
MATEMATIQKI VESNIK

61 (2009), 13–23
UDK 515.122

originalni nauqni rad
research paper

ON WEAKER FORMS OF MENGER, ROTHBERGER
AND HUREWICZ PROPERTIES

M. Bonanzinga1 , F. Cammaroto2 , Lj. D. R. Kočinac3 and M. V. Matveev

Abstract. We introduce new star selection principles defined by neighbourhoods and stars
which are weaker versions of the of Menger, Rothberger and Hurewicz properties; in particular
the properties introduced are between strong star versions and star versions of the corresponding
properties defined in [12]. Some properties of these neighbourhood star selection principles are
proved and some examples are given.

1. Introduction and definitions

Our notation and terminology are standard as in [6].
Recall the following two classical selection principles, which we consider only

for families of open covers of a topological space.
Let A and B be families of open covers of a topological space X. Then (see

[20], [11]):
S1(A,B) (the Rothberger-type principle) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements ofA there is a sequence (Un : n ∈ N)
such that for each n ∈ N, Un ∈ Un and {Un : n ∈ N} ∈ B.
Sfin(A,B) (the Menger-type principle) denotes the selection hypothesis:

For each sequence (Un : n ∈ N) of elements ofA there is a sequence (Vn : n ∈ N)
such that for each n ∈ N, Vn is a finite subset of Un and

⋃
n∈N Vn is an element

of B.
As usual, for a subset A of a space X and a collection P of subsets of X, we

denote by St(A,P) = ∪{P ∈ P : A ∩ P 6= ∅} the star of A with respect to P. In
[12], Kočinac introduced star selection principles in the following way:
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Definition 1.1. Let A and B be collections of open covers of a space X.
• The symbol S∗1(A,B) denotes the selection hypothesis: for every sequence {Un :

n ∈ N} of elements of A one can choose Un ∈ Un, n ∈ N, so that {St(Un,Un) :
n ∈ N} ∈ B;

• The symbol S∗fin(A,B) denotes the selection hypothesis: for every sequence
{Un : n ∈ N} of elements of A one can choose finite Vn ⊂ Un, n ∈ N, so that
∪n∈N{St(V,Un) : V ∈ Vn} ∈ B;

• The symbol SS∗1(A,B) denotes the selection hypothesis: for every sequence
{Un : n ∈ N} of elements of A one can choose xn ∈ X, n ∈ N, so that
{St({xn},Un) : n ∈ N} ∈ B;

• The symbol SS∗fin(A,B) denotes the selection hypothesis: for every sequence
{Un : n ∈ N} of elements of A one can choose finite An ⊂ X, n ∈ N,
{St(An,Un) : n ∈ N} ∈ B.

For a space X we use the following notation:
• O denotes the collection of all open covers of X.
• Ω denotes the collection of all ω-covers of X; an open cover U of X is an

ω-cover [9] if every finite subset of X is contained in a member of U .
• Γ denotes the collection of all γ-covers of X; an open cover U of X is a γ-cover

[9] if it is infinite and each x ∈ X belongs to all but finitely many elements
of U .

Definition 1.2. A space X is:
R (Rothberger) if the selection hypothesis S1(O,O) is true for X ([19], [8], [20]);
M (Menger) if the selection hypothesis Sfin(O,O) is true for X ([17], [10], [8],

[11]; Menger property was called Hurewicz in [1] and [15]);
H (Hurewicz) if for each sequence (Un : n ∈ N) of open covers of X there is a

sequence (Vn : n ∈ N) of finite sets such that for each n ∈ N, Vn ⊂ Un and for
each x ∈ X, x ∈ ∪Vn for all but finitely many n ([10]; see the observation on
the Menger property);

SR (star-Rothberger) if the selection hypothesis S∗1(O,O) is true for X ([12]);
SSR (strongly star-Rothberger) if the selection hypothesis SS∗1(O,O) is true for X

([12]);
SM (star-Menger) the selection hypothesis S∗fin(O,O) is true for X ([12]);

SSM (strongly star-Menger) if the selection hypothesis SS∗fin(O,O) is true for X

([12]);
SH (star-Hurewicz) if for every sequence {Un : n ∈ N} of open covers one can

choose finite Vn ⊂ Un, n ∈ N, so that for every x ∈ X, x ∈ St(∪Vn,Un) for all
but finitely many n ([3]);

SSH (strongly star-Hurewicz) is the selection hypothesis SS∗fin(O, Γ) is true for X

([3]).
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We introduce the following definitions.

Definition 1.3. Let A and B be collections of open covers of a space X. A
space X satisfies:

NSR(A,B) if for every sequence {Un : n ∈ N} of elements of A one can choose
xn ∈ X, n ∈ N, so that for every open On 3 xn, n ∈ N, {St(On,Un) : n ∈ N} ∈ B;

NSM(A,B) if for every sequence {Un : n ∈ N} of elements of A one can choose finite
An ⊂ X, n ∈ N, so that for every open On ⊃ An, n ∈ N, {St(On,Un) : n ∈ N} ∈ B.

In particular we give the following definitions:

Definition 1.4. A space X is:

NSR: (neighbourhood star-Rothberger) if the selection hypothesis NSR(O,O) is true
for X;

NSM: (neighbourhood star-Menger) if the selection hypothesis NSM(O,O) is true
for X;

NSH: (neighbourhood star-Hurewicz) if the selection hypothesis NSM(O, Γ) is true
for X.

Note. NSR and NSM spaces were considered in [13] under different names
(nearly strongly star-Rothberger and nearly strongly star-Menger spaces).

The following is straightforward:

Proposition 1.5. For a space X the following hold:

1. X is SR iff for every sequence (Un : n ∈ N) of open covers of X there exist
On ∈ Un, n ∈ N, such that for every x ∈ X there exists n ∈ N such that
St({x},Un) ∩On 6= ∅.

2. X is SSR iff for every sequence (Un : n ∈ N) of open covers of X there exists
a sequence (xn : n ∈ N) of points of X such that for every x ∈ X there exists
n ∈ N such that St({x},Un) 3 xn.

3. X is NSR iff for every sequence (Un : n ∈ N) of open covers of X there exists
a sequence (xn : n ∈ N) of points of X such that for every x ∈ X there exists
n ∈ N such that St({x},Un) 3 xn.

4. X is SM iff for every sequence (Un : n ∈ N) of open covers of X there exist
finite On ⊂ Un (n ∈ N) such that for every x ∈ X there exists n ∈ N such that
St({x},Un) ∩ (∪On) 6= ∅.

5. X is SSM iff for every sequence (Un : n ∈ N) of open covers of X there exists
a sequence (An : n ∈ N) of finite subsets of X such that for every x ∈ X there
exists n ∈ N such that St({x},Un) ∩An 6= ∅.

6. X is NSM iff for every sequence (Un : n ∈ N) of open covers of X there exists
a sequence (An : n ∈ N) of finite subsets of X such that for every x ∈ X there
exists n ∈ N such that St({x},Un) ∩An 6= ∅.
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7. X is SH iff for every sequence (Un : n ∈ N) of open covers of X there exist
finite On ⊂ Un (n ∈ N) such that for every x ∈ X, St({x},Un) ∩ (∪On) 6= ∅,
for all but finitely many n ∈ N.

8. X is SSH iff for every sequence (Un : n ∈ N) of open covers of X there exists
a sequence (An : n ∈ N) of finite subsets of X such that for every x ∈ X,
St({x},Un) ∩An 6= ∅, for all but finitely many n ∈ N.

9. X is NSH iff for every sequence (Un : n ∈ N) of open covers of X there exists
a sequence (An : n ∈ N) of finite subsets of X such that for every x ∈ X,
St({x},Un) ∩An 6= ∅, for all but finitely many n ∈ N.

With the following result we study the NSM property in finite powers of spaces.

Proposition 1.6. If all finite powers of a space X are NSM, then X satisfies
NSM(O, Ω).

Proof. Let (Un : n ∈ N) be a sequence of open covers of X and let N =
N1∪N2∪· · · be a partition of N into infinite (pairwise disjoint) sets. For every k ∈ N
and every m ∈ Nk let Wm = (Um)k. Then (Wm : m ∈ Nk) is a sequence of open
covers of Xk. Applying to this sequence the fact that Xk is NSM we find a sequence
(Am : m ∈ Nk) of finite subsets of Xk such that for every sequence (Om(Am) : m ∈
Nk) of neighborhoods of Am, m ∈ Nk, in Xk, the family {St(Om,Wm) : m ∈ Nk}
is an open cover of Xk. For every m ∈ Nk, let Sm be a finite subset of X such
that Sk

m ⊃ Am. Consider the sequence of all Sm, m ∈ Nk, k ∈ N, chosen in
this way and denote it (Sn : n ∈ N). Let (Gn(Sn) : n ∈ N) be a sequence of
neighborhoods of Sn, n ∈ N. We claim that {St(Gn(Sn)),Un) : n ∈ N} is an ω-
cover of X. Let F = {x1, · · ·xp} be a finite subset of X. Then 〈x1, · · ·xp〉 ∈ Xp.
There exists n ∈ Np such that 〈x1, · · · , xp〉 ∈ St((Gn(Sn))p,Wn), so that we have
F ⊂ St(Gn(Sn)),Un).

2. Basic relations

Recall that (see [5], [7] or [16]) a space X is strongly star-compact (resp.,
strongly star-Lindelöf), briefly SSC (resp., SSL), if for every open cover U of X
there exists a finite (resp., countable) subset A ⊂ X such that St(A,U) = X; X is
star-compact (resp., star-Lindelöf), briefly SC (resp., SL), if for every open cover U
of X there exists a finite (resp., countable) subset V ⊂ U such that St(∪V,U) = X.

It is natural in this context to introduce the following definition; it also will
be useful later.

Definition 2.1. A space X is NSL (neighbourhood star-Lindelöf ) if for every
open cover U of X there exists a countable subset A ⊂ X such that for every
neighbourhood U of A, St(U,U) = X.

It is easy to prove the following two propositions:

Proposition 2.2. X is NSL iff for every open cover U there is a countable
A ⊂ X such that for every x ∈ X, St({x},U) ∩A 6= ∅.
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Proposition 2.3. A NSL space X having the following property:

(∗) for every open cover U there is an open cover V such that for every x ∈ X,
St({x},V) ⊂ St({x},U)

is star Lindelöf.

NSL property is the countable version of weak star-compactness studied in [4];
in [4] it is proved that weak star-compactness is equivalent to SSC in the class
of Urysohn spaces (and thus it is equivalent to countable compactness). Such
equivalence is not true in the Lindelöf case as the following example shows. Note
that in the view to present an example of an NSM not SSM space (see Example 3.1),
under the assumption “ω1 < d” we give a space which is NSM (hence NSL) which
is not SSL.

Example 2.4. A Urysohn NSL space which is not SSL.

Consider X = P× (ω + 1), where P denotes set of irrational points. Denote T
the standard Tychonoff topology on X. Define a finer topology T ′ on X in which
a basic neighborhood of a point 〈x, n〉, where x ∈ P and n ∈ ω, takes the form
(U \A)×{n} where U is a neighborhood of x in P with the standard topology, and
A a countable subset of P not containing x; a point 〈x, ω〉, where x ∈ P, has basic
neighbourhoods of the form (U \A)× (n, ω)∪ 〈x, ω〉 where U is a neighborhood of
x in P with the standard topology, and A a countable subset of P.

The space (X, T ′) is Urysohn since T ′ ⊃ T .

To see that (X, T ′) is NSL we notice even more. Since (X, T ) is separable
and Y = P × ω is an open subset of it, we have that (Y, T |Y ) is separable. Let
A be countable dense subset of (Y, T |Y ). It is easy to check that every open
neighbourhood of A in topology T ′ is dense in (X, T ′).

To see that (X, T ′) is not SSL, enumerate all countable subsets of P as {Bα :
α < c} and represent P × {ω} as P × {ω} =

⋃{Yα : α < c} where the sets Yα

are pairwise disjoint and all have cardinality c. For z = 〈y, ω〉 ∈ Yα, set Uz =
((P \ Bα) × ω) ∪ {z}. Then the open cover U = {P × ω} ∪ {Uz : z ∈ P × {ω}}
witness that (X, T ′) is not SSL. Indeed let C be a countable subset of X. We
have that C ∩ (P × ω) ⊂ Bα × {ω}, for some α ∈ ω. Since C is countable and
Yα is uncountable, there exists z = 〈y, ω〉 ∈ Yα \ C; since the only element of U
containing z is Uz, we have that z /∈ St(C,U). ♦

The implications in the diagram on the next page are obvious (in the diagram
CC and L are used to denote countable compactness and the Lindelöf property,
respectively).

Remark 2.5. Since in the class of paracompact Hausdorff we have that
R ⇔ SR, M ⇔ SM (see [12]) and H ⇔ SH (see [3]), we have that in the class
of paracompact Hausdorff spaces all Rothberger-type properties, all Menger-type
properties and all Hurewicz-type properties considered are equivalent respectively.
Also recall that in the class of paracompact Hausdorff spaces L ⇔ SL (see [5]). Note
that Example 2.4 is not NSM because it contains a copy of P as a clopen subset and
P (with the standard topology and therefore in the finer topology) is not Menger.
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We will present examples showing that the implications SSM ⇒ NSM, SSH ⇒
NSH, SSR ⇒ NSR, NSR ⇒ SR, NSM ⇒ SM and NSH ⇒ SH cannot be inverted.
Note that the example of an NSM not SSM space also gives an example of an NSM
(hence NSL) space which is not SSL; also the example of a SM not NSM space gives
an example of a SL not NSL space.

3. Some examples

Now we show that consistently, NSM, NSH and NSR do not imply SSM, SSH
and SSR, respectively. In fact, the examples are not even SSL.

Recall first the definition of b, d and cov(M). For f, g ∈ NN put

f ≤∗ g if f(n) ≤ g(n) for all but finitely many n.

A subset B of NN is bounded if there is g ∈ NN such that f ≤∗ g for each f ∈ B.
D ⊂ NN is dominating if for each g ∈ NN there is f ∈ D such that g ≤∗ f . The
minimal cardinality of an unbounded subset of NN is denoted by b, and the minimal
cardinality of a dominating subset of NN is denoted by d. A subset X of NN can
be guessed by a function g ∈ NN if for every f ∈ X the set {n ∈ N : f(n) = g(n)}
is infinite. The minimal cardinality of a subset of NN that cannot be guessed is
denoted by cov(M) (see [18]).

Example 3.1. (ω1 < d) There is a Urysohn NSM space which is not SSL.
Example 3.2. (ω1 < b) There is a Urysohn NSH space which is not SSL.
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Example 3.3. (ω1 < cov(M)) There is a Urysohn NSR space which is not
SSL.

The space in the three examples is the same. The construction does not depend
on cardinality assumptions. Assumptions ω1 < d, ω1 < b and ω1 < cov(M) are
used only in the proof of the properties.

Let S be a subset of R such that for every non-empty open U ⊂ R, |S∩U | = ω1

(then in particular, |S| = ω1). Consider XS = S × (ω + 1) topologized as follows:
a basic neighbourhood of a point 〈x, n〉, where x ∈ S and n ∈ ω, takes the form
((U ∩ S) \ A) × {n}, where U is a neighbourhood of x in the usual topology of R
and A is an arbitrary countable set not containing x; a point 〈x, ω〉, where x ∈ S,
has basic neighbourhoods of the form ((U ∩ S) \A)× (n, ω) ∪ 〈x, ω〉, where U is a
neighbourhood of x in the usual topology of R, A is an arbitrary countable subset
of S, and n ∈ ω.

(1) XS is not SSL.
(This part of proof does not need assumptions on cardinals.) Enumerate S =

{sα : α < ω1}, and for every α < ω1 choose an uncountable Aα ⊂ S so that
Aα ∩ Aβ = ∅ whenever α 6= β. For α < ω1 and a ∈ Aα, put Ua = ({sβ : β > α} ×
ω)∪ ({a}× {ω}). Then the open cover U = {Ua : a ∈ Aα, α < ω1}∪ (XS \ (

⋃{Aα :
α < ω1} × {ω})) witnesses that XS is not SSL. 4

To continue the discussion of the examples, we need an auxiliary definition and
a simple lemma.

Definition 3.4. Let Y ⊂ X. Say that Y is relatively NSM (relatively NSH)
in X if for every sequence (Un : n ∈ N) of open covers of X, there is a sequence
(An : n ∈ N) of finite subsets of X, such that for every open On ⊃ An, n ∈ N,⋃{St(On,Un) : n ∈ N} ⊃ Y (respectively, for every y ∈ Y , y ∈ St(On,Un) for
all but finitely many n). Say that Y is relatively NSR in X if for every sequence
(Un : n ∈ N) of open covers of X, there are xn ∈ X, n ∈ N, such that for every
open On 3 xn, n ∈ N,

⋃{St(On,Un) : n ∈ N} ⊃ Y .

Lemma 3.5. If X =
⋃{Yk : k ∈ N}, and each Yk is relatively NSM (relatively

NSH, relatively NSR) in X, then X is NSM (respectively, NSH, NSR).

Proof. Having a sequence of open covers of X, rearrange it as (Ukm : k, m ∈ N),
and let {Ukm : m ∈ N} take care of Yk.

(2) Under ω1 < d, S and the sets S × {n}, n ∈ ω, are NSM.
(Of course, S is with the topology generated by intervals with countably many

points removed.)
Recall that a space X is projectively Menger if every continuous second count-

able image of it is Menger (similar definitions for Rotherger and Hurewicz proper-
ties) [2], [14]. Since |S| < d, S and the sets S×{n}, n ∈ ω are projectively Menger.
Since every Lindelöf, projectively Menger space is Menger, we conclude that S and
the sets S × {n}, n ∈ ω are Menger then NSM. 4

(3) Under ω1 < d, S × {ω} is relatively NSM in XS .
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For a ∈ S, n ∈ N, and a countable subset A ⊂ S, we denote

UA,n(a) = {〈a, ω〉} ∪ (((S ∩ (a− 1/n, a + 1/n)) \A)× (n, ω).

It is clear that these sets form a base at 〈a, ω〉.
Let (Un : n ∈ N} be a sequence of open covers of XS . For every a ∈ S and

every n ∈ N, pick fa(n) ∈ N and a countable Aa,n ⊂ S so that UAa,n,fa(n)(a) is
a subset of some element of Un. It is clear that, given some a, the sets Aa,n may
be taken the same for all n (just take the union), so Aa,n will be denoted just Aa.
Further, fa is a function from N to N. Since |S| < d, there is a function f∗ from
N to N such that for every a ∈ S, f∗(n) > fa(n) for infinitely many n. For each
n ∈ N, pick a finite Bn ⊂ S such that for every x ∈ [−n, n], there is a b ∈ Bn such
that |x− b| ≤ 1/(2f∗(n)). Put Cn = Bn × {f∗(n)}. Let On be any neighbourhood
of Cn. We have that

⋃{St(On,Un) : n ∈ N} ⊃ S × {ω}. 4
In view of (2), (3) and Lemma 3.5, we have done Example 3.1. ♦
(4) Under ω1 < b, S is NSH (and thus so are S × {n}, n ∈ ω).
Similar to (2). 4
(5) Under ω1 < b, S × {ω} is relatively NSH in XS .
The function f∗ and the sets Cn, defined like in (3), now satisfy stronger

conditions: for every a ∈ S, f∗(n) > fa(n) for all but finitely many n, and thus for
every open On ⊃ Cn, 〈a, ω〉 ∈ St(On,Un) for all but finitely many n. 4

By (4), (5) and Lemma 3.5, we have finished with Example 3.2. ♦
(6) Under ω1 < cov(M), S and the sets S × {n}, n ∈ ω, are NSR.
Similar to (2). 4
(7) Under ω1 < cov(M), S × {ω} is relatively NSR in XS .
S × ω is separable in the usual Tychonoff product topology. Let D be a dense

countable subset of this space. Let (Un : n ∈ N) be a sequence of open covers of XS .
For every a ∈ S and every n ∈ N, pick an element U of the usual topology on S, a
countable subset A of S and m ∈ ω so that (U \A)×(m,ω)∪{〈a, ω〉} is contained in
some element of Un. Further, pick fa(n) ∈ (U ×{m+1})∩D. Since |S| < cov(M),
there exists f ∈ DN such that for every a ∈ S, the set {n ∈ N : f(n) = fa(n)}
is infinite. For every n ∈ N, let On be any neighborhood of f(n). We have that⋃{St(On,Un) : n ∈ N} ⊃ S × {ω}. 4

In view of (6), (7) and Lemma 3.5, we have done Example 3.3. ♦
Problem 3.6. Do there exist ZFC examples of spaces as in Examples 3.1,

3.2 and 3.3?
Now we show that implications NSM ⇒ SM, NSH ⇒ SH and NSR ⇒ SR can

not be reversed.
Example 3.7. A Tychonoff space which is SR and SH (and thus SM), but is

not NSL (and thus is neither of NSR, NSH, NSM).
Let K = D∪{∞} be the one point compactification of the discrete space D of

uncountable cardinality κ. Denote X0 = K × κ+, X1 = D × {κ+}, X = X0 ∪X1;
X has the topology inherited from the product K × (κ+ + 1).
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1) X is not NSL.
Consider the cover V = {K × κ+} ∪ {{d} × [0, κ+] : d ∈ D}. Let B ⊂ X

be countable. Pick p ∈ D \ πK(B) (where πK is the projection of X onto K).
Put U = ((K \ {p}) × [0, κ+]) ∩ X. Then U is a neighbourhood of B such that
St(U,V) 6= X (because 〈p, κ+〉 /∈ St(U,V)). 4

2) X is SR.
(It is worth to note that only here we will use specific properties of the one

point compactification. For other parts of the argument, any other compactification
bD of D would do.)

We need an auxiliary definition and an easy lemma.

Definition 3.8. Let Y ⊂ X. Say that Y is relatively SR in X if for ev-
ery sequence (Un : n ∈ N) of open covers of X, there exists Un ∈ Un such that⋃{St(Un,Un) : n ∈ N} ⊃ Y .

Lemma 3.9. If X =
⋃{Yk : k ∈ N} and each Yk is relatively SR in X, then X

is SR.

We are going now to prove that: (a) X1 is relatively SR in X, and (b) X0 is
SSR (hence SR and relatively SR in X). Then by Lemma 3.9 we will have that X
is SR.

(a) X1 is SR in X.
Let (Un : n ∈ ω} be a sequence of open covers of X. For every d ∈ D pick

an ordinal αd such that {d} × [αd, κ
+] is a subset of some element of U0. Put

α∗ = sup{αd : d ∈ D}. Let 〈∞, α∗〉 ∈ U ∈ U0. Then only finitely many points
〈d, κ+〉 are not in St(U,U0). Let U1, U2, etc take care about these points. 4

(b) X0 is SSR.
It is well known that a compact space is Rothberger if and only if it is scattered.

Since for every ordinal γ, γ + 1 and K × (γ + 1) are compact scattered spaces they
are Rothberger.

Claim b.1. If δ is a limit ordinal of countable cofinality, then δ is Rothberger.
Indeed, let δ = lim{γn : n ∈ ω}. Then δ = lim{γn + 1 : n ∈ ω}, each γn + 1 is

Rothberger and countable union of Rothberger spaces is Rothberger. 4
Claim b.2. Every ordinal δ is SSR.
We only have to prove the case when δ is a limit ordinal of uncountable cofi-

nality. Then it is strongly star-compact. Let (Un : n ∈ ω) be a sequence of open
covers of δ. There is p ∈ δ such that St({p},U0) contains a final tail of δ. Further,
p + 1 is Rothberger and thus it can be served by (Un : n ≥ 1). 4

Claim b.3. Let U be an open cover of X0. For a finite subset F ⊂ K denote

AF,U = {α ∈ κ+ : there are β < α, U ∈ U , such that (K \ F )× (β, α] ⊂ U}.
We claim that one of the sets AF,U contains a final tail of κ+. Suppose the contrary
that is for every finite F ⊂ K, AF,U does not contain a tail. This means that for
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every α < κ+ there exists β > α such that β /∈ AF,U . Let F = {F ⊂ K :
F is finite}; of course |F| = κ. For every F ∈ F fix α0,F /∈ AF,U . Put α0 =
sup{α0,F : F ∈ F} (this supremum exists by regularity of κ+). For every F ∈ F ,
fix α1,F > α0 such that α1,F /∈ AF,U (this exists for the hypothesis that AF,U do
not contain tails). Put α1 = sup{α1,F : F ∈ F} and so on (this means that we
proceed by induction: for every n ∈ N, put αn+1 = sup{αn+1,F : F ∈ F} where
for every F ∈ F , αn+1,F is a fixed element of κ+ such that αn+1,F > αn and
αn+1,F /∈ AF,U ). Let α∗ = sup{αn : n ∈ N}. By regularity of κ+ we have that
α∗ < κ+ and then the point 〈∞, α∗〉 ∈ X0. Fix U ∈ U such that 〈∞, α∗〉 ∈ U .
Then there exist a finite F ⊂ D and β < α∗ such that (K \F )× (β, α∗] ⊂ U . Since
α∗ = sup{αn : n ∈ N} and β < α∗, there exists n ∈ N such that αn > β. Further
αn+1,F ≤ αn+1 ≤ α∗. Then (K \F )× (αn, αn+1,F ] ⊂ (K \F )× (β, α∗] ⊂ U ; hence
αn+1,F ∈ AF,U , a contradiction. 4

Claim b.4. Let F be such that AF,U contains a final tail. Consider

O = {O : O ⊂ κ+ open and (K \ F )×O is a subset of some element of U}.
This is an open cover of the final tail. Then there is p ∈ κ+ such that St({p},O) ⊃
[p, κ+). (This follows from strong star-compactness.) 4

To conclude the proof that X0 is SSR, consider a double indexed sequence of
open covers (Umn : m,n ∈ ω). Pick the set AF,U (with appropriate F ) correspond-
ing to the cover U00 and take p = p00 as in Claim b.4. Then St(〈∞, p00〉,U00) ⊃
(K \ F ) × [p00, κ

+). Covers U1,n, n ∈ ω will be used to serve K × (p + 1). This
will leave unserved only some of the points of the form 〈f, α〉 where f ∈ F . But
for each f ∈ F , the set {〈f, α〉 : α < κ+} is homeomorphic to κ+ and thus can be
served by some of remaining covers by Claim b.1. 4

3) X is SH.
In fact, we shall prove that X has the following property (∗):
for every open cover U there is a compact C ⊂ X such that St(C,U) = X.

It is easily seen that a space having property (∗) is SC and thus SH. So, let U be
an open cover of X. Since K×κ+ is countably compact, there exists a finite subset
E ⊂ X such that St(E,U) ⊃ K × κ+. For each d ∈ D choose Ud ∈ U such that
〈d, κ+〉 ∈ Ud and pick xd = 〈d, γd〉 ∈ Ud \ {〈d, κ+〉}. Put γ = sup{γd : d ∈ D}.
By regularity of κ+, γ < κ+. Then the set A = clK×[0,γ]{xd : d ∈ D} is compact.
Further St(A,U) ⊃ D×{κ+}. The set C = E ∪A is compact and St(C,U) = X. ♦
REFERENCES

[1] A. V. Arhangel’skii, Topological Function Spaces, Kluwer Acad. Publ., Dordrecht, 1992.

[2] M. Bonanzinga, F. Cammaroto, M. Matveev, Projective versions of selection principles, sub-
mitted.

[3] M. Bonanzinga, F. Cammaroto, Lj. D. R. Kočinac, Star-Hurewicz and related properties,
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