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SOME COVERING PROPERTIES FOR Ψ-SPACES

Maddalena Bonanzinga and Mikhail Matveev

Abstract. Menger, Hurewicz and Rothberger properties restricted to partitions into clopen
sets and to covers by stars are considered. A question is discussed when a Ψ-space satisfies some
of these properties.

1. Introduction

Recall (see for example [12], [13], [15], [16]) that a space X is:
Rothberger if for each sequence (Un : n ∈ ω) of open covers of X one can pick

Un ∈ Un so that {Un : n ∈ ω} covers X;
Menger if for each sequence (Un : n ∈ ω) of open covers of X one can pick

finite Vn ⊂ Un so that
⋃

n∈ω Vn covers X;
Hurewicz if for each sequence (Un : n ∈ ω) of open covers of X one can pick

finite Vn ⊂ Un so that for each x ∈ X, x ∈ ⋃Vn for all but finitely many n.
Below we use the abbreviations R, M, H for Rothberger, Menger and Hurewicz

properties, respectively. One of our purposes in this paper is to consider these three
properties restricted to partitions into clopen sets. We will see that these restricted
versions of R, M, H properties may hold in zero-dimensional spaces that are very
far from being Lindelöf (while R, M, H are in fact stronger forms of the Lindelöf
property). Say that a space X is:

parR (partition-Rothberger) if for every sequence (Pn : n ∈ ω) of partitions of
X into clopen sets one can pick Vn ∈ Pn, so that {Vn : n ∈ ω} covers X;

parM (partition-Menger) if for every sequence (Pn : n ∈ ω) of partitions of X
into clopen sets one can pick finite Vn ⊂ Pn, so that

⋃
n∈ω Vn covers X;

parH (partition-Hurewicz) if for every sequence (Pn : n ∈ ω) of partitions of X
into clopen sets one can pick finite Vn ⊂ Pn, so that for each x ∈ X, x ∈ ⋃Vn for
all but finitely many n.
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Recall that a family of sets is almost disjoint (a.d., for short) if the intersection
of any two distinct elements is finite. Let A be an a.d. family of infinite subsets of
ω. Put Ψ(A) = A∪ ω and topologize Ψ(A) as follows: the points of ω are isolated
and a basic neighbourhood of a point a ∈ A takes the form {a} ∪ (a \ F ), where
F is a finite set. Ψ(A) is called a Ψ-space (see [8]). It is well known that A is a
maximal almost disjoint family (m.a.d. family, for short) iff Ψ(A) is pseudocompact.
In general, when talking about Ψ spaces we will not assume the a.d. family to be
maximal or the space pseudocompact. We will see that Ψ spaces help to distinguish
(some of) parR, parM, parH properties and some properties defined in terms of stars.

First of all, parR, parM, parH properties can be interpreted in terms of ∞-
stars: let X be a space, U be an open cover of X, A ⊂ X and n ∈ ω. Then
St(A,U) = St1(A,U) =

⋃{U ∈ U : U ∩ A 6= ∅} and, inductively, Stn+1(A,U) =⋃{U ∈ U : U ∩ Stn(A,U) 6= ∅}. Next, St∞(A,U) =
⋃

n∈ω Stn(A,U). Stars of
level infinity with respect to an open cover provide a partition of the space into
clopen sets (the classes of equivalence with respect to the relation given by x ∼ y
iff y ∈ St∞({x},U), see, for example, [7], Lemma 5.3.8). On the other hand, a
partition into clopen sets can be viewed as a cover by infinite stars with respect to
itself. Thus, for example, a space X is parM iff for every sequence of (Un : n ∈ ω)
of open covers one can pick finite An ⊂ X so that {St∞(An,Un) : n ∈ ω} covers X.

As the stars of level infinity are considered, it is natural to consider also stars
of lower level. In Section 2 we do it for the case opposite to infinity: stars of level 1.
The following properties were introduced by Kočinac in [10] and by Bonanzinga,
Cammaroto and Kočinac in [4]. A space X is:

SR (star-Rothberger) if for every sequence (Un : n ∈ ω) of open covers of X one
can pick Un ∈ Un so that {St(Un,Un) : n ∈ ω} covers X [10];

SM (star-Menger) if for every sequence (Un : n ∈ ω) of open covers of X one
can pick finite Vn ⊂ Un so that

⋃
n∈ω{St(V,Un) : V ∈ Vn} covers X [10];

SH (star-Hurewicz) if for every sequence (Un : n ∈ ω) of open covers of X
one can pick finite Vn ⊂ Un so that for every x ∈ X, x ∈ St(

⋃Vn,Un) for all but
finitely many n [4];

SSR (strongly star-Rothberger) if for every sequence (Un : n ∈ ω) of open covers
of X one can pick xn ∈ X so that {St({xn},Un) : n ∈ ω} covers X [10];

SSM (strongly star-Menger) if for every sequence (Un : n ∈ ω) of open covers
of X one can pick finite An ⊂ X so that {St(An,Un) : n ∈ ω} covers X [10];

SSH (strongly star-Hurewicz) if for every sequence (Un : n ∈ ω) of open covers
of X one can pick finite An ⊂ X so that each x ∈ X, x ∈ St(An,Un) for all but
finitely many n [4].

The following diagram shows the obvious implications between the properties
we are going to discuss.
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R −−−−→ M ←−−−− H
y

y
y

SSR −−−−→ SSM ←−−−− SSH
y

y
y

SR −−−−→ SM ←−−−− SH
y

y
y

parR −−−−→ parM ←−−−− parH

We will see that for Ψ-spaces, having star properties in this diagram depends
mostly on cardinality while having partition properties depends also on the topology
(i.e. the choice of particular a.d. family).

By a space we usually mean a Hausdorff topological space. In notation we
follow [7].

Recall that for f, g ∈ ωω, f ≤∗ g means that f(n) ≤ g(n) for all but finitely
many n (and f ≤ g means that f(n) ≤ g(n) for all n). A subset B of ωω is bounded
if there is g ∈ ωω such that f ≤∗ g for each f ∈ B. D ⊂ ωω is dominating if for each
g ∈ ωω there is f ∈ D such that g ≤∗ f . The minimal cardinality of an unbounded
subset of ωω is denoted by b, and the minimal cardinality of a dominating subset
of ωω is denoted by d. The value of d does not change if one considers the relation
≤ instead of ≤∗ ([5], Theorem 3.6). M denotes the family of all meager subsets
of R. cov(M) is the minimum of the cardinalities of subfamilies U ⊂M such that⋃U = R. However, we will need another description of the cardinal cov(M).

Theorem 1. ([1], Theorem 2.4.1 in [2]) cov(M) is the minimum cardinality of
a family F ⊂ ωω such that for every g ∈ ωω there is f ∈ F such that f(n) 6= g(n)
for all but finitely many n.

Thus if F ⊂ ωω and |F | < cov(M), then there is g ∈ ωω such that for every
f ∈ F , f(n) = g(n) for infinitely many n; it is often said that g guesses F .

2. Some star covering properties for Ψ-spaces

First, we consider strong forms of star properties. Let X = Ψ(A) be a Ψ-space
generated by an almost disjoint family A.

Proposition 2. The following conditions are equivalent:
(1) Ψ(A) is SSM . (2) |A| < d.

Proof. Let X = Ψ(A).
(1) ⇒ (2) Towards a contradiction assume A ≥ d. Let F = {fα : α < d} ⊂ ωω

be a family of functions which is dominating in ωω in the sense of ≤, i.e. for every
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f ∈ ωω there is fα such that fα(n) ≥ f(n) for all n ∈ ω. Choose distinct points
pα,β ∈ A for all α, β < d. Put P = {pα,β : α, β < d}. For every α, β < d and n ∈ ω
put On(pα,β) = {pα,β} ∪ {m ∈ ω : m > fα(n)}. Further, put Un = {On(pα,β) :
α, β < d} ∪ {X \ P}. Then Un is an open cover of X. The sequence (Un : n ∈ ω)
witnesses that X is not SSM. Indeed, let (Kn : n ∈ ω) be a sequence of finite
subsets of X. For n ∈ ω, put

f?(n) =
{

max(Kn ∩ ω) + 1, if Kn ∩ ω 6= ∅
1 otherwise.

There is α < d such that fα(n) ≥ f?(n) for every n ∈ ω. Further, there is β < d
such that pα,β /∈ ⋃{Kn : n ∈ ω}. Then we have On(pα,β)∩Kn = ∅ for every n ∈ ω.
Since On(pα,β) is the only element of Un that contains the point pα,β , we conclude
that pα,β /∈ ⋃{St(Kn,Un) : n ∈ ω}.

(2) ⇒ (1) Let (Un : n ∈ N) be a sequence of open covers of X. For each n ∈ ω
and a ∈ A, pick an element Un,a of Un that contains a. For each a ∈ A define a
function ga ∈ ωω by ga(n) = min{k ∈ ω : k ∈ Un,a}. Since |A| < d, the set of
functions {ga : a ∈ A} is not dominating; so there is an f? ∈ ωω such that f? 6≤∗ ga

for every a ∈ A. Put An = [0, max{f?(n), n}]. Then {St(An,Un) : n ∈ ω} covers
X.

Proposition 3. The following conditions are equivalent:
(1) Ψ(A) is SSH. (2) |A| < b.

Proof. The proof is similar to the proof of Proposition 2. When proving
(1) ⇒ (2) we assume A ≥ b and consider an unbounded family of functions F =
{fα : α < b} ⊂ ωω.

In (2) ⇒ (1) we use the fact that the family of functions {ga : a ∈ A} is
bounded by some function f?.

Proposition 4. If |A| < cov(M), then Ψ(A) is SSR.

Proof. The proof is similar to (2) ⇒ (1) in the proof of Proposition 2. We
put ga(n) = min{k ∈ ω : k ∈ U2n,a}, apply Theorem 1 to get the function f? that
guesses the family {ga : a ∈ A}, and put x2n = f?(n) and x2n+1 = n.

Example 5. There is an a.d. family A of cardinality cov(M) such that Ψ(A)
is not SSR.

Let X ⊂ ωω be such that |X| = cov(M) and X can not be guessed in the
strong sense, that is for every g ∈ ωω there is f ∈ X such that f(n) 6= g(n) for
every n. Let E be the topology on X inherited from the Tychonoff product topology
on ωω, and let D ⊂ X be a dense countable subspace. Put A = X \ D, and for
every a ∈ A, fix a discrete subset Da ⊂ D such that Da = Da ∪ {a}. Consider a
finer topology T ⊃ E in which points of D are isolated, and a basic neighborhood
of a point a ∈ A takes the form {a} ∪ (Da \F ) where F is finite. Then (X, T ) is in
fact a Ψ-space in which D and A take the role of ω and A, respectively.
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Since X cannot be guessed in strong sense, the space (X, E) is not Rothberger.
It is easy to see that for paracompact spaces R ⇔ SSR (indeed, a space is paracom-
pact iff every open cover has an open star-refinement, see [7], Theorem 5.1.12), so
(X, E) is not SSR, and therefore neither is the Ψ-space (X, T ).

Our next aim is to compare “strong” and “regular” forms of star covering
properties for Ψ-spaces.

Question 6. Are properties SSM and SM equivalent for Ψ-spaces?
To provide a partial solution, we need some notation. Let K be a set such that

ω ≤ |K| ≤ c. Denote FK the set of all functions from ω to [K]<ω. For f, g ∈ FK

we write f ≤ g provided f(n) ⊆ g(n) for every n ∈ ω. Say that F ⊂ FK is cofinal
in FK provided for every f ∈ FK there is g ∈ F such that f ≤ g. For a cardinal k
such that ω ≤ k ≤ c put

dk = min{ |F| : F is cofinal in Fk }.
Then obviously min{|F| : F is cofinal in FK} = d|K|.

Lemma 7. (0) d0 = d.
(1) If ω ≤ k ≤ c then max{d, k} ≤ dk ≤ c.
(2) If ω ≤ k < ℵω, then dk = max{d, k}.
(3) dc = c.

Proof. (0) and the first inequality in (1) are obvious. The second inequality in
(1) follows from (3), and (3) follows from the obvious equality |Fc| = c.

We prove (2) by induction on n where k = ℵn and 0 ≤ n < ω. The case n = 0
follows from (0), so let 0 < n = n∗ + 1 < ω and suppose the fact has been proved
for all m < n. Since cf(ℵn) > ω, Fℵn =

⋃{Fα : 0 ≤ α < ℵn}. By the inductive
assumption for every α there is a subfamily Gα ⊂ Fα such that Gα is cofinal in Fα

and |Gα| = max{d, |α|} ≤ max{d,ℵn∗}. Put G =
⋃{Gα : 0 ≤ α < ℵn}. Then G is

cofinal in Fℵn and |G| ≤ ℵn ·max{d,ℵn∗} = max{d,ℵn}.
Question 8. Is it true that dk = max{d, k} for every k such that ω ≤ k ≤ c?

In particular, is it true that dk = d for every k such that ω ≤ k ≤ d?1

Proposition 9. If |A| = k and dk = k, then X = Ψ(A) is not SM.

Proof. Since dk = k, FA contains a cofinal subset F of cardinality k; let
F = {fα : α < k}. For α < k,

⋃
fα(ω) is a countable subset of A. Since

|A| = k ≥ d, for all α < k and β < d we can pick distinct points pα,β ∈ A\
⋃

fα(ω).
Put P = {pα,β : α < k, β < d}. Let G = {gβ : β < d} ⊂ ωω be dominating (in
the sense of ≤). For n ∈ ω, α < k and β < d put Hn,α,β =

⋃{⋃ fα(i) : 0 ≤ i ≤
n}∪ [0,max gβ([0, n])]. Then Hn,α,β ⊂ ω, and Hn,α,β has at most finite intersection
with the set pα,β .

1One of the referees forwarded the authors the following information: Both questions were
recently answered in the negative by C. Chis, M. Ferrer, S. Hernandez and B. Tsaban, in their
forthcoming paper Bounded sets in topological groups.
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Put On(pα,β) = {pα,β}∪ (pα,β \Hn,α,β). For n ∈ ω, put Un = {On(pα,β) : α <
k, β < d} ∪ {{p} ∪ p : p ∈ A \ P} ∪ {{m} : m ∈ ω}; then Un is an open cover of
X. The sequence (Un : n ∈ ω) witnesses that X is not SM. Indeed, let (Vn : n ∈ ω)
be a sequence of finite subfamilies Vn ⊂ Un. For n ∈ ω put Hn = (

⋃Vn) ∩ ω.
Consider the function: f : ω → [A]<ω defined by f(n) = {pα,β ∈ P : On(pα,β) ∈
Vn}

⋃{p ∈ A \ P : {p} ∪ p ∈ Vn}. Since F is cofinal in FA, there exists α∗ < k
such that f ≤ fα∗ . Then, for each n ∈ ω, {pα,β ∈ P : On(pα,β) ∈ Vn}

⋃{p ∈
A\P : {p}∪p ∈ Vn} = f(n) ⊆ fα∗(n). Consider the function g : ω → ω defined by
g(n) = max{m ∈ ω : {m} ∈ Vn}. Since G is a dominating family, there exists β∗ < d
such that g ≤ gβ∗ . Then max{m ∈ ω : {m} ∈ Vn} = g(n) ≤ gβ∗(n), for all n ∈ ω.
Further, Hn,α∗,β∗ =

⋃{⋃ fα∗(i) : 0 ≤ i ≤ n} ∪ [0,max gβ∗([0, n])] ⊇ Hn for each
n ∈ ω. Then On(pα∗,β∗) = {pα∗,β∗}∪ (pα∗,β∗ \Hn,α∗,β∗) ⊆ {pα∗,β∗}∪ (pα∗,β∗ \Hn),
for each n ∈ ω. Since On(pα∗,β∗) is the only element of Un containing pα∗,β∗ ,
pα∗,β∗ 6∈

⋃Vn, ω is dense in X, and On(pα∗,β∗) ∩ Hn = ∅, by (*) it follows that
pα∗,β∗ /∈ ⋃{St(

⋃Vm,Um) : m ∈ ω}.
Corollary 10. If |A| < ℵω, then Ψ(A) is SM iff Ψ(A) is SSM.

Proof. If |A| < d, then Ψ(A) is SMM and therefore SM. If |A| ≥ d, then
d|A| = |A|, and thus Ψ(A) is not SM and therefore it is not SSM.

The next corollary follows from Lemma 7, part (3).

Corollary 11. If |A| = c, then Ψ(A) is not SM.

3. Some partition properties for Ψ-spaces

Proposition 12. Every σ-pseudocompact space is parH.

Proof. Let X =
⋃{Xn : n ∈ ω} where each Xn is pseudocompact. Without

loss of generality we can assume that Xn ⊂ Xn+1 for all n. Let (Pn : n ∈ ω) be a
sequence of partitions of X into clopen sets. Since a partition of a pseudocompact
space into clopen sets is finite, for every n ∈ ω the family Fn = {P ∈ Pn : P ∩Xn 6=
∅} is finite. Then every point x ∈ X is in all but finitely many Xn and thus in all
but finitely many sets

⋃Fn.
Thus, if A is a m.a.d. family, then Ψ(A) is parH and hence parM. Our purpose

in this section is to show that for some m.a.d. families A, Ψ(A) is parR while for
some others it is not. Moreover, for some (necessarily non maximal) a.d. families
A, Ψ(A) is not parM. We begin with an easy proof of this last fact.

Example 13. A Ψ-space of cardinality c which is not parM.
The construction is similar to Example 5 only this time X = ωω. It is well

known that (X, E) (where like in Example 5 E is the topology of Tychonoff product)
is not Menger; moreover, this fact can be witnessed by a sequence of partitions into
clopen sets. Then the same sequence of partitions witnesses that the Ψ-space (X, T )
is not parM.

Example 14. There is a m.a.d. family A such that the Ψ-space Y = Ψ(A) is
not parR.
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The construction is similar to the previous example, only now we start with
X = 2ω. Let D, A, and Da be like in the previous example, and let D = {Da :
a ∈ A}. Denote by B the family of all infinite subsets of D and by C the family
of all discrete subsets S ⊂ D such that |S \ S| = 1. Then D ⊂ C ⊂ B. Extend
D to a m.a.d. subfamily A ⊂ C. We claim that A is not only maximal among the
a.d. subfamilies of C, but also maximal among the a.d. subfamilies of B. Indeed,
let B ∈ B \ A. One easily derives from the compactness and first countability of
(X, E) that there is C ∈ C such that C ⊂ B. By maximality of A among the a.d.
subfamilies of C there is C ′ ∈ C such that C ∩C ′ is infinite. Then C ∩C ′ is infinite
as well, and thus B can not be added to A without loosing almost disjointness.

Consider the Ψ-space Y = D
⋃A in which D plays the role of ω. It is well

known that 2ω is not Rothberger, and this fact is witnessed by a sequence of par-
titions into clopen sets. It follows from the construction of A that these partitions
can be extended to Y , so Y is not parR.

It follows from Example 14 that parH does not imply parR even for Ψ-spaces
constructed by m.a.d. families.

Say that a space X is partition-trivial if every partition of X into clopen sets
contains a co-countable element. Recall that families B, C of infinite subsets of ω
are separated if there is a subset S ⊂ ω such that for every B ∈ B, B ⊆∗ S and for
every C ∈ C, C ⊆∗ ω \ S (we will say that S separates B from C).

Proposition 15. (1) Every partition-trivial space is parR and parH.

(2) If X = Ψ(A) is a Ψ-space, and for every uncountable subfamilies B, C ⊂ A,
B and C can not be separated, then X is partition-trivial.

(3) If X is a Ψ-space, and βX = aX, then X is partition-trivial.

Proof. (1) Let X be partition-trivial, and let (Pn : n ∈ ω) be a sequence
of partitions of X into clopen sets. There is P0 ∈ P0 such that X0 = X \ P0 is
countable. Enumerate X0 = {xn : n ∈ ω \ {0}}. For every n ∈ ω \ {0} there is
Pn ∈ Pn such that xn ∈ Pn. Then

⋃{Pn : n ∈ ω} = X which proves that X is
parR.

Now, for every n ∈ ω there is Qn ∈ Pn such that X \ Qn is countable. Then
Y = X \⋂{Qn : n ∈ ω} is countable as well; enumerate Y = {ym : m ∈ ω}. For
every n,m ∈ ω, let Rn,m be the element of Pn that contains ym. For n ∈ ω put
Fn = {Qn}∪ {Rn,m : 0 ≤ m ≤ n}. Then Fn is a finite subset of Pn. To prove that
X is parH it suffices to show that every point x ∈ X is contained in all but finitely
many sets

⋃Fn. If x ∈ X \Y , then x is contained in Qn for all n and thus in
⋃Fn

for all n. If x ∈ Y , then x = ym for some m, and then x is contained in
⋃Fn for

all n ≥ m.

(2) Suppose X = Ψ(A) is not partition trivial which is witnessed by a partition
P which does not have a co-countable element. Then there is P ∈ P such that both
P and Q = X \ P are uncountable. Put B = P ∩ A, C = Q ∩ A and S = P ∩ ω.
Then S separates B from C.
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(3) Suppose X = Ψ(A) is not partition trivial, and let P, P , Q, B and C be
like in the proof of (2). Put f(x) = 0 for x ∈ P and f(x) = 1 for x ∈ Q. Then f is
a continuous function from X to I. Extend it to a continuous function f̃ : βX → I.
Suppose βX = aX = X ∪ {p}. Then A ∪ {p} is the one-point compactification of
the discrete space A and thus every neighborhood of p contains both points from B
and points from C, that is both points x with f̃(x) = 0 and points y with f̃(y) = 1.
So f̃ can not be continuous at p, a contradiction.

There is an a.d. family A of infinite subsets of ω such that |A| = ω1 and
for every uncountable subfamilies B, C ⊂ A, B and C can not be separated ([5],
Theorem 4.1). Also for some m.a.d. families A, the Ψ-space X = Ψ(A) satisfies
the condition βX = aX [14]. Together with Proposition 15 this provides the next
two examples.

Example 16. There is an a.d. family A such that |A| = ω1 and the Ψ-space
X = Ψ(A) is parR and parH.

Example 17. There is an uncountable m.a.d. family A such that the Ψ-space
X = Ψ(A) is parR (and parH).

We conclude with an example that distinguishes parM and parH.
Example 18. (b < d) There are a.d. families A such that the Ψ-space X =

Ψ(A) is parM but not parH.
The construction is similar to Example 13, only now we start with (X, E)

where X ⊂ ωω is an unbounded subset of cardinality b (it is well known that an
unbounded subspace of ωω does not have the Hurewicz property). Since |X| < d,
(X, T ) is SSM hence parM.

Similarly one gets
Example 19. (cov(M) < d) There are a.d. families A such that the Ψ-space

X = Ψ(A) is parR but not parH.
Question 20. Can one construct within ZFC:

– a Ψ-space which is parM but not parH?
– a Ψ-space which is parR but not parH?

Acknowledgement. The authors express gratitude to R. Levy for useful
discussions and to the referees for careful reading and suggestions that helped to
improve the paper.
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