite family of open F_{σ}-sets of X.

By analogy with Theorem 3.1.19 from [9] we get
2.24. Theorem. If X is a strongly hereditarily normal space and K is a compact polyhedron, then $K \in A E(X) \Rightarrow K \in A E(A)$ for any $A \subset X$.
2.25. Factorization theorem for compact Hausdorff spaces [17]. Let X be a compact Hausdorff space and let R be an $A N R$-compactum such that $R \in A E(X)$. Then for every mapping $f: X \rightarrow Y$ to a compact Hausdorff space Y there exist a compact Hausdorff space X^{\prime} and mappings $f^{\prime}: X \rightarrow X^{\prime}$ and $g: X^{\prime} \rightarrow Y$ such that $R \in A E\left(X^{\prime}\right), w X^{\prime}=w Y$ and $f=g \circ f^{\prime}$.
2.26. Theorem ([16], see [7] for a separable case). Let K, L be countable $C W$ complexes and let X be a metrizable space. If $K * L \in A E(X)$, then $X=A \cup B$, where $K \in A E(A), L \in A E(B)$.
2.27. Theorem [16]. Let K be a countable $C W$ complex and let λ be an infinite cardinal number. Then there exists a completely metrizable space M_{λ}^{K} such that $w M_{\lambda}^{K} \leq \lambda, K \in A E\left(M_{\lambda}^{K}\right)$, and M_{λ}^{K} contains topologically every metrizable space X with $w X \leq \lambda$ and $K \in A E(X)$.

For $\lambda=\omega_{0}$ this theorem was proved by W. Olszewski [18]. A. Chigogidze and V. Valov [2] got a stronger result. Namely, M_{λ}^{K} can be chosen so that for any completely metrizable space X of weight $\leq \lambda$ and $K \in A E(X)$ the set of closed embeddinds $X \rightarrow M_{\lambda}^{K}$ is dense in the space $C\left(X, M_{\lambda}^{K}\right)$ of all continuous mappings from X to M_{λ}^{K} endowed with source limitation topology.
2.28. Proposition. Let $R_{i}, S_{i}, i=1,2$, be $A N R$-compacta such that $R_{1} \leq$ $R_{2}, S_{1} \leq S_{2}$. Then $R_{1} * S_{1} \leq R_{2} * S_{2}$.

Proof. According to Proposition 2.13 we may assume that R_{i}, S_{i} are polyhedra. In this case our assertion is proved in ([7], Proposition 3.3) with respect to the order $\leq_{\text {Sep }}$. Applying Theorem 2.12 we complete the proof.
2.29. Theorem ([6], Theorem 7.10). Let h^{*} be a reduced continuous cohomology theory such that $h^{*}(K)=0$ for some countable simplicial complex K. Then there exists a strongly infinite-dimensional compactum X having the property $K \in A E(X)$.
2.30. Proposition [12]. Let $R=R_{1} \cup R_{2}$. If $R_{i} \in A E(X), i=1,2$, and $R_{1} \cap R_{2} \in A E(X)$, then $R \in A E(X)$.
2.31. Proposition [12]. Let $R=R_{1} \cup R_{2}$ and let $R \in A E(X)$ and $R_{1} \cap R_{2} \in$ $A E(X)$. Then $R_{i} \in A E(X), i=1,2$.
2.32. Proposition [12]. $R_{1} \times R_{2} \in A E(X)$ if and only if $R_{i} \in A E(X)$, $i=1,2$.
2.33. Proposition [3]. Let $R_{1} \supset R_{2}$ and let R_{1}, R_{2} be $A N R$-compacta. If $R_{i} \in A E(X), i=1,2$, then $R_{1} / R_{2} \in A E(X)$.
2.34. Proposition [3]. Let $f: Z \rightarrow Y$ be a mapping of $A N R$-compacta such that $f^{-1}(y) \in A N R$ for all $y \in Y$. Assume that $Y \in A E(X)$ and $f^{-1}(y) \in A E(X)$ for a compactum X and all $y \in Y$. Then $Z \in A E(X)$.

Propositions 2.30, 2.32, 2.33, and 2.34 yield
2.35. Proposition. If $R_{i} \in A E(X), i=1,2$, then $R_{1} \wedge R_{2} \in A E(X)$ and $R_{1} * R_{2} \in A E(X)$.

Proposition 2.32 and 2.33 imply
2.36. Proposition. If $R \in A E(X)$, then $\Sigma(R) \in A E(X)$.

Since $R_{1} * R_{2}=\Sigma\left(R_{1} \wedge R_{2}\right)$, Proposition 2.36 yields
2.37. Proposition. If $R_{1} \wedge R_{2} \in A E(X)$, then $R_{1} * R_{2} \in A E(X)$.
2.38. Theorem [7]. Let X and Y be metrizable spaces of finite dimension and let Y be compact. If $K \in A E(X)$ and $L \in A E(Y)$ are connected $C W$ complexes, then $K \wedge L \in A E(X \times Y)$.

The next statement is well known.
2.39. Open enlargement lemma. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Fin}_{s}(\exp X)$. Then there exists a family $u=\left(U_{1}, \ldots, U_{m}\right)$ of open subsets of X such that $N(u)=$ $N(\Phi)$ and $F_{j} \subset U_{j}, j=1, \ldots, m$.

3. Definitions of dimension invariants by means of partitions and essential mappings

Recall that a simplicial complex G is said to be complete if every face of each simplex from G belongs to G. In what follows complexes stand for finite complete simplicial complexes.

Symbols $\mathcal{G}, \mathcal{H}, \mathcal{G}_{1}$ and so on denote non-empty classes of complexes.
3.1. Definition [10]. Let X be a space, G be a complex, and $\Phi=$ $\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Fin}_{s}(\exp X)$. A family $u=\left\{U_{1}, \ldots, U_{k}\right\} k \geq m$, of open subsets of X is called a G-neighbourhood of Φ if $F_{j} \subset U_{j}$ and $N(u) \subset G$.
3.2. Definition. A set $P \subset X$ is said to be a G-partition of $\Phi \in \operatorname{Fin}_{s}(\exp X)$ (notation: $P \in \operatorname{Part}(\Phi, G))$ if $P=X \backslash \bigcup u$, where u is a G-neighbourhood of Φ.

Put $\operatorname{Exp}_{G}(X)=\left\{\Phi \in \operatorname{Fin}_{s}(\exp X): N(\Phi) \subset G\right\}$.
3.3. Definition. A sequence $\mathcal{G}=\left(G_{1}, \ldots, G_{r}\right)$ of complexes is called inessential in X if for every sequence $\left(\Phi_{1}, \ldots, \Phi_{r}\right)$ such that $\Phi_{i} \in \operatorname{Exp}_{G_{i}}(X)$ there exist G_{i}-partitions P_{i} of Φ_{i} such that $\bigcap\left\{P_{i}: i=1, \ldots, r\right\}=\varnothing$.
3.4. Definition. Let \mathcal{G} be a class of complexes. To every space X one assigns the dimension \mathcal{G} - $\operatorname{dim} X$, which is an integer ≥-1 or ∞. The dimension function \mathcal{G}-dim is defined in the following way:
(1) \mathcal{G} - $\operatorname{dim} X=-1 \Longleftrightarrow X=\varnothing$;
(2) \mathcal{G} - $\operatorname{dim} X \leq n$, where $n=0,1, \ldots$, if every sequence $\left(G_{1}, \ldots, G_{n+1}\right), G_{i} \in$ $\mathcal{G}, i=1, \ldots, n+1$, is inessential in X;
(3) \mathcal{G} - $\operatorname{dim} X=\infty$, if \mathcal{G} - $\operatorname{dim} X>n$ for all $n=-1,0,1, \ldots$

If the class \mathcal{G} contains only one complex G we write $\mathcal{G}=G$ and \mathcal{G} - $\operatorname{dim} X=G$ $\operatorname{dim} X$.

Let $\{0,1\}$ be a two point set and let Δ^{n} be an n-dimensional simplex. The next assertion is evident.
3.5. Proposition. For every space X we have $\Delta^{n}-\operatorname{dim} X \leq 0$.

From a characterization of Lebesgue dimension by means of partitions we get
3.6. Theorem. For every space X we have $\{0,1\}-\operatorname{dim} X=\operatorname{dim} X$.
3.7. Symbols $\mathcal{R}, \mathcal{R}_{1}$ and so on denote non-empty classes of metrizable $A N R$ compacta. If \mathcal{R} contains only one $A N R$-compactum R we write $\mathcal{R}=R$. Put $C(X$, cone $\mathcal{R})=\bigcup\{C(X$, cone $R): R \in \mathcal{R}\}$.
3.8. Definition [10]. Let $\sigma=\left(f_{1}, \ldots, f_{n}\right)$ be a finite sequence of mappings
$f_{i}: X \rightarrow$ cone $R_{i}, R \in \mathcal{R}$,
$f=f_{1} \triangle \ldots \Delta f_{n}: X \rightarrow \prod_{i=1}^{n}$ cone R_{i},
and let $F=f^{-1}\left(R_{1} * \ldots * R_{n}\right)$ (see Remark 1.7). The sequence σ is said to be \mathcal{R}-inessential if the mapping $\left.f\right|_{F}: F \rightarrow R_{1} * \ldots * R_{n}$ extends over X.
3.9. Definition. Let \mathcal{R} be a non-empty class of metrizable $A N R$-compacta. To every space X one assigns the dimension $\mathcal{R}-\operatorname{dim} X$ which is an integer ≥-1 or ∞. The dimension function \mathcal{R}-dim is defined in the following way:
(1) $\mathcal{R}-\operatorname{dim} X=-1 \Longleftrightarrow X=\varnothing$;
(2) \mathcal{R} - $\operatorname{dim} X \leq n$, where $n=0,1, \ldots$, if every sequence $\sigma=\left(f_{1}, \ldots, f_{n+1}\right)$, $f_{i} \in C(X$, cone $\mathcal{R})$, is \mathcal{R}-inessential;
(3) \mathcal{R} - $\operatorname{dim} X=\infty$, if $\mathcal{R}-\operatorname{dim} X>n$ for all $n \geq-1$.

If the class \mathcal{R} contains only one compactum R we write $\mathcal{R}=R$ and \mathcal{R} - $\operatorname{dim} X=$ R - $\operatorname{dim} X$.

From a characterization of Lebesgue dimension by means of essential mappings we get
3.10. Theorem. For every space $X\{0,1\}$ - $\operatorname{dim} X=\operatorname{dim} X$.
3.11. Remark. At a glance the assertions of Theorems 3.6 and 3.10 coincide. But these theorems deal with different dimension functions: \mathcal{G}-dim and \mathcal{R}-dim.

For a class \mathcal{Z} of compacta and an integer $m \geq 1$, we put

$$
{ }^{m} \mathcal{Z}=\left\{Z_{1} * \ldots * Z_{m}: Z_{i} \in \mathcal{Z}\right\} .
$$

We shall write $\mathcal{R} \subset A E(X)$ if $R \in A E(X)$ for every $R \in \mathcal{R}$.
3.12. Proposition. For arbitrary \mathcal{R} and X, we have $\mathcal{R}-\operatorname{dim} X \leq n \Longleftrightarrow$ ${ }_{*}^{n+1} \mathcal{R} \subset A E(X)$.

Proof. Implication \Rightarrow. Let \mathcal{R} - $\operatorname{dim} X \leq n, R_{1}, \ldots, R_{n+1} \in \mathcal{R}$, and let $f_{0}: F \rightarrow$ $R_{1} * \ldots * R_{n+1}$ be a mapping of a closed set $F \subset X$. Propositions 1.9, 1.14 and 2.3 imply that cone $\left(R_{1} * \ldots * R_{n+1}\right) \equiv R \in A E(X)$. Hence there exists a mapping $f: X \rightarrow R$ such that $\left.f\right|_{F}=f_{0}$. By Proposition $1.6, R=\prod_{i=1}^{n+1}$ cone R_{i}. Let

$$
p_{j}: \prod_{i=1}^{n+1} \operatorname{cone} R_{i} \rightarrow \operatorname{cone} R_{j}, \quad j=1, \ldots, n+1
$$

be projections onto factors. Let $f_{j}=p_{j} \circ f$. Then $f=f_{1} \triangle \ldots \Delta f_{n+1}$. Since $\left.f\right|_{F}=f_{0}$,

$$
\begin{equation*}
F \subset F_{1} \equiv f^{-1}\left(R_{1} * \ldots * R_{n+1}\right) \tag{3.3}
\end{equation*}
$$

From \mathcal{R} - $\operatorname{dim} X \leq n$, it follows that the sequence $\left(f_{1}, \ldots, f_{n+1}\right)$ is \mathcal{R}-inessential and, consequently, there exists a mapping $g: X \rightarrow R_{1} * \ldots * R_{n+1}$ such that $\left.g\right|_{F_{1}}=f$. Hence the equality $\left.f\right|_{F}=f_{0}$ and condition (3.3) imply that $\left.g\right|_{F}=f_{0}$. So g is a required extension of f_{0} over X and $R_{1} * \ldots * R_{n+1} \in A E(X)$.

Implication \Leftarrow. Let ${ }^{n+1} \mathcal{R} \subset A E(X)$. We have to prove that an arbitrary sequence

$$
f_{i}: X \rightarrow \text { cone } R_{i}, \quad R_{i} \in \mathcal{R}, \quad i=1, \ldots, n+1
$$

is \mathcal{R}-inessential. Put

$$
f=f_{1} \triangle \ldots \Delta f_{n+1}: X \rightarrow \prod_{i=1}^{n+1} \operatorname{cone} R_{i}=\operatorname{cone}\left(R_{1} * \ldots * R_{n+1}\right)
$$

and $F=f^{-1}\left(R_{1} * \ldots * R_{n+1}\right)$. Since $R_{1} * \ldots * R_{n+1} \in A E(X)$, the mapping $f_{0}=\left.f\right|_{F}: F \rightarrow R_{1} * \ldots * R_{n+1}$ extends over X. Thus the sequence $\left(f_{1}, \ldots, f_{n+1}\right)$ is \mathcal{R}-inessential.
3.13. Corollary. For an arbitrary $A N R$-compactum R, R - $\operatorname{dim} X \leq n \Longleftrightarrow$ ${ }^{n+1} R \in A E(X)$. In particular, $R-\operatorname{dim} X \leq 0 \Longleftrightarrow R \in A E(X)$.

Another corollary of Proposition 3.12 is
3.14. Proposition. If $\mathcal{R}-\operatorname{dim} X \leq n$ and F is a closed subset of X, then \mathcal{R} - $\operatorname{dim} F \leq n$.

From Definition 2.15 and Corollary 3.13 we get
3.15. Proposition. For arbitrary space X, R - $\operatorname{dim} X \leq n \Longleftrightarrow e-\operatorname{dim} X \leq$ $\stackrel{n+1}{*} R$. In particular, R - $\operatorname{dim} X \leq 0 \Longleftrightarrow e$ - $\operatorname{dim} X \leq R$.
3.16. Remark. Definition 3.4 of dimension function \mathcal{G}-dim is based on Definition 3.2 and the definition of the set $\operatorname{Exp}_{G}(X)$. In these definitions the embeddings
$N(\Phi) \subset G$ and $N(u) \subset G$ do not depend on each other. It is possible to give another definition of dimension function \mathcal{G}-dim, where the embedding $N(u) \subset G$ is an extension of the embedding $N(\Phi) \subset G$. We shall show that this new approach gives us the same dimension function.
3.17. Definition. Let G be a complex and let X be a space. Denote by $\operatorname{Exp}_{G}^{\theta}(X)$ the set of all triples $T=\left(\Phi_{T}, \alpha_{T}, e_{T}\right)$, where:
$\Phi_{T}=\Phi=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Fin}_{s}(\exp X), m \leq|v(G)| ;$
$\alpha_{T}=\alpha:(1, \ldots, m) \rightarrow v(G)$ is an embedding;
$e_{T}=e: N\left(\Phi_{T}\right) \rightarrow G$ is a simplicial embedding
such that $e\left(F_{j}\right)=\alpha(j)$.
3.18. Definition. Let $T \in \operatorname{Exp}_{G}^{\theta}(X)$ and let $\Phi_{T}=\left(F_{1}, \ldots, F_{m}\right)$. A family $u=\left(U_{1}, \ldots, U_{k}\right), k \geq m$, of open subsets of X is said to be a G-neighbourhood of T if $F_{j} \subset U_{j}$ and there exists an embedding $\alpha^{\prime}:(1, \ldots, k) \rightarrow v(G),\left.\alpha^{\prime}\right|_{(1, \ldots, m)}=\alpha$, and a mapping $e^{\prime}: N(u) \rightarrow G$, defined by the equality $e^{\prime}\left(U_{j}\right)=\alpha^{\prime}(j)$, is a simplicial embedding.
3.19. Definition. A set $P \subset X$ is called a G-partition of $T \in \operatorname{Exp}_{G}^{\theta}(X)$ (notation: $P \in \operatorname{Part}(T, G)$) if $P=X \backslash \bigcup u$, where u is a G-neighbourhood of T.
3.20. Definition. A sequence $\left(G_{1}, \ldots, G_{r}\right)$ of complexes is called θ inessential in X if for every sequence $\left(T_{1}, \ldots, T_{r}\right), T_{i} \in \operatorname{Exp}_{G_{i}}^{\theta}(X)$, there exist G_{i}-partitions P_{i} of T_{i} such that $\bigcap\left\{P_{i}: i=1, \ldots, r\right\}=\varnothing$.

The inclusion $\operatorname{Part}(T, G) \subset \operatorname{Part}\left(\Phi_{T}, G\right)$ yields
3.21. Proposition. If a sequence $\left(G_{1}, \ldots, G_{r}\right)$ is θ-inessential in X, then it is inessential in X.
3.22. Definition. The dimension function $\mathcal{G}-\operatorname{dim}_{\theta}$ is defined as the function \mathcal{G}-dim (Definition 3.4). The only difference is that in the item (2) we require a θ-inessentiality of a sequence $\left(G_{1}, \ldots, G_{n+1}\right)$ instead of its inessentiality.
3.23. Theorem. For every space X we have $\mathcal{G}-\operatorname{dim} X=\mathcal{G}-\operatorname{dim}_{\theta} X$.

To prove Theorem 3.23 we need an additional information.
3.24. Lemma. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Fin}_{s}(\exp X)$ be a sequence such that the set $X \backslash \bigcup \Phi$ is infinite. Let G be a complex with $v(G)=\left\{a_{1}, \ldots, a_{k}\right\}, k \geq m$. Assume that the correspondence $F_{j} \mapsto a_{j}, j=1, \ldots, m$, generates the embedding $N(\Phi) \rightarrow G$. Then there exists a sequence $\Phi_{1}=\left(F_{1}^{1}, \ldots, F_{k}^{1}\right) \in \operatorname{Fin}_{s}(\exp X)$ such that $F_{j} \subset F_{j}^{1}, j=1, \ldots, m$, and the correspondence $F_{j}^{1} \mapsto a_{j}, j=1, \ldots, k$, generates the isomorphism $N\left(\Phi_{1}\right) \rightarrow G$.

Proof. Let \tilde{G} be a geometric realization of G and let $\tilde{a}_{\tilde{\sim}}, \ldots, \tilde{a}_{k}$ be vertices of \tilde{G}. Denote by H the set of barycenters of all simplices of \tilde{G}. Let $\beta: H \rightarrow X \backslash \bigcup \Phi$ be some injection. Put

$$
O_{j}=\beta\left(H \cap O \tilde{a}_{j}\right), \quad j=1, \ldots, k,
$$

where $O \tilde{a}_{j}$ is the star of \tilde{a}_{j} in \tilde{G}. Let $\Omega=\left(O_{1}, \ldots, O_{k}\right)$. From the definition of H we get that the correspondence $O_{j} \rightarrow a_{j}$ generated an isomorphism $N(\Omega) \rightarrow G$.

Put

$$
F_{j}^{1}=F_{j} \cup O_{j}, \quad j=1, \ldots, m ; \quad F_{j}^{1}=O_{j}, \quad j=m+1, \ldots, k
$$

Then $\Phi_{1}=\left(F_{1}^{1}, \ldots, F_{k}^{1}\right)$ is the required sequence.
3.25. Lemma. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Fin}_{s}(\exp X)$ be a sequence such that $X=\bigcup \Phi$. Then

$$
\operatorname{Part}(\Phi, G)=\{\varnothing\}=\operatorname{Part}(T, G)
$$

where $T=\left(\Phi_{T}, \alpha_{T}, e_{T}\right) \in \operatorname{Exp}_{G}^{\theta}(X)$ is an arbitrary triple with $\Phi_{T}=\Phi$.
3.26. Lemma. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Fin}_{s}(\exp X)$ be a sequence such that $N(\Phi)=G$. Then $\operatorname{Part}(\Phi, G) \subset \operatorname{Part}(T, G)$ for an arbitrary triple $T \in \operatorname{Exp}_{G}^{\theta}(X)$ with $\Phi_{T}=\Phi$.

Proof. Let $P \in \operatorname{Part}(\Phi, G)$. It means that there is a one-to-one correspondence $\alpha_{\Phi}:(1, \ldots, m) \rightarrow v(G)$ such that the correspondence

$$
e_{\Phi}\left(F_{j}\right)=\alpha_{\Phi}(j)
$$

generates the simplicial isomorphism $e_{\Phi}: N(\Phi) \rightarrow G$, and there is a neighbourhood $u=\left(U_{1}, \ldots, U_{m}\right)$ of $\Phi, P=X \backslash \bigcup u$, with another one-to-one correspondence $\alpha_{\Phi}^{\prime}:(1, \ldots, m) \rightarrow v(G)$ generating an isomorphism $e_{\Phi}^{\prime}: N(u) \rightarrow G$ by means of the correspondence $e_{\Phi}^{\prime}\left(U_{j}\right)=\alpha_{\Phi}^{\prime}(j)$. Put $T=\left(\Phi, \alpha_{\Phi}, e_{\Phi}\right)$. Then u becomes a G-neighbourhood of Φ if we put $\alpha^{\prime}=\alpha$. Since e_{Φ} is an isomorphism, the mapping $e^{\prime}: N(u) \rightarrow G$, defined by $e^{\prime}\left(U_{j}\right)=\alpha^{\prime}(j)$, is an isomorphism as well.

Proof of Theorem 3.23. The inequality \leq is a consequence of Proposition 3.21. Now let \mathcal{G} - $\operatorname{dim} X \leq n$ and let $\left(G_{1}, \ldots, G_{n+1}\right)$ be a sequence of complexes from \mathcal{G}. We have to prove that this sequence is θ-inessential. Let $T_{i} \in \operatorname{Exp}_{G}^{\theta}(X), i=$ $1, \ldots, n+1$. Let $\Phi_{T_{i}}=\left(F_{1}^{i}, \ldots, F_{m_{i}}^{i}\right)$. We enlarge the sequences $\Phi_{T_{i}}$ to sequences Φ_{i}^{1} in the following way. If $X \backslash \bigcup \Phi_{T_{i}}$ is finite, then we put $F_{1}^{i, 1}=F_{1}^{i} \cup\left(X \backslash \bigcup \Phi_{T_{i}}\right)$, $F_{j}^{i, 1}=F_{j}^{i}, j=2, \ldots, m_{i}$. If $X \backslash \bigcup \Phi_{i}$ is infinite, then we take a sequence Φ_{i}^{1} from Lemma 3.24. Since \mathcal{G} - $\operatorname{dim} X \leq n$ there exist partitions $P_{i} \subset \operatorname{Part}\left(\Phi_{i}^{1}, G_{i}\right)$ with $P_{1} \cap \ldots \cap P_{n+1}=\varnothing$. Applying Lemmas 3.25 and 3.26 we finish the proof.

4. Equality \mathcal{K} - $\operatorname{dim} X=\mathcal{K}_{\tau}$ - $\operatorname{dim} X$

4.1. Definition. Let \mathcal{R} be a class of $A N R$-compacta and let X be a space. According to Definition 2.15 we write e - $\operatorname{dim} X \leq \mathcal{R}$, provided $\mathcal{R} \subset A E(X)$, i.e. the property $R \in A E(X)$ holds for every $R \in \mathcal{R}$.

Proposition 3.12 implies
4.2. Proposition. For arbitrary \mathcal{R} and X, we have \mathcal{R} - $\operatorname{dim} X \leq n \Longleftrightarrow$ $e-\operatorname{dim} X \leq{ }_{*}^{n+1} \mathcal{R}$.
4.3. Definition. We say that \mathcal{R}_{1} is dominated by \mathcal{R}_{2} (notation: $\mathcal{R}_{1} \leq{ }_{h} \mathcal{R}_{2}$) if every $R_{1} \in \mathcal{R}_{1}$ is dominated by some $R_{2} \in \mathcal{R}_{2}$. A class \mathcal{R}_{1} is homotopy equivalent to a class \mathcal{R}_{2} (notation: $\mathcal{R}_{1} \simeq \mathcal{R}_{2}$) if both $\mathcal{R}_{1} \leq_{h} \mathcal{R}_{2}$ and $\mathcal{R}_{2} \leq_{h} \mathcal{R}_{1}$ hold.
4.4. Proposition. If $\mathcal{R}_{1} \leq{ }_{h} \mathcal{R}_{2}$, then \mathcal{R}_{1} - $\operatorname{dim} X \leq \mathcal{R}_{2}$ - $\operatorname{dim} X$ for an arbitrary space X.

Proof. The assertion is obvious if \mathcal{R}_{2} - $\operatorname{dim} X=\infty$. Let \mathcal{R}_{2} - $\operatorname{dim} X=n<\infty$. To prove that $\mathcal{R}_{1}-\operatorname{dim} X \leq n$ it suffices, according to Proposition 4.2, to show that $e-\operatorname{dim} X \leq{ }^{n+1} \mathcal{R}_{1}$. Let $R_{1}^{1}, \ldots, R_{n+1}^{1} \in \mathcal{R}_{1}$. Since $\mathcal{R}_{1} \leq{ }_{h} \mathcal{R}_{2}$, there exist $R_{j}^{2} \in \mathcal{R}_{2}$ such that $R_{j}^{1} \leq_{h} R_{j}^{2}, j=1, \ldots, n+1$. From Proposition 1.8 we get ${ }^{n+1} R_{j}^{1} \leq{ }_{h} \stackrel{n+1}{*} R_{j=1}^{2}$. The equality \mathcal{R}_{2} - $\operatorname{dim} X=n$ and Proposition 4.2 imply that $\stackrel{j=1}{R_{1}^{2}} * \ldots * R_{n+1}^{2} \in A E(X)$.

Consequently, in view of Proposition $2.9, \underset{j=1}{\stackrel{n+1}{*}} R_{j}^{1} \in A E(X)$. Applying Proposition 4.2 once more we get $\mathcal{R}_{1}-\operatorname{dim} X \leq n$.

As a corollary we have
4.5. Proposition. If $\mathcal{R}_{1} \simeq \mathcal{R}_{2}$, then $\mathcal{R}_{1}-\operatorname{dim} X=\mathcal{R}_{2}$ - $\operatorname{dim} X$ for every X.

Theorem 1.2 and Proposition 4.5 yield
4.6. Proposition. For every class \mathcal{R} of $A N R$-compacta there exists a class $\mathcal{K}=\mathcal{K}(\mathcal{R})$ of polyhedra such that $\mathcal{R}-\operatorname{dim} X=\mathcal{K}-\operatorname{dim} X$ for every space X.

So, when we investigate dimension functions of type \mathcal{R}-dim, we can consider only classes \mathcal{R} consisting of compact polyhedra. These classes we shall denote by \mathcal{K}, \mathcal{L} and so on. In what follows all polyhedra are assumed to be compact.

Another corollary of Proposition 4.5 is
4.7. Proposition. Let K and L be homotopy equivalent polyhedra. Then K - $\operatorname{dim} X=L$ - $\operatorname{dim} X$ for every space X.

Let \mathcal{K} be a class of polyhedra. For each $K \in \mathcal{K}$ we fix a triangulation $t=t(K)$ of K. The pair (K, t) is a simplicial complex which is denoted by K_{t}. The family $\tau=\{t(K): K \in \mathcal{K}\}$ is said to be a triangulation of the class \mathcal{K}. Let $\mathcal{K}_{\tau}=\left\{K_{t}:\right.$ $t \in \tau\}$.
4.8. Theorem. Let \mathcal{K} be a class of polyhedra and let τ be some its triangulation. Then $\mathcal{K}_{\tau}-\operatorname{dim} X=\mathcal{K}$ - $\operatorname{dim} X$ for every space X.

To prove Theorem 4.8 we need some additional information.
Let $u=\left(U_{1}, \ldots, U_{m}\right) \in \operatorname{cov}_{\infty}(X)$. Recall that a mapping $f: X \rightarrow N(u)$ is said to be u-barycentric, if $f(x)=\left(\varphi_{1}(x), \ldots, \varphi_{m}(x)\right)$, where $\left(\varphi_{1}, \ldots, \varphi_{m}\right)$ is some partition of unity subordinated to the cover u, and $\varphi_{j}(x)$ is the barycentric coordinate of $f(x)$ corresponding to the vertex $a_{j} \equiv U_{j} \in v(N(u))$.

Let G be a simplicial complex with vertices a_{1}, \ldots, a_{m}. By $O a_{j} \equiv O_{j}$ we denote the star of a_{j} in G, that is the union of all open simplices σ from G such that $a_{j} \in v(\sigma)$. Put $\omega=\omega(G)=\left(O a_{1}, \ldots, O a_{m}\right)$.

For $g \in G$, let $\mu_{j}(g)$ be the barycentric coordinate of the point g corresponding to the vertex a_{j}. The function $\mu_{j}: G \rightarrow[0 ; 1]$ is continuous and $\operatorname{supp} \mu_{j} \equiv \mu_{j}^{-1}(0 ; 1]=O a_{j}$.
4.9. Proposition. The mapping $\mu: G \rightarrow N(\omega(G))$ defined as $\mu(g)=$ $\left(\mu_{1}(g), \ldots, \mu_{m}(g)\right)$ is a simplicial isomorphism and an $\omega(G)$-barycentric mapping.

If $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ is a sequence of closed subsets of a space X, then a sequence $u=\left(U_{1}, \ldots, U_{m}\right)$ of open subsets of X is called an open enlargement of Φ if $F_{j} \subset U_{j}, j=1, \ldots, m$. Every finite sequence Φ of closed subsets of X has an open enlargement u with $N(u)=N(\Phi)$ (Lemma 2.39).
4.10. Definition. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right)$ be a closed cover of X. A mapping $f: X \rightarrow N(\Phi) \equiv G$ is said to be a Φ-barycentric, if it is u-barycentric for some open enlargement u of Φ such that $N(u)=N(\Phi)$ and

$$
\begin{equation*}
C l\left(f\left(F_{j}\right)\right) \subset O a_{j}, \quad j=1, \ldots, m \tag{4.1}
\end{equation*}
$$

4.11. Proposition. For every finite closed cover Φ of X there exists a Φ-barycentric mapping $f: X \rightarrow N(\Phi)$.
4.12. Definition. Let $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in \operatorname{Fin}_{s}(\exp X)$ and let $F=F_{1} \cup$ $\ldots \cup F_{m}$. Let $u=\left(U_{1}, \ldots, U_{m}\right)$ be an open enlargement of Φ. A mapping $f: F \rightarrow$ $N(\Phi) \equiv G$ is said to be (u, Φ)-barycentric if it is $(u \mid F)$-barycentric and satisfies condition (4.1).
4.13. Lemma [10]. Let G be a simplicial complex with vertices a_{1}, \ldots, a_{k} and let $u=\left(U_{1}, \ldots, U_{k}\right)$ be a G-neighbourhood of a sequence $\Phi=\left(F_{1}, \ldots, F_{m}\right) \in$ $\operatorname{Fin}_{s}(\exp X), m \leq k$. Put $F=F_{1} \cup \ldots \cup F_{m}, U=U_{1} \cup \ldots \cup U_{k}$, and let B be a closed set such that $F \subset B \subset U$. Then every (u, Φ)-barycentric mapping $f_{0}: F \rightarrow N(u \mid F) \subset N(u) \subset G$ extends to a mapping $f: X \rightarrow$ cone G such that

$$
\begin{gather*}
f^{-1}\left(O a_{j}\right) \subset U_{j}, \quad C l\left(f\left(F_{j}\right)\right) \subset O a_{j} \tag{4.2}\\
f^{-1}(a) \cap B=\varnothing \tag{4.3}
\end{gather*}
$$

where $O a_{j}$ is the star of the vertex a_{j} in cone G and a is the peak of cone G.
4.14. Lemma. Let R_{1}, \ldots, R_{n} be $A N R$-compacta, let F_{1}, \ldots, F_{n} be closed subsets of a space X, and let $h_{i}: X \rightarrow$ cone $R_{i}, i=1, \ldots, n$, be mappings such that

$$
\begin{equation*}
h_{i}\left(F_{i}\right) \subset R_{i} . \tag{4.4}
\end{equation*}
$$

Then the mapping $h=h_{1} \triangle \ldots \Delta h_{n}$ satisfies the condition

$$
\begin{equation*}
h(Y) \subset B\left(R_{1}, \ldots, R_{n}\right) \tag{4.5}
\end{equation*}
$$

where $Y=F_{1} \cup \ldots \cup F_{n}$.
Proof. According to (1.3)

$$
\begin{equation*}
B \equiv B\left(R_{1}, \ldots, R_{n}\right)=B_{1} \cup \ldots \cup B_{n} \tag{4.6}
\end{equation*}
$$

where $B_{i}=R_{i} \times \prod_{j \neq i}$ cone R_{j}. So it suffices to check that

$$
\begin{equation*}
h\left(F_{i}\right) \subset B_{i} \tag{4.7}
\end{equation*}
$$

Let $p_{i}: \prod_{j=1}^{n}$ cone $R_{j} \rightarrow$ cone R_{i} be the projection onto the factor. Then

$$
\begin{align*}
h_{i} & =p_{i} \circ h \tag{4.8}\\
B_{i} & =p_{i}^{-1}\left(R_{i}\right) \tag{4.9}
\end{align*}
$$

From (4.8) and (4.9) we get that (4.7) is equivalent to (4.4).
4.15. Lemma. Let $f_{0}, f_{1}: X \rightarrow R$ be mappings to an $A R$-compactum and let $\left.f_{0}\right|_{F}=\left.f_{1}\right|_{F}$ for some closed set $F \subset X$. Then there exists a homotopy $f_{t}: X \rightarrow R$, $0 \leq t \leq 1$, such that $\left.f_{t}\right|_{F}=\left.f_{0}\right|_{F}$ for all $t \in I$.
4.16. LEMMA. Let $f_{i}: X \rightarrow$ cone $R_{i}, i=1, \ldots, n$, be mappings, where R_{1}, \ldots, R_{n} are ANR-compacta. Suppose there exist mappings $g_{i}: X \rightarrow \operatorname{cone} R_{i}$ and homotopies $f_{i}^{t}: X \rightarrow$ cone R_{i} such that

$$
\begin{gather*}
f_{i}^{0}=f_{i}, \quad f_{i}^{1}=g_{i} \tag{4.10}\\
\left(f_{i}^{t}\right)^{-1}\left(R_{i}\right) \supset F_{i} \equiv f_{i}^{-1}\left(R_{i}\right) \tag{4.11}\\
g(X) \subset \prod_{i=1}^{n} \operatorname{cone} R_{i} \backslash\left\{\left(a_{1}, \ldots, a_{n}\right)\right\} \tag{4.12}
\end{gather*}
$$

where $g=g_{1} \triangle \ldots \triangle g_{n}$ and a_{i} is the peak of cone R_{i}. Then there exists a mapping $\bar{f}: X \rightarrow B\left(R_{1}, \ldots, R_{n}\right) \equiv B$ such that $\left.\bar{f}\right|_{Y}=f$, where $f=f_{1} \triangle \ldots \Delta f_{n}$ and $Y=F_{1} \cup \ldots \cup F_{n}$.

Proof. According to Proposition 1.6 there exists a retraction

$$
r: \prod_{i=1}^{n} \text { cone } R_{i} \backslash\left\{\left(a_{1}, \ldots, a_{n}\right)\right\} \rightarrow B
$$

Put $h=r \circ g$ and $h_{i}=p_{i} \circ h$. Then

$$
\begin{equation*}
\left.h_{i}\right|_{g_{i}^{-1}\left(R_{i}\right)}=\left.g_{i}\right|_{g_{i}^{-1}\left(R_{i}\right)} . \tag{4.13}
\end{equation*}
$$

Indeed, let $x \in g_{i}^{-1}\left(R_{i}\right)$. Then $R_{i} \ni g_{i}(x)=\left(p_{i} \circ g\right)(x)$. Consequently, $g(x) \in$ $p_{i}^{-1}\left(R_{i}\right)=($ by $(4.9))=B_{i} \subset B$. Since $\left.r\right|_{B}=\mathrm{id}$, we have $h(x)=g(x)$. Hence $h_{i}(x)=g_{i}(x)$. Thus equality (4.13) is checked.

The conditions (4.10) and (4.11) imply that $F_{i} \subset g_{i}^{-1}\left(R_{i}\right)$. Hence (4.13) yields

$$
\begin{equation*}
\left.g_{i}\right|_{F_{i}}=\left.h_{i}\right|_{F_{i}} \tag{4.14}
\end{equation*}
$$

Lemma 4.15 and the equality (4.14) imply an existence of a homotopy $g_{i}^{t}: X \rightarrow$ cone R_{i} such that

$$
\begin{gather*}
g_{i}^{0}=g_{i}, \quad g_{i}^{1}=h_{i} \tag{4.15}\\
\left.g_{i}^{t}\right|_{F_{i}}=\left.g_{i}\right|_{F_{i}}=\left.h_{i}\right|_{F_{i}} . \tag{4.16}
\end{gather*}
$$

From (4.11) and (4.16) we get condition (4.4) for the homotopies g_{i}^{t}. Consequently, in accordance with Lemma 4.14 the homotopy $g^{t}=g_{1}^{t} \triangle \ldots \Delta g_{n}^{t}$ satisfies the condition

$$
\begin{equation*}
g^{t}(Y) \subset B\left(R_{1}, \ldots, R_{n}\right) \tag{4.5}
\end{equation*}
$$

In view of (4.15) the homotopy g^{t} connects the mappings g and h. On the other hand, according to (4.10) the homotopy $f^{t}=f_{1}^{t} \triangle \ldots \triangle f_{n}^{t}$ connects the mappings
f and g and satisfies the condition $f^{t}(Y) \subset B\left(R_{1}, \ldots, R_{n}\right)$ because of (4.11) and Lemma 4.14. Thus we can define a homotopy $h^{t}: Y \rightarrow B$ putting

$$
h^{t}(y)= \begin{cases}f^{2 t}(y) & \text { for } t \leq \frac{1}{2} \\ g^{2 t-1}(y) & \text { for } t \geq \frac{1}{2}\end{cases}
$$

This homotopy connects the mappings $\left.f\right|_{Y}=h^{0}$ and $\left.h\right|_{Y}=h^{1}$. By Theorem 2.1 the homotopy h^{t} can be extended to a homotopy $\bar{h}^{t}: X \rightarrow B$ so that $\bar{h}^{1}=h$. Then $\bar{f}=\bar{h}^{0}$ is the required mapping.

Proof of Theorem 4.8. Denote the class \mathcal{K}_{τ} by $\mathcal{G}=\mathcal{G}(\mathcal{K})$ and its members K_{t} by $G=G(K)$. We have to prove the inequalities

$$
\begin{align*}
\mathcal{G}-\operatorname{dim} X & \leq \mathcal{K}-\operatorname{dim} X \tag{4.17}\\
\mathcal{K}-\operatorname{dim} X & \leq \mathcal{G}-\operatorname{dim} X \tag{4.18}
\end{align*}
$$

Let $\mathcal{K}-\operatorname{dim} X \leq n$ and $\left(G_{1}, \ldots, G_{n+1}\right) \in \operatorname{Fin}_{s} \mathcal{G}, \Phi_{i} \in \operatorname{Exp}_{G_{i}}(X), i=1, \ldots, n+$ 1. To prove inequality (4.17) we have to find G_{i}-partitions P_{i} of Φ_{i} such that $\bigcap_{i=1}^{n+1} P_{i}=\varnothing$. Let $\Phi_{i}=\left(F_{1}^{i}, \ldots, F_{m_{i}}^{i}\right)$. By definition of $\operatorname{Exp}_{G_{i}}(X)$ we have $N\left(\Phi_{i}\right) \subset$ G_{i}. Let $v\left(G_{i}\right)=\left\{a_{1}^{i}, \ldots, a_{k_{i}}^{i}\right\}, m_{i} \leq k_{i}$. Put $F_{i}=F_{1}^{i} \cup \ldots \cup F_{m_{i}}^{i}$. According to Proposition 4.11 there exists a Φ_{i}-barycentric mapping $f_{i}^{0}: F_{i} \rightarrow N\left(\Phi_{i}\right) \subset G_{i}$. This mapping extends to a mapping $f_{i}: X \rightarrow$ cone G_{i}. Since \mathcal{K} - $\operatorname{dim} X \leq n$, the mapping

$$
f=f_{1} \triangle \ldots \triangle f_{n+1}: X \rightarrow \prod_{i=1}^{n+1} \operatorname{cone} G_{i}=\operatorname{cone}\left(\begin{array}{c}
n+1 \\
*=1 \\
i=1
\end{array} G_{i}\right)
$$

is inessential. Consequently, there exists a mapping $g: X \rightarrow \underset{i=1}{*} G_{i}=B=$ $B\left(G_{1}, \ldots, G_{n+1}\right)$ such that

$$
\begin{equation*}
\left.g\right|_{Y}=\left.f\right|_{Y} \tag{4.19}
\end{equation*}
$$

where $Y=f^{-1}(B)$. In view of Definition 4.10 we have

$$
\begin{equation*}
C l\left(f_{i}\left(F_{j}^{i}\right)\right)=C l\left(f_{i}^{0}\left(F_{j}^{i}\right)\right) \subset O a_{j}^{i}, \quad j \leq m_{i} \tag{4.20}
\end{equation*}
$$

where $O a_{j}^{i}$ is the star of a_{j}^{i} in G_{i}. From (4.20) it follows the existence of closed sets $\Gamma_{j}^{i}, j \leq k_{i}$, such that

$$
\begin{equation*}
C l\left(f_{i}\left(F_{j}^{i}\right)\right) \subset \Gamma_{j}^{i} \subset O a_{j}^{i}, \quad j \leq m_{i} \tag{4.21}
\end{equation*}
$$

and the family $\gamma_{i}=\left\{\Gamma_{1}^{i}, \ldots, \Gamma_{k_{i}}^{i}\right\}$ is a cover of G_{i}. Put ${ }^{n+1} \Gamma_{j}^{i}=p_{i}^{-1}\left(\Gamma_{j}^{i}\right)$, where $p_{i}: \prod_{j=1}^{n+1}$ cone $G_{j} \rightarrow$ cone G_{i} is the projection onto the factor. Recall that $B=$ $B_{1} \cup \ldots \cup B_{n+1}$, where

$$
\begin{equation*}
B_{i}=G_{i} \times \prod\left\{\operatorname{cone} G_{j}: j \neq i\right\}=p_{i}^{-1}\left(G_{i}\right) \tag{4.22}
\end{equation*}
$$

Since γ_{i} cover G_{i}, condition (4.22) implies that $B_{i}=\bigcup\left\{{ }^{n+1} \Gamma_{j}^{i}: 1 \leq j \leq k_{i}\right\}$ and hence

$$
\begin{equation*}
g^{-1} B_{i}=\left\{g^{-1}\left({ }^{n+1} \Gamma_{j}^{i}\right): 1 \leq j \leq k_{i}\right\} . \tag{4.23}
\end{equation*}
$$

Put

$$
\begin{equation*}
{ }^{1} F_{j}^{i}=g^{-1}\left({ }^{n+1} \Gamma_{j}^{i}\right)=g^{-1} p_{i}^{-1}\left(\Gamma_{j}^{i}\right) \tag{4.24}
\end{equation*}
$$

The mapping $g: X \rightarrow B \subset \prod_{i=1}^{n+1}$ cone G_{i} is the diagonal product of the mappings $g_{i}=p_{i} \circ g: X \rightarrow$ cone G_{i}. Thus from (4.19) we get

$$
\begin{equation*}
\left.g_{i}\right|_{Y}=\left.f_{i}\right|_{Y} \tag{4.25}
\end{equation*}
$$

Conditions (4.21), (4.24), and (4.25) yield

$$
\begin{equation*}
F_{j}^{i} \subset{ }^{1} F_{j}^{i}, \quad j \leq m_{i} \tag{4.26}
\end{equation*}
$$

Since $X=g^{-1}(B)$, from (4.23) and (4.24) we get

$$
\begin{equation*}
X=\bigcup\left\{{ }^{1} F_{j}^{i}: 1 \leq j \leq k_{i}, 1 \leq i \leq n+1\right\} \tag{4.27}
\end{equation*}
$$

Put $\Phi_{i}^{1}=\left\{{ }^{1} F_{1}^{i}, \ldots,{ }^{1} F_{k_{i}}^{i}\right\}$. Proposition 4.9 and conditions (4.21) and (4.24) imply that

$$
\begin{equation*}
N\left(\Phi_{i}^{1}\right) \subset G_{i} \tag{4.28}
\end{equation*}
$$

But the closed family Φ_{i}^{1} has a neighbourhood $O \Phi_{i}^{1}=\left\{O^{1} F_{i}^{1}, \ldots, O^{1} F_{k_{i}}^{1}\right\}$ with $N\left(O \Phi_{i}^{1}\right)=N\left(\Phi_{i}^{1}\right)$. Consequently, (4.26) and (4.28) imply that $O \Phi_{i}^{1}$ is a $G_{i^{-}}$ neighbourhood of Φ_{i}. Further, (4.27) implies that $\bigcup\left\{O F_{i}^{1}: 1 \leq i \leq n+1\right\} \in$ $\operatorname{cov}(X)$. Hence $P_{1} \cap \ldots \cap P_{n+1}=\varnothing$, where $P_{i}=X \backslash \bigcup O \Phi_{i}^{1}$. Thus P_{i} are the required G_{i}-partitions of Φ_{i} and inequality (4.17) is proved.

Now let \mathcal{K}_{τ} - $\operatorname{dim} X \leq n$ and let $f_{i}: X \rightarrow$ cone $K_{i} \in \mathcal{K}, i=1, \ldots, n+1$, be mappings. To prove (4.18) we have to show that the family $\sigma=\left\{f_{1}, \ldots, f_{n+1}\right\}$ is \mathcal{K}-inessential. Denote a simplicial complex $\left(K_{i}\right)_{t}$ by G_{i}. Let $v\left(G_{i}\right)=\left\{a_{1}^{i}, \ldots, a_{m_{i}}^{i}\right\}$. There exist closed sets $\Gamma_{j}^{i} \subset G_{i}$ such that $\Gamma_{j}^{i} \subset O a_{j}^{i} \in \omega\left(G_{i}\right), \gamma_{i}=\left\{\Gamma_{1}^{i}, \ldots, \Gamma_{m_{i}}^{i}\right\}$ is a cover of G_{i}, and

$$
\begin{equation*}
N\left(\gamma_{i}\right)=G_{i} \tag{4.29}
\end{equation*}
$$

Put

$$
\begin{align*}
F_{j}^{i} & =f_{i}^{-1}\left(\Gamma_{j}^{i}\right) \tag{4.30}\\
\Phi_{i} & =\left\{F_{1}^{i}, \ldots, F_{m_{i}}^{i}\right\} \tag{4.31}
\end{align*}
$$

If follows from (4.29)-(4.31) that $\Phi_{i} \in \operatorname{Exp}_{G_{i}}(X)$ and $N\left(\Phi_{i}\right) \subset G_{i}$. Since \mathcal{G} $\operatorname{dim} X \leq n$, there exist families $u_{i}=\left(U_{1}^{i}, \ldots, U_{m_{i}}^{i}\right), i=1, \ldots, n+1$, of open subsets of X such that

$$
\begin{gather*}
F_{j}^{i} \subset U_{j}^{i} \tag{4.32}\\
X=\bigcup_{i, j} U_{j}^{i} \tag{4.33}\\
N\left(u_{i}\right) \subset G_{i} \tag{4.34}
\end{gather*}
$$

Put $U_{i}=U_{1}^{i} \cup \ldots \cup U_{m_{i}}^{i}$ and $F_{i}=F_{1}^{i} \cup \ldots \cup F_{m_{i}}^{i}$. From (4.33) we get $X=$ $U_{1} \cup \ldots \cup U_{n+1}$. There exist closed sets B_{1}, \ldots, B_{n+1} such that

$$
\begin{align*}
F_{i} & \subset B_{i} \subset U_{i} \tag{4.35}\\
X & =B_{1} \cup \ldots \cup B_{n+1} \tag{4.36}
\end{align*}
$$

In view of (4.30) and (4.32) f_{i} is an (u_{i}, Φ_{i})- barycentric mapping, $i=1, \ldots, n+1$. According to Lemma 4.13 there exist mappings $g_{i}: X \rightarrow \operatorname{cone} G_{i}, i=1, \ldots, n+1$, such that

$$
\begin{gather*}
\left.g_{i}\right|_{F_{i}}=\left.f_{i}\right|_{F_{i}} \tag{4.37}\\
F_{j}^{i} \subset g_{i}^{-1}\left(O a_{j}^{i}\right) \subset U_{j}^{i} \tag{4.38}\\
g_{i}^{-1}\left(a_{i}\right) \cap B_{i}=\varnothing \tag{4.39}
\end{gather*}
$$

where $O a_{j}^{i}$ is the star of a_{j}^{i} in cone G_{i} and a_{i} is the peak of cone G_{i}. Put $g=$ $g_{1} \triangle \ldots \triangle g_{n+1}: X=\prod_{i=1}^{n+1}$ cone $G_{i}=\operatorname{cone}\left(\underset{ }{n+1}{ }_{j=1}^{n+1} G_{i}\right)$.

Conditions (4.36) and (4.39) imply that

$$
g(X) \subset \operatorname{cone}\binom{n+1}{\underset{j=1}{*} G_{i}} \backslash\left\{\left(a_{1}, \ldots, a_{n+1}\right)\right\}
$$

Applying Lemma 4.15 to the pair $\left(f_{i}, g_{i}\right)$ (see (4.37)) we get a homotopy f_{i}^{t} connecting $f_{i}=f_{i}^{0}$ and $g_{i}=f_{i}^{1}$ so that $\left.f_{i}^{t}\right|_{F_{i}}=\left.f_{i}\right|_{F_{i}}$. Condition (4.30) implies that $F_{i}=f_{i}^{-1}\left(G_{i}\right)$. Hence we can apply Lemma 4.16 which yields an existence of a mapping $\bar{f}: X \rightarrow G_{1} * \ldots * G_{n+1}$ such that $\left.\bar{f}\right|_{F_{1} \cup \ldots \cup F_{n+1}}=f_{1} \triangle \ldots \Delta f_{n+1}$. Hence the family σ is inessential.
4.17. Remark. An analysis of the proof of Theorem 4.8 shows that we actually used Definition 3.22.
4.18. Theorem. Let \mathcal{K} be class of polyhedra and let $[\mathcal{K}]=\bigcup\{[K]: K \in$ $\mathcal{K}\}$, where $[K]$ be the class of all simplicial complexes which are triangulations of K. Then \mathcal{K} - $\operatorname{dim} X=[K]$ - $\operatorname{dim} X$ for every space X.

Proof. If we consider a triangulation t of a polyhedron K as a pair (G, h), where $h=h(t): G \rightarrow K$ is a homeomorphism between a simplicial complex G and K, then the set $T(K)$ of all triangulations of K has cardinality $\leq 2^{\aleph_{0}}$. Take some set Γ with card $\Gamma=2^{\aleph_{0}}$ and denote by \mathcal{K}^{1} the class of all indexed polyhedra from \mathcal{K} :

$$
\mathcal{K}^{1}=\left\{K_{\gamma}: K \in \mathcal{K}, \gamma \in \Gamma\right\}
$$

Clearly, $\mathcal{K} \simeq \mathcal{K}^{1}$. Hence

$$
\begin{equation*}
\mathcal{K}-\operatorname{dim} X=\mathcal{K}^{1}-\operatorname{dim} X \tag{4.40}
\end{equation*}
$$

because of Proposition 4.5. Let $T(K)=\left\{\left(G_{\gamma}, h_{\gamma}\right): \gamma \in \Gamma\right\}$. If we consider h_{γ} as a homeomorphism $h_{\gamma}: G_{\gamma} \rightarrow K_{\gamma}$, then $\tau=\bigcup\{T(K): K \in \mathcal{K}\}$ is a triangulation of the class \mathcal{K}^{1}. Hence according to Theorem 4.8 we have

$$
\begin{equation*}
\mathcal{K}^{1}-\operatorname{dim} X=\left(\mathcal{K}^{1}\right)_{\tau^{-}} \operatorname{dim} X \tag{4.41}
\end{equation*}
$$

On the other hand, one can identify the class $\left(\mathcal{K}^{1}\right)_{\tau}$ with the class

$$
[K]=\left\{G_{\gamma}:\left(G_{\gamma}, h_{\gamma}\right) \in T(K), K \in \mathcal{K}\right\}
$$

Consequently, $[K]-\operatorname{dim} X=\left(\mathcal{K}^{1}\right)_{\tau}-\operatorname{dim} X=(4.41)=\mathcal{K}^{1}-\operatorname{dim} X=(4.40)=\mathcal{K}$ $\operatorname{dim} X$.

Let \mathcal{G} be a class of complexes. For each $G \in \mathcal{G}$ we fix a simplicial subdivision $s=s(G)$ of G. This subdivision can be considered as a triangulation of an Euclidean complex \tilde{G} which is a geometric realization of G. The pair (\tilde{G}, s) is a simplicial complex which is denoted by G_{s}. The family $\sigma=\{s(G): G \in \mathcal{G}\}$ is said to be a simplicial subdivision of the class \mathcal{G}. Let $\mathcal{G}_{\sigma}=\left\{G_{s}: s \in \sigma\right\}$.

Theorem 4.8 yields
4.19. Theorem. Let \mathcal{G} be class of a complexes and let \mathcal{G}_{σ} be some its simplicial subdivision. Then \mathcal{G} - $\operatorname{dim} X=\mathcal{G}_{\sigma}$ - $\operatorname{dim} X$ for every space X.

5. Dimension \mathcal{R}-dim

Dimension functions \mathcal{R}-dim have intrinsic properties similar to those of the classical Lebesgue dimension dim. In what follows X is a space and \mathcal{R} is a class of $A N R$-compacta.
5.1. Countable sum theorem. If X can be represented as the union of a sequence F_{1}, F_{2}, \ldots of closed subsets with $\mathcal{R}-\operatorname{dim} F_{i} \leq n$ for all i, then $\mathcal{R}-\operatorname{dim} X \leq$ n.

Proof. Let $R_{1}, \ldots, R_{n+1} \in \mathcal{R}$. Since \mathcal{R} - $\operatorname{dim} F_{i} \leq n$, we have $\underset{j=1}{n+1} R_{j} \in A E\left(F_{i}\right)$ i_{n+1} view of Proposition 3.12. According to Proposition 1.9 and Theorem 2.3, $\stackrel{n+1}{*} R_{j} \in A N E(X)$. Consequently, $\stackrel{n+1}{{ }_{j=1}^{n}} R_{j} \in A E(X)$ in accordance with Theo$j=1 \quad$. $\quad{ }^{j=1}$ rem 2.19. Applying Proposition 3.12 once more we get $\mathcal{R}-\operatorname{dim} X \leq n$.

Theorem 5.1 yields
5.2. σ-DISCRETE SUM THEOREM. Let $\varphi_{i}=\left\{F_{\alpha}^{i}: \alpha \in A_{i}\right\}, i \in \mathbb{N}$, be discrete families of closed subsets of X such that $\mathcal{R}-\operatorname{dim} F_{\alpha}^{i} \leq n$ and $X=\bigcup_{i, \alpha} F_{\alpha}^{i}$. Then \mathcal{R} - $\operatorname{dim} X \leq n$.
5.3. Point-finite sum theorem. If a space X can be represented as the union of a family $\left\{F_{\alpha}: \alpha \in A\right\}$ of closed subsets such that $\mathcal{R}-\operatorname{dim} F_{\alpha} \leq n$ for $\alpha \in A$, and if there exists a point-finite open cover $\left\{U_{\alpha}: \alpha \in A\right\}$ of X such that $F_{\alpha} \subset U_{\alpha}$ for $\alpha \in A$, then $\mathcal{R}-\operatorname{dim} X \leq n$.

Proof. By Proposition 4.6 there exists a class \mathcal{K} of polyhedra such that

$$
\begin{equation*}
\mathcal{R}-\operatorname{dim} Y=\mathcal{K}-\operatorname{dim} Y \text { for every space } Y \tag{5.1}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
\mathcal{K}-\operatorname{dim} F_{\alpha} \leq n, \alpha \in A \tag{5.2}
\end{equation*}
$$

Let $K_{1}, \ldots, K_{n+1} \in \mathcal{K}$. From (5.2) and Corollary 3.13 we get $\underset{i=1}{\stackrel{n+1}{*}} K_{i} \in A E\left(F_{\alpha}\right)$ for all $\alpha \in A$. Theorem 2.20 implies that $\stackrel{n+1}{*} K_{i} \in A E(X)$. Applying Corollary 3.13 we get \mathcal{K} - $\operatorname{dim} X \leq n$. Hence $\mathcal{R}-\operatorname{dim} X \stackrel{i=1}{\leq n}$, because of (5.1).
5.4. Definition. We say that $\operatorname{loc}-\mathcal{R}-\operatorname{dim} X \leq n$ if for every point $x \in X$ there is a neighbourhood $O x$ such that $\mathcal{R}-\operatorname{dim} C l(O x) \leq n$.

Theorem 5.3 yields
5.5 Theorem. If X is a weakly paracompact space, then $\operatorname{loc}-\mathcal{R}-\operatorname{dim} X=$ \mathcal{R} - $\operatorname{dim} X$.
5.6. Remark. For the Lebesgue dimension $\operatorname{dim}(\mathcal{R}=\{0,1\})$ Theorems 5.3 and 5.5 were proved by A. Zarelua [24].
5.7. Addition (URysohn-Menger) theorem. If a hereditarily normal space X is the union of its subsets A and B such that $\mathcal{R}-\operatorname{dim} A \leq m$ and $\mathcal{R}-\operatorname{dim} B \leq n$, then \mathcal{R} - $\operatorname{dim} X \leq m+n+1$.

Proof. According to Proposition 4.6 we can assume that \mathcal{R} consists of polyhedra. Let $R_{1}, \ldots, R_{m+n+2} \in \mathcal{R}$. Proposition 3.12 yields

$$
\begin{equation*}
R_{1} * \ldots * R_{m+1} \in A E(A), \quad R_{m+2} * \ldots * R_{m+n+2} \in A E(B) \tag{5.3}
\end{equation*}
$$

It follows from Theorem 2.21 and (5.3) that $\left(R_{1} * \ldots * R_{m+1}\right) *\left(R_{m+2} * \ldots * R_{m+n+2}\right) \in$ $A E(X)$, i.e. ${ }_{*}^{m+n+2} R_{i} \in A E(X)$. Consequently, Proposition 3.12 implies that \mathcal{R} - $\operatorname{dim} X \leq m+\stackrel{i=1}{n}+1$.
5.8. Definition. Let A be a subset of a space X. We say that rd- \mathcal{R} $\operatorname{dim} A \leq n$ if \mathcal{R} - $\operatorname{dim} F \leq n$ for every $F \subset A$ and F is closed X.

Propositions 2.22, 3.12, and 4.6 yield
5.9. Dowker's type theorem. Let F be a closed subset of X such that $\mathcal{R}-\operatorname{dim} F \leq n$ and $\operatorname{rd}-\mathcal{R}-\operatorname{dim}(X \backslash F) \leq n$. Then \mathcal{R} - $\operatorname{dim} X \leq n$.

Theorem 2.24 and Propositions 3.12 and 4.6 imply
5.10. SubSPASE THEOREM. If X is strongly hereditarily normal, then \mathcal{R}-dim $A \leq \mathcal{R}$-dim X for any $A \subset X$.

Theorem 2.6 and Proposition 3.12 yield
5.11. Theorem. \mathcal{R} - $\operatorname{dim} X=\mathcal{R}-\operatorname{dim} \beta X$.

From Theorem 2.25, Corollary 3.13, and Theorem 5.11 we get
5.12. THEOREM [17]. Let λ be an infinite cardinal, number, n be a nonnegative integer, and let R be an ANR-compactum. Then there is a compact Hausdorff space $\Pi_{\lambda}^{R, n}$ such that $w \Pi_{\lambda}^{R, n}=\lambda, R$ - $\operatorname{dim} \Pi_{\lambda}^{R, n}=n$, and $\Pi_{\lambda}^{R, n}$ contains topologically every space X with $w X \leq \lambda$ and $R-\operatorname{dim} X \leq n$.

An immediate corollary of Theorem 5.12 is
5.13. Theorem. For every space X with $R-\operatorname{dim} X \leq n$ there exists a compactification $b X$ such that $w b X=w X$ and $R-\operatorname{dim} b X \leq n$.
5.14. Remark. For $\lambda=\omega_{0}$ Theorems 5.12 and 5.13 were proved by J. Dydak [8].

Theorem 2.26 and Propositions 3.12 and 4.6 imply
5.15. Decomposition theorem. Let X be a metrizable space such that R $\operatorname{dim} X \leq m+n+1$. Then X can be represented as the union $X=A \cup B$ so that $R-\operatorname{dim} A \leq m$ and $R-\operatorname{dim} B \leq n$.
5.16. Corollary. Let X be a metrizable space with $R-\operatorname{dim} X \leq n$. Then X can be represented as the union $X=X_{1} \cup \ldots \cup X_{n+1}$ so that R - $\operatorname{dim} X_{i} \leq 0, i=$ $1, \ldots, n+1$.

Theorem 2.27 and Propositions 3.12 and 4.6 yield
5.17. THEOREM. Let R be an ANR-compactum, λ be an infinite cardinal number, n be a non-negative integer. Then there exists a completely metrizable space $M_{\lambda}^{R, n}$ such that $w M_{\lambda}^{R, n}=\lambda, R-\operatorname{dim} M_{\lambda}^{R, n}=n$, and $M_{\lambda}^{R, n}$ contains topologically every metrizable space X^{λ} with $w X \leq \lambda$ and $R-\operatorname{dim} X \leq n$.

As a corollary we get
5.18. Completion theorem. Let X be a metrizable space with R - $\operatorname{dim} X \leq$ n. Then there is a completely metrizable space \tilde{X} containing X with R - $\operatorname{dim} \tilde{X} \leq n$.

Theorem 2.7 and Proposition 3.12 imply
5.19. The first inverse system theorem. Let X be the limit space of an inverse system $\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ of compact Hausdorff spaces X_{α} such that $\mathcal{R}-\operatorname{dim} X_{\alpha} \leq$ n. Then $\mathcal{R}-\operatorname{dim} X \leq n$.

Theorem 2.8 and Corollary 3.13 yield
5.20. The second inverse system theorem. Let X be a compact Hausdorff space such that $R-\operatorname{dim} X \leq n$. Then X is the limit space of a σ-spectrum $S=\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ such that $R-\operatorname{dim} X_{\alpha} \leq n$ for every $\alpha \in A$.

Theorem 5.20 and Shchepin's spectral theorem [21] imply
5.21. The third inverse system theorem. Let X be the limit space of a σ-spectrum $S=\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ such that $R-\operatorname{dim} X_{\alpha} \geq n$ for every $\alpha \in A$. Then $R-\operatorname{dim} X \geq n$.

6. Comparison of dimensions

6.1. Definition. Let $\mathcal{R}_{1}, \mathcal{R}_{2}$ be classes of $A N R$-compacta. We say that $\mathcal{R}_{1} \leq \mathcal{R}_{2}$ if for every $R_{2} \in \mathcal{R}_{2}$ there is $R_{1} \in \mathcal{R}_{1}$ such that $R_{1} \leq R_{2}$.
6.2. Proposition. If $\mathcal{R}_{1} \leq \mathcal{R}_{2}$, then $\mathcal{R}_{2}-\operatorname{dim} X \leq \mathcal{R}_{1}-\operatorname{dim} X$ for every space X.

Proof. Let \mathcal{R}_{1} - $\operatorname{dim} X \leq n$ and $R_{1}^{2}, \ldots, R_{n+1}^{2} \in \mathcal{R}_{2}$. Since $\mathcal{R}_{1} \leq \mathcal{R}_{2}$, there are $R_{i}^{1} \in \mathcal{R}_{1}, i=1, \ldots, n+1$, such that $R_{i}^{1} \leq R_{i}^{2}$. According to Proposition 2.28 we have

$$
\begin{equation*}
R_{1}^{1} * \ldots * R_{n+1}^{1} \leq R_{1}^{2} * \ldots * R_{n+1}^{2} \tag{6.1}
\end{equation*}
$$

From $\mathcal{R}_{1}-\operatorname{dim} X \leq n$ and Proposition 3.12 we get

$$
\begin{equation*}
R_{1}^{1} * \ldots * R_{n+1}^{1} \in A E(X) \tag{6.2}
\end{equation*}
$$

Conditions (6.1) and (6.2) yield the condition $R_{1}^{2} * \ldots * R_{n+1}^{2} \in A E(X)$. Hence \mathcal{R}_{2} - $\operatorname{dim} X \leq n$ in view of Proposition 3.12.
6.3. Theorem. For an arbitrary class \mathcal{R} and for every space X we have

$$
\begin{equation*}
\mathcal{R}-\operatorname{dim} X \leq \operatorname{dim} X \tag{6.3}
\end{equation*}
$$

Proof. In [4] it was noticed that $\{0,1\} \leq R$ for every $A N E$-space R. Hence $\{0,1\} \leq R$ for every $A N R$-compactum R by Theorem 2.3. Consequently $\{0,1\} \leq$ \mathcal{R}. Applying Theorem 3.10 and Proposition 6.2 we complete the proof.

Proposition 3.12 (or 6.2) yields
6.4. Proposition. If $\mathcal{R}_{1} \subset \mathcal{R}_{2}$, then $\mathcal{R}_{1}-\operatorname{dim} X \leq \mathcal{R}_{2}$ - $\operatorname{dim} X$.

In connection with inequality (6.3) two problems arise.
Problem 1. When

$$
\begin{equation*}
\mathcal{R}-\operatorname{dim} X=\operatorname{dim} X \tag{6.4}
\end{equation*}
$$

for every space X ?
Problem 2. When

$$
\begin{equation*}
\mathcal{R}-\operatorname{dim} X<\infty \Rightarrow \operatorname{dim} X<\infty \tag{6.5}
\end{equation*}
$$

for every space?
We start with the first problem.
6.5. Theorem. Equality (6.4) holds for every space X if and only if \mathcal{R} contains a disconnected ANR-compactum R.

Proof. \Rightarrow. Our condition implies

$$
\begin{equation*}
\mathcal{R}-\operatorname{dim} X \leq 0 \Rightarrow \operatorname{dim} X \leq 0 \tag{6.6}
\end{equation*}
$$

Assume that all $R \in \mathcal{R}$ are connected. Take an arbitrary metric space X with $\operatorname{dim} X=1$. Then $\mathcal{R} \in A E(X)$ by Kuratowski-Dugundji theorem (see [1], Theorem 9.1). So $\mathcal{R}-\operatorname{dim} X \leq 0<1=\operatorname{dim} X$. This contradicts to (6.6). Thus the implication \Rightarrow is checked.
\Leftarrow. Let \mathcal{R} contains a disconnected $A N R$-compactum R. Then $\{0,1\}=S^{0} \leq_{h}$ R. Let X be an arbitrary space. We have
$\operatorname{dim} X=S^{0}-\operatorname{dim} X \leq($ by Proposition 4.4$) \leq R-\operatorname{dim} X \leq$ (in accordance with Proposition 6.4) $\leq \mathcal{R}-\operatorname{dim} X \leq($ in view of Theorem 6.3) $\leq \operatorname{dim} X$.
Thus $\mathcal{R}-\operatorname{dim} X=\operatorname{dim} X$.
As for the second problem, it reduces to the zero-dimensional case.
6.6. Theorem. The condition

$$
\begin{equation*}
\mathcal{R}-\operatorname{dim} X<\infty \Rightarrow \operatorname{dim} X<\infty \tag{6.7}
\end{equation*}
$$

holds if and only if

$$
\begin{equation*}
\mathcal{R}-\operatorname{dim} X \leq 0 \Rightarrow \operatorname{dim} X<\infty \tag{6.8}
\end{equation*}
$$

for every space X.
Proof. It suffices to check that $(6.8) \Rightarrow(6.7)$. Moreover, in view of Proposition 6.4 we can assume that $\mathcal{R}=R$. Let $R-\operatorname{dim} X \leq n$. We start with compact metrizable spaces X. According to Corollary $5.16, X=X_{1} \cup \ldots \cup X_{n+1}$, where R - $\operatorname{dim} X_{i} \leq 0$. In view of (6.8) $\operatorname{dim} X_{i}<\infty$ and, consequently, $\operatorname{dim} X<\infty$.

Now let X be a compact Hausdorff space. By Theorem $5.20 X$ is the limit space of a σ-spectrum $S=\left\{X_{\alpha}, \pi_{\beta}^{\alpha}, A\right\}$ such that R - $\operatorname{dim} X_{\alpha} \leq n$ for all $\alpha \in A$. Consequently, condition (6.8) for compacta implies that $\operatorname{dim} X_{\alpha}<\infty$. Let $B_{m}=$ $\left\{\alpha \in A: \operatorname{dim} X_{\alpha} \leq m\right\}$. Clearly,

$$
\begin{equation*}
A=\bigcup\left\{B_{m}: m \in \omega\right\} \tag{6.9}
\end{equation*}
$$

Since A is ω-complete, (6.9) implies that B_{m} is cofinal for some $m \in \omega$. Hence $X=\lim \left(S \mid B_{m}\right)$ and $\operatorname{dim} X \leq m$. Thus implication (6.8) \Rightarrow (6.7) is proved for compact Hausdorff space X.

Now let condition (6.8) holds for every space X and let Y be a space with R - $\operatorname{dim} Y<\infty$. By Theorem 5.11 we have R - $\operatorname{dim} \beta Y<\infty$. Then condition (6.8) for compact spaces implies that $\operatorname{dim} \beta Y<\infty$. The equality $\operatorname{dim} Y=\operatorname{dim} \beta Y$ completes the proof.
6.7. Definition. An $A N R$-compactum R is said to be an extensionally finite-dimensional compactum or efd-compactum (notation: $R \in e f d-C$) if

$$
\begin{equation*}
R-\operatorname{dim} X \leq 0 \Rightarrow \operatorname{dim} X<\infty \tag{6.10}
\end{equation*}
$$

for every space X.
From the proof of Theorem 6.6 we get
6.8. Proposition. If (6.10) holds for every compactum X, then $R \in$ efd- C.

Theorem 2.29 implies
6.9. Theorem. Let $H_{*}(R, \mathbb{Q})=0$. Then $R \notin e f d-C$.
6.10. Corollary. All Moore complexes $M\left(\mathbb{Z}_{p}, n\right)$, in particular the real projective plane $\mathbb{R} P^{2}$, are not efd-compacta.
6.11. Hypothesis. If $H_{*}(R, \mathbb{Q}) \neq 0$, then $R \in e f d-C$.

Theorem B yields
6.12. Proposition. $S^{n} \in e f d-C$ for all $n \geq 0$.

Proposition 6.2 implies
6.13. Proposition. If $R_{1} \leq R_{2}$ and $R_{2} \in e f d-C$, then $R_{1} \in e f d-C$.

From Proposition 4.4 we get
6.14. Proposition. If $R_{1} \leq_{h} R_{2}$ and $R_{1} \in e f d-C$, then $R_{2} \in e f d-C$.
6.15. Proposition. If S is a classical compact surface, then $S \in e f d$ $C \Longleftrightarrow S \neq \mathbb{R} P^{2}$.

Proof. Corollary 6.10 yields the implication \Rightarrow. On the other hand, it is well known that if $S \neq \mathbb{R} P^{2}$, then $S^{1} \leq S$. So applying Propositions 6.12 and 6.14 we complete the proof.

An immediate corollary of Proposition 6.14 is
6.16. Proposition. If $R \in e f d-C$, then $R \times S \in e f d-C, R \vee S \in$ efd- C for an arbitrary $A N R$-compactum S.
6.17. Proposition. For an arbitrary $A N R$-compactum R the following conditions are equivalent:

1) $R \in e f d-C$;
2) $R \vee R \in e f d-C$;
3) $R * R \in e f d-C$.

Proof. According to Propositions 2.35 and 2.37 we have $R \leq R \vee R \leq R * R$. Consequently, Proposition 6.15 implies that 3$) \Rightarrow 2) \Rightarrow 1$). It remains to check the implication 1) $\Rightarrow 3$). Let $R \in e f d-C$ and let X be a space such that $R * R-\operatorname{dim} X \leq$ n. Hence, ${ }^{n+1} *(R * R) \in A E(X)$ in view of Corollary 3.13. But ${ }^{n+1} *(R * R)={ }_{*}^{2 n+2} R$. Applying Corollary 3.13 once again we get $R-\operatorname{dim} X \leq 2 n+1$. Thus $\operatorname{dim} X<\infty$, because $R \in$ efd-C.

A partial case of Hypothesis 6.11 is
6.18. Question. Let M be an orientable closed manifold. Is it true that $M \in e f d-C$?

7. Dimension of products

7.1. Theorem. Let X and Y be finite-dimensional metrizable spaces. Then

$$
\begin{equation*}
R-\operatorname{dim}(X \times Y) \leq R-\operatorname{dim} X+R-\operatorname{dim} Y+1 \tag{7.1}
\end{equation*}
$$

To prove this theorem we need an auxiliary information.
7.2. Definition [11]. A mapping $f: X \rightarrow Y$ from a metric space X to a space Y is said to be strongly 0 -dimensional if for every $\epsilon>0$ and every $y \in f(X)$ there exists an open neighbourhood V of y such that $f^{-1} V$ splits into the union of disjoint open sets of diam $<\epsilon$.

The next statement is rather obvious.
7.3. Lemma. Let $f_{i}: X_{i} \rightarrow Y_{i}$ be strongly 0-dimensional mappings of metric spaces $X_{i}=\left(X_{i}, \rho_{i}\right), i=1,2$. Then the mapping $f=f_{1} \times f_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ is strongly 0-dimensional with respect to the metric ρ in $X_{1} \times X_{2}$ which is the l_{2}-product of the metrics ρ_{1} and ρ_{2}, i.e. $\rho^{2}\left(\left(x_{1}^{1}, x_{2}^{1}\right),\left(x_{1}^{2}, x_{2}^{2}\right)\right)=\rho_{1}^{2}\left(x_{1}^{1}, x_{1}^{2}\right)+\rho_{2}^{2}\left(x_{2}^{1}, x_{2}^{2}\right)$.
7.4. Theorem [16]. Let K be a countable $C W$-complex and let X be a metric space. Then e-dim $X \leq K$ if and only if there exists a strongly 0-dimensional mapping $f: X \rightarrow Y$ to a separable metrizable space Y of $e-\operatorname{dim} Y \leq K$.

Proof of Theorem 7.1. Assume that X and Y are compact spaces with R $\operatorname{dim} X=m, R-\operatorname{dim} Y=n$. If R is disconnected, then R - $\operatorname{dim}=\operatorname{dim}$ by Theorem 6.7. Hence inequality (7.1) is a corollary of the logarithmic law

$$
\operatorname{dim}(X \times Y) \leq \operatorname{dim} X+\operatorname{dim} Y
$$

proved by M. Katětov [11] and K. Morita [14]. If R is connected, then in view of Corollary 3.13 we have ${ }_{*}^{m+1} R \in A E(X),{ }^{n+1} R \in A E(Y)$.

Put $R_{1}=\left(\begin{array}{c}m+1 \\ * \\ *\end{array}\right) \wedge(\stackrel{n+1}{*} R)$. Theorem 2.38 implies that $R_{1} \in A E(X \times Y)$. Hence, in view of Proposition 2.37, we have ${ }_{*}^{m+n+2} R \in A E(X \times Y)$. Applying Corollary 3.13 once again we complete the proof.

Consider now a general case. We may again assume that R - $\operatorname{dim} X=m, R$ $\operatorname{dim} Y=n ; m, n<\infty$. Fix metrics in X and Y. According to Theorem 7.4 and Proposition 3.15, 4.5 there exist strongly 0-dimensional mappings $f: X \rightarrow X_{0}$ and $g: Y \rightarrow Y_{0}$ to separable metrizable spaces X_{0} and Y_{0} of R-dim $X_{0} \leq m$ and R - $\operatorname{dim} Y_{0} \leq n$. In view of Theorem 5.13 there exist metrizable compactifications $b X_{0}$ and $b Y_{0}$ of R - $\operatorname{dim} b X_{0} \leq m$ and R - $\operatorname{dim} b Y_{0} \leq n$. In accordance with (7.1) for compact spaces we have

$$
\begin{equation*}
R-\operatorname{dim}\left(b X_{0} \times b Y_{0}\right) \leq m+n+1 \tag{7.2}
\end{equation*}
$$

Theorem 5.10 and (7.2) yield

$$
\begin{equation*}
R-\operatorname{dim} X_{0} \times Y_{0} \leq m+n+1 \tag{7.3}
\end{equation*}
$$

Then

$$
R-\operatorname{dim} X \times Y \leq m+n+1
$$

because of Theorem 7.4, Propositions 3.15, 4.5, Lemma 7.3, and condition (7.3).
7.5. Remark. Inequality (7.1) is not improvable. In fact, S^{1} - $\operatorname{dim} X=0$ for every one-dimensional compactum X. But $S^{1}-\operatorname{dim}(X \times X)=1=0+0+1$.

Theorems 5.19, 5.20, and 7.1 imply
7.6. Theorem. Let X and Y be finite-dimensional compact Hausdorff spaces. Then R - $\operatorname{dim}(X \times Y) \leq R$-dim $X+R$-dim $Y+1$.
7.7. Proposition. If X is a metrizable space of finite dimension, then

$$
\begin{equation*}
R-\operatorname{dim}(X \times I) \leq R-\operatorname{dim} X+1 \tag{7.4}
\end{equation*}
$$

for an arbitrary $A N R$-compactum R.
Proof. If R is disconnected then R-dim $=\operatorname{dim}$ according to Theorem 6.7. Thus (7.4) is a usual inequality of the Lebesgue dimension. If R is connected, then $R \in A E(I)$, i.e. R - $\operatorname{dim} I=0$. Applying Theorem 7.1 we complete the proof.

Acknowledgements. The author would like to thank the referee for helpful comments and suggestions which led to many improvements of the original version of this article.

REFERENCES

[1] K. Borsuk, Theory of Retracts, Warszawa, 1967.
[2] A. Chigogidze, V. Valov, Universal metric spaces and extension dimension, Topology Appl., 113 (2001), 23-27.
[3] A. N. Dranishnikov, Extension of mappings into $C W$-complexes, Mat. Sb., 182:9 (1991), 1300-1310.
[4] A. N. Dranishnikov, The Eilenberg-Borsuk theorem for mappings in an arbitrary complex, Mat. Sb., 185:4 (1994), 81-90.
[5] A. N. Dranishnikov, On the mapping intersection problem, Pacific J. Math., 176 (1996), 403-412.
[6] A. N. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions, 6:3 (2001), 1-61.
[7] A. N. Dranishnikov, J. Dydak, Extension theory of separable metrizable spaces with applications to dimension theory, Trans. Amer. Math. Soc., 353:1 (2001), 133-156.
[8] J. Dydak, Cohomological dimension and metrisable spaces. II, Trans. Amer. Math. Soc., 348:4 (1996), 1647-1661.
[9] R. Engelking, Theory of Dimensions. Finite and Infinite, Sigma Ser. Pure Math., 10, Heldermann, Lemgo, 1995.
[10] V. V. Fedorchuk, Spaces which are weakly infinite-dimensional modulo simplicial complexes, Vestnik MGU, Ser. Matem. Mehan., 2 (2009).
[11] M. Katětov, On the dimension of non-separable spaces. I, Czech. Math. J. 2 (1952), 336-368.
[12] K. Kuratowski, Topology. Vol. II, Warszawa, 1968.
[13] S. Mardešić, J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
[14] K. Morita, Normal families and dimension theory for metric spaces, Math. Ann., 128 (1954), 350-362.
[15] K. Morita, On generalizations of Borsuk's homotopy extension theorem, Fund. Math., 88 (1975), 1-6.
[16] M. Levin, On extensional dimension of metrizable spaces, Preprint.
[17] M. Levin, L. Rubin, P. Shapiro, The Mardešić factorization theorem for extension theory and C-separation, Proc. Amer. Math. Soc., 128:10 (2000), 3099-3106.
[18] W. Olszewski, Completion theorem for cohomological dimensions, Proc. Amer. Math. Soc., 123:7 (1995), 2261-2264.
[19] M. M. Postnikov, Lectures on Algebraic Topology. Homotopy Theory of Cellular Spaces, Moscow, 1985.
[20] V. A. Rokhlin, D. B. Fuks, Primary Topology Course. Geometric Chapters, Moscow, 1977.
[21] E. V. Ščepin, Functors and uncountable powers of compacta, Russian Math. Surveys, 36 (1981), 1-71.
[22] M. Starbird, The Borsuk homotopy extension without binormality condition, Fund. Math., 87 (1975), 207-211.
[23] J. E. West, Mapping Hilbert cube manifolds to ANR's. A solution of a conjecture of Borsuk, Ann. Math. Ser. 2, 106:1 (1977), 1-18.
[24] A. V. Zarelua, On a theorem of Hurewicz, Math. Sb., 60:1 (1963), 17-28.
(received 20.7.2008; in revised form 5.1.2009)
Moscow State University, Russia
E-mail: vvfedorchuk@gmail.com, fedorch@tsi.ru

[^0]: AMS Subject Classification: 54F45, 55M10
 Keywords and phrases: Dimension; simplicial complex; $A N R$-compactum; extension theory.
 The author was supported by the Russian Foundation for Basic Research (Grant 09-0100741) and the Program "Development of the Scientific Potential of Higher School" of the Ministry for Education of the Russian Federation (Grant 2.1.1. 3704).

 Presented at the international conference Analysis, Topology and Applications 2008 (ATA2008), held in Vrnjačka Banja, Serbia, from May 30 to June 4, 2008.

