THE DEPENDENCE OF THE EIGENVALUES OF THE STURM-LIOUVILLE PROBLEM ON BOUNDARY CONDITIONS

T. N. Harutyunyan

Abstract

We prove a new asymptotic formula for the eigenvalues of Sturm-Liouville problem, which is a generalization of the known formulae and which takes into account the analytic dependence of the eigenvalues on boundary conditions.

1. Introduction and statement of the result

Let $L(q, \alpha, \beta)$ denote the Sturm-Liouville problem

$$
\begin{gather*}
\ell y \equiv-y^{\prime \prime}+q(x) y=\mu y, \quad x \in(0, \pi), \mu \in \mathbf{C} \tag{1.1}\\
y(0) \cos \alpha+y^{\prime}(0) \sin \alpha=0, \quad \alpha \in(0, \pi] \tag{1.2}\\
y(\pi) \cos \beta+y^{\prime}(\pi) \sin \beta=0, \quad \beta \in[0, \pi) \tag{1.3}
\end{gather*}
$$

where q is a real-valued, summable on $[0, \pi]$ function (we write $q \in L_{\mathbf{R}}^{1}[0, \pi]$). By $L(q, \alpha, \beta)$ we also denote the self-adjoint operator, generated by the problem (1.1)(1.3), (see [1], [2]). It is known, that the spectra of the operator $L(q, \alpha, \beta)$ is discrete and consists of simple eigenvalues, which we denote by $\mu_{n}(q, \alpha, \beta), n=0,1,2, \ldots$, emphasizing the dependence of μ_{n} on q, α and β (concerning enumeration see $\S 2$).

The dependence of μ_{n} on q was investigated in [3]-[6] for $q \in L_{\mathbf{R}}^{2}[0, \pi]$. The dependence of μ_{n} on α and β is usually studied (see [1]-[3], [7]) in the following sense: the boundary conditions are separated into the three cases: 1) $\sin \alpha \neq 0$, $\sin \beta \neq 0 ; 2) \sin \alpha=0, \sin \beta \neq 0$ or $\sin \alpha \neq 0, \sin \beta=0 ; 3) \sin \alpha=\sin \beta=0$, and results, in particular the asymptotics of the eigenvalues, are formulated separately for each case (more detailed list is in [8]), namely:

1) $\mu_{n}(q, \alpha, \beta)=n^{2}+\frac{2}{\pi}(\operatorname{ctg} \beta-\operatorname{ctg} \alpha)+[q]+r_{n}(q, \alpha, \beta)$,

$$
\begin{equation*}
\text { if } \quad \sin \alpha \neq 0, \sin \beta \neq 0 \tag{1.4}
\end{equation*}
$$

[^0]Keywords and phrases: Sturm-Liouville problem, eigenvalue, eigenvalues function, boundary conditions.
2) $\mu_{n}(q, \pi, \beta)=\left(n+\frac{1}{2}\right)^{2}+\frac{2}{\pi} \operatorname{ctg} \beta+[q]+r_{n}(q, \beta), \quad$ if $\quad \sin \beta \neq 0$,
$\left.2^{\prime}\right) \mu_{n}(q, \alpha, 0)=\left(n+\frac{1}{2}\right)^{2}-\frac{2}{\pi} \operatorname{ctg} \alpha+[q]+r_{n}(q, \alpha), \quad$ if $\quad \sin \alpha \neq 0$,
3) $\mu_{n}(q, \pi, 0)=(n+1)^{2}+[q]+r_{n}(q)$,
where $[q]=\frac{1}{\pi} \int_{0}^{\pi} q(t) d t$ and $r_{n}=o(1)$ when $n \rightarrow \infty$, but this estimate is not uniform in $\alpha, \beta \in[0, \pi]$ and we cannot obtain 2), 2^{\prime}) and 3) from 1) by passing to the limit when $\alpha \rightarrow \pi$ or $\beta \rightarrow 0$.

In the sequel we will prove, that the dependence of eigenvalues μ_{n} on α and β is smooth (analytic! see $\S 2$, Remark 3) and we want to obtain one formula instead of four, which takes this smooth dependence into account.

Theorem 1. The lowest eigenvalue $\mu_{0}(q, \alpha, \beta)$ has the property:
$\lim _{\alpha \rightarrow 0} \mu_{0}(q, \alpha, \beta)=-\infty, \lim _{\beta \rightarrow \pi} \mu_{0}(q, \alpha, \beta)=-\infty$. For eigenvalues $\mu_{n}(q, \alpha, \beta), n=$ $1,2, \ldots$, the following formula

$$
\begin{equation*}
\mu_{n}(q, \alpha, \beta)=\left[n+\delta_{n}(\alpha, \beta)\right]^{2}+[q]+r_{n}(q, \alpha, \beta), \tag{1.8}
\end{equation*}
$$

holds, where $[q]=\frac{1}{\pi} \int_{0}^{\pi} q(t) d t$,

$$
\begin{align*}
\delta_{n}(\alpha, \beta)=\frac{1}{\pi} \arccos \frac{\cos \alpha}{\sqrt{\left[n+\delta_{n}(\alpha, \beta)\right]^{2} \sin ^{2} \alpha+\cos ^{2} \alpha}}- \\
-\frac{1}{\pi} \arccos \frac{\cos \beta}{\sqrt{\left[n+\delta_{n}(\alpha, \beta)\right]^{2} \sin ^{2} \beta+\cos ^{2} \beta}} \tag{1.9}
\end{align*}
$$

and $r_{n}=r_{n}(q, \alpha, \beta)=o(1)$, when $n \rightarrow \infty$, uniformly in $\alpha, \beta \in[0, \pi]$ and q from the bounded subsets of $L_{\mathbf{R}}^{1}[0, \pi]$ (we will write $q \in B L_{\mathbf{R}}^{1}[0, \pi]$).

Remark 1. Although (1.9) is not a representation of $\delta_{n}(\alpha, \beta)$, but only an (transcendental) equation, we will see that it is sufficiently convenient for investigation of the functions $\delta_{n}(\alpha, \beta)$ and the asymptotics of the eigenvalues. In particular, all previous formulae (1.4)-(1.7) are consequences of (1.8) and (1.9) (see below §3), and in (1.8) we can pass to the limit, when $\alpha \rightarrow \pi$ or $\beta \rightarrow 0$.

We start from the formula

$$
\begin{equation*}
\mu_{n}(q, \alpha, \beta)=\mu_{n}(0, \alpha, \beta)+\int_{0}^{1}\left[\int_{0}^{\pi} q(x) h_{n}^{2}(x, t q, \alpha, \beta) d x\right] d t, n=0,1, \ldots \tag{1.10}
\end{equation*}
$$

where $h_{n}(x, t q, \alpha, \beta)$ are the normalized eigenfunctions $\left(\int_{0}^{\pi} h_{n}^{2}(x, t q, \alpha, \beta) d x=1\right)$ of the problem $L(t q, \alpha, \beta)$ and where t is a real parameter. Formula (1.10) was proved in [6] in the case $\alpha=\pi, \beta=0$. In the general case $(\alpha \in(0, \pi], \beta \in[0, \pi))$ the proof is similar and we omit it. Below we prove two lemmas.

Lemma 1. $\mu_{n}(0, \alpha, \beta)=\left[n+\delta_{n}(\alpha, \beta)\right]^{2}, n=1,2, \ldots$.
Lemma 2. $\int_{0}^{1}\left[\int_{0}^{\pi} q(x) h_{n}^{2}(x, t q, \alpha, \beta) d x\right] d t=[q]+r_{n}(q, \alpha, \beta)$, where $r_{n}(q, \alpha, \beta)=o(1), n \rightarrow \infty$, uniformly by $\alpha, \beta \in[0, \pi]$ and $q \in B L_{\mathbf{R}}^{1}[0, \pi]$.

From these lemmas formula (1.8) of Theorem 1 will follow. For more detailed investigation of the dependence of eigenvalues on the parameters α and β (in particular for the properties of $\mu_{0}(q, \alpha, \beta)$ and the analytic dependence μ_{n} on α and β), in $\S 2$ we introduce the concept of "the eigenvalues function" and study its properties. This study reduces us, in particular, to the study of functions $\delta_{n}(\alpha, \beta)$ and we do it in $\S 3$. In $\S 4$ we will prove Lemma 2.

2. The eigenvalues function

Let us consider firstly the problem $L(q, \pi, 0)$ and enumerate its eigenvalues in increasing order

$$
\begin{equation*}
\mu_{0}(q, \pi, 0)<\mu_{1}(q, \pi, 0)<\cdots<\mu_{n}(q, \pi, 0)<\cdots \tag{2.1}
\end{equation*}
$$

According to the alternation properties of the eigenvalues of problems $L(q, \pi, 0)$ and $L(q, \pi, \beta)$ (see [1, p. 261], we have the inequalities

$$
\begin{align*}
\mu_{0}(q, \pi, \beta)<\mu_{0}(q, \pi, 0) & <\mu_{1}(q, \pi, \beta)<\cdots \\
\cdots & <\mu_{n}(q, \pi, \beta)<\mu_{n}(q, \pi, 0)<\mu_{n+1}(q, \pi, \beta)<\cdots \tag{2.2}
\end{align*}
$$

for arbitrary $\beta \in(0, \pi)$. Then, by the alternation of the eigenvalues of the problems $L(q, \pi, \beta)$ and $L(q, \alpha, \beta)$ (for arbitrary $\alpha \in(0, \pi)$) we have the inequalities

$$
\left.\begin{array}{rl}
\mu_{0}(q, \alpha, \beta)<\mu_{0}(q, \pi, \beta) & <\mu_{1}(q, \alpha, \beta)
\end{array}\right)<\cdots, ~ 子 \mu_{n}(q, \alpha, \beta)<\mu_{n}(q, \pi, \beta)<\mu_{n+1}(q, \alpha, \beta)<\cdots .
$$

(2.1), (2.2), (2.3) together give us the correct enumeration of the eigenvalues of the problems $L(q, \alpha, \beta)$ for arbitrary $\alpha \in(0, \pi]$ and $\beta \in[0, \pi)$.

Let us represent an arbitrary positive number γ in the form $\gamma=\alpha+\pi n$, where $\alpha \in(0, \pi]$ and $n=0,1,2, \ldots$; and arbitrary $\delta \in(-\infty, \pi)$ we represent as $\delta=\beta-\pi m$, where $\beta \in[0, \pi)$ and $m=0,1,2, \ldots$.

Definition 1. The function $\mu(q, \gamma, \delta)=\mu(\gamma, \delta)$ in two arguments, defined on $(0, \infty) \times(-\infty, \pi)$ by the formula

$$
\begin{equation*}
\mu(\gamma, \delta)=\mu(\alpha+\pi n, \beta-\pi m):=\mu_{n+m}(q, \alpha, \beta) \tag{2.4}
\end{equation*}
$$

where $\mu_{k}(q, \alpha, \beta), k=0,1,2, \ldots$, are the eigenvalues of $L(q, \alpha, \beta)$, enumerated by (2.1)-(2.3), we shall call the eigenvalues function (EVF) of the family of the problems $\{L(q, \alpha, \beta), \alpha \in(0, \pi], \beta \in[0, \pi)\}$. In particular, for fixed $\beta \in[0, \pi)$, the function of one argument $\mu^{+}(\gamma)$, defined on $(0, \infty)$ by the formula

$$
\mu^{+}(\gamma) \equiv \mu(\gamma, \beta)=\mu(\alpha+\pi n, \beta)=\mu_{n}(q, \alpha, \beta)
$$

we shall call the EVF of the family $\{L(q, \alpha, \beta), \alpha \in(0, \pi]\}$, and for fixed $\alpha \in(0, \pi]$, the function in one argument $\mu^{-}(\delta)$, defined on $(-\infty, \pi)$ by the formula

$$
\mu^{-}(\delta)=\mu(\alpha, \delta)=\mu(\alpha, \beta-\pi m)=\mu_{m}(q, \alpha, \beta), \quad \beta \in[0, \pi), m=0,1,2, \ldots
$$

we shall call the EVF of the family $\{L(q, \alpha, \beta), \beta \in(0, \pi]\}$.
REMARK 2. Sometimes we omit some arguments (for example $\mu(q, \alpha, \beta)=$ $\mu(\alpha, \beta))$ to emphasize the principal arguments, according to which we make investigations.

Let $\varphi(x, \mu, \gamma)$ and $\psi(x, \mu, \delta)$ denote the solutions of (1.1), satisfying the initial conditions

$$
\begin{array}{ll}
\varphi(0, \mu, \gamma)=\sin \gamma, & \varphi^{\prime}(0, \mu, \gamma)=-\cos \gamma,
\end{array} \quad \gamma \in \mathbf{C}, ~ 子 ~(\pi, \mu, \delta)=\sin \delta, \quad \psi^{\prime}(\pi, \mu, \delta)=-\cos \delta, \quad \delta \in \mathbf{C},
$$

respectively. The eigenvalues $\mu_{n}=\mu_{n}(q, \alpha, \beta), n=0,1,2, \ldots$, of $L(q, \alpha, \beta)$ are the solutions of the equation

$$
\begin{equation*}
\chi(\mu):=\varphi(\pi, \mu, \alpha) \cos \beta+\varphi^{\prime}(\pi, \mu, \alpha) \sin \beta=0 \tag{2.6}
\end{equation*}
$$

or the equation

$$
\chi_{1}(\mu):=\psi(0, \mu, \beta) \cos \alpha+\psi^{\prime}(0, \mu, \beta) \sin \alpha=0
$$

The functions $\varphi_{n}(x)=\varphi\left(x, \mu_{n}, \alpha\right)$ and $\psi_{n}(x)=\psi\left(x, \mu_{n}, \beta\right), n=0,1,2, \ldots$, are the eigenfunctions, corresponding to the eigenvalue μ_{n}. The squares of the L^{2}-norms of these eigenfunctions:

$$
\begin{equation*}
a_{n}=\int_{0}^{\pi}\left|\varphi_{n}(x)\right|^{2} d x, \quad b_{n}=\int_{0}^{\pi}\left|\psi_{n}(x)\right|^{2} d x \tag{2.7}
\end{equation*}
$$

are called the norming constants.
Now we prove that EVF $\mu(\gamma, \delta)$ is analytic at the arbitrary point $\left(\gamma_{0}, \delta_{0}\right) \in$ $(0, \infty) \times(-\infty, \pi)$. Let $\gamma_{0}=\alpha+\pi n, \delta_{0}=\beta-\pi m$, where $\alpha \in(0, \pi], \beta \in[0, \pi)$ and $n, m=0,1,2, \ldots$. And let $\mu_{0}=\mu\left(\gamma_{0}, \delta_{0}\right)=\mu(\alpha+\pi n, \beta-\pi m)=\mu_{n+m}(q, \alpha, \beta)$ is the value of EVF at point $\left(\gamma_{0}, \delta_{0}\right)$. Then $\chi\left(\mu_{0}\right)=0$. Since the eigenvalues are simple, $\frac{\partial \chi\left(\mu_{0}, \alpha, \beta\right)}{\partial \mu} \neq 0([1, \mathrm{p} .261])$. Then, by the implicit function theorem (see [9, p. 166]), there exists a "complex" neighbourhood V of $\left(\gamma_{0}, \delta_{0}\right)$, on which one-valued analytic function $\tilde{\mu}(\gamma, \delta)$ is defined such that $\tilde{\mu}\left(\gamma_{0}, \delta_{0}\right)=\mu_{0}, \chi(\tilde{\mu}(\gamma, \delta), \gamma, \delta) \equiv$ $\chi\left(\mu_{0}, \gamma_{0}, \delta_{0}\right)=0$ for all $(\gamma, \delta) \in V$. In particular, for real pair $(\gamma, \delta) \in V, \tilde{\mu}(\gamma, \delta)=$ $\mu(\gamma, \delta)$. Since $\left(\gamma_{0}, \delta_{0}\right)$ was an arbitrary point from $(0, \infty) \times(-\infty, \pi)$, we have proved the (real) analyticity of $\mu(\gamma, \delta)$ on the whole set $(0, \infty) \times(-\infty, \pi)$. In particular, it follows the "real analyticity" (see [9, p. 167]) of $\mu^{+}(\cdot)$ on $(0, \infty)$ and $\mu^{-}(\cdot)$ on $(-\infty, \pi)$.

Remark 3. Thus, according to the definition (2.4), each $\mu_{n}(q, \alpha, \beta)$ is "a part" of "analytic surface" $\mu(q, \gamma, \delta)$, and therefore it is an analytic function in α and β. In other words, we can say that $\mu_{n}(q, \alpha, \beta)=\mu_{n}(\alpha, \beta)$ is analytic in $(0, \pi) \times(0, \pi)$ and at the boundaries of $[0, \pi] \times[0, \pi]$ the function $\mu_{n}(\alpha, \beta)$ analytically transforms into $\mu_{n+1}(\alpha, \beta)$ or $\mu_{n-1}(\alpha, \beta)$.

Let us also prove that the ranges of values of $\mu^{+}(\cdot)$ and $\mu^{-}(\cdot)$ are the whole real axis (hence the range of $\mu(\cdot, \cdot)$ also is \mathbf{R}). In the case of μ^{-}it is sufficient to prove that for every $\mu_{0} \in \mathbf{R}$ there exists $\beta_{0} \in[0, \pi)$ such that

$$
\chi\left(\mu_{0}\right)=\varphi\left(\pi, \mu_{0}, \alpha\right) \cos \beta_{0}+\varphi^{\prime}\left(\pi, \mu_{0}, \alpha\right) \sin \beta_{0}=0
$$

Really, if $\varphi\left(\pi, \mu_{0}, \alpha\right)=0$, then we take $\beta_{0}=0$, if $\varphi\left(\pi, \mu_{0}, \alpha\right) \neq 0$, then we take $\beta_{0}=\operatorname{arcctg}\left(-\frac{\varphi^{\prime}\left(\pi, \mu_{0}, \alpha\right)}{\varphi\left(\pi, \mu_{0}, \alpha\right)}\right)$. The case of μ^{+}is proved in the same way.

Now we prove, that EVF $\mu(\gamma, \delta)$ increases with γ and decreases with δ. Let $\gamma_{0}=\alpha_{0}+\pi n$ be fixed and $\delta=\beta-\pi m$. Then the solution $\psi\left(x, \mu\left(\gamma_{0}, \delta\right), \beta\right)=$ $\psi\left(x, \mu_{n+m}\left(\alpha_{0}, \beta\right), \beta\right)=\psi_{n+m}\left(x, \alpha_{0}, \beta\right)$ is an eigenfunction. For eigenfunctions $\psi\left(x, \mu\left(\gamma_{0}, \delta\right), \beta\right)=\psi(x, \delta)$ and $\psi\left(x, \mu\left(\gamma_{0}, \delta_{1}\right), \beta_{1}\right)=\psi\left(x, \delta_{1}\right)\left(\delta_{1}=\beta_{1}-\pi m\right)$ is true the identity

$$
\frac{d}{d x}\left(\psi^{\prime}\left(x, \delta_{1}\right) \psi(x, \delta)-\psi\left(x, \delta_{1}\right) \psi^{\prime}(x, \delta)\right) \equiv\left(\mu\left(\gamma_{0}, \delta\right)-\mu\left(\gamma_{0}, \delta_{1}\right)\right) \cdot \psi(x, \delta) \psi\left(x, \delta_{1}\right)
$$

Integrating the last identity from 0 to π, we obtain

$$
\sin \left(\delta_{1}-\delta\right)=\left[\mu\left(\gamma_{0}, \delta\right)-\mu\left(\gamma_{0}, \delta_{1}\right)\right] \int_{0}^{\pi} \psi\left(x, \delta_{1}\right) \cdot \psi(x, \delta) d x
$$

It follows that there exists the derivative

$$
\begin{equation*}
\frac{\partial \mu\left(\gamma_{0}, \delta\right)}{\partial \delta}=-\frac{1}{\int_{0}^{\pi} \psi^{2}(x, \delta) d x}<0 \tag{2.8}
\end{equation*}
$$

and therefore, $\mu(\gamma, \delta)$ is decreasing function by δ. In the same way we get the identity

$$
\begin{equation*}
\frac{\partial \mu\left(\gamma, \delta_{0}\right)}{\partial \gamma}=\frac{1}{\int_{0}^{\pi} \varphi^{2}\left(x, \mu\left(\gamma, \delta_{0}\right), \alpha\right) d x}>0 \tag{2.9}
\end{equation*}
$$

from which we conclude that EVF $\mu(\gamma, \delta)$ is increasing by γ.
Let us fix $\alpha \in(0, \pi]$ and consider the function $\mu^{-}(\delta)=\mu(\alpha, \delta)$. Since $\mu^{-}(\cdot)$ is strongly decreasing on $(-\infty, \pi)$, analytic (here its continuity is sufficient), and its range of values is the whole real axis, we get that $\lim _{\delta \rightarrow \pi} \mu^{-}(\delta)=-\infty$ and there exists a unique point δ_{0} such that $\mu^{-}\left(\delta_{0}\right)=0$. Similarly $\lim _{\gamma \rightarrow 0} \mu^{+}(\gamma)=-\infty$ and there exists a unique point γ_{0}, such that $\mu^{+}\left(\gamma_{0}\right)=0$ (for any fixed $\beta \in[0, \pi$), i.e. $\left.\gamma_{0}=\gamma_{0}(\beta)\right)$.

3. The EVF $\mu(0, \gamma, \delta)$ and the properties of $\delta_{n}(\alpha, \beta)$

For $q(x) \equiv 0$ the solution $y=\varphi\left(x, \lambda^{2}, \alpha\right)$ of Cauchy problem (1.1), (2.5) ($\mu=\lambda^{2}$) has the form

$$
\varphi\left(x, \lambda^{2}, \alpha\right)=\sin \alpha \cos \lambda x-\cos \alpha \cdot \frac{\sin \lambda x}{\lambda}
$$

and the characteristic equation (2.6) has the form

$$
\begin{equation*}
\chi\left(\lambda^{2}\right)=\sin (\alpha-\beta) \cos \lambda \pi-\left(\frac{\cos \alpha \cos \beta}{\lambda}+\lambda \sin \alpha \sin \beta\right) \sin \lambda \pi=0 \tag{3.1}
\end{equation*}
$$

When $\alpha=\pi$ and $\beta=0$, this equation has the form $\frac{\sin \lambda \pi}{\lambda}=0$, and therefore the eigenvalues $\mu_{n}(0, \pi, 0)=\lambda_{n}^{2}=(n+1)^{2}, n=0,1,2, \ldots$. In particular, the lowest eigenvalue $\mu_{0}(0, \pi, 0)=1$. Since EVF $\mu^{-}(\delta)=\mu(0, \pi, \delta)$ is decreasing in δ and must obtain all the values up to $-\infty$, it follows that when δ changes from 0 to $\pi, \mu_{0}(0, \pi, \delta)$ takes all the values from 1 to $-\infty$, i.e. $\lim _{\beta \rightarrow \pi} \mu_{0}(0, \pi, \beta)=-\infty$. Since $\mu_{0}(0, \alpha, \beta)<\mu_{0}(0, \pi, \beta)$, when $0<\alpha<\pi$, it follows that $\lim _{\beta \rightarrow \pi} \mu_{0}(0, \alpha, \beta)=$ $-\infty$ for arbitrary $\alpha \in(0, \pi]$. Similarly (using that increases in α) we obtain that $\lim _{\alpha \rightarrow 0} \mu_{0}(0, \alpha, \beta)=-\infty$ for arbitrary $\beta \in[0, \pi)$. Since "the integral part" in (1.10) is bounded (see $\S 4$ below), we have proved the assertion of Theorem 1 , relating to $\mu_{0}(q, \alpha, \beta)$.

The remaining eigenvalues (i.e. $\mu_{n}(0, \alpha, \beta)$ for $\left.n \geqslant 1\right) \mu_{n}(0, \alpha, \beta)$ can be defined also for $\alpha=0$ and $\beta=\pi$ by:

$$
\begin{array}{ll}
\mu_{n}(0,0, \beta):=\mu_{n-1}(0, \pi, \beta), & (\beta \in[0, \pi)) \\
\mu_{n}(0, \alpha, \pi):=\mu_{n-1}(0, \alpha, 0), & (\alpha \in(0, \pi])
\end{array}
$$

These definitions are correct since (the another definition, which follows from analyticity, is:)

$$
\begin{aligned}
\mu_{n}(0,0, \beta) & :=\lim _{\alpha \rightarrow 0} \mu_{n}(0, \alpha, \beta)=\lim _{\alpha \rightarrow 0} \mu(0, \alpha+\pi n, \beta) \\
& =\mu(0, \pi n, \beta)=\mu(0, \pi+\pi(n-1), \beta)=\mu_{n-1}(0, \pi, \beta)
\end{aligned}
$$

and

$$
\begin{aligned}
\mu_{n}(0, \alpha, \pi) & :=\lim _{\beta \rightarrow \pi} \mu_{n}(0, \alpha, \beta)=\lim _{\beta \rightarrow \pi} \mu(0, \alpha, \beta-\pi n) \\
& =\mu(0, \alpha, \pi-\pi n)=\mu(\alpha,-\pi(n-1))=\mu_{n-1}(0, \alpha, 0)
\end{aligned}
$$

So, we can consider the eigenvalues $\mu_{n}(0, \alpha, \beta)$ for $n \geqslant 1$ as the functions, defined on $[0, \pi] \times[0, \pi]$. For all $\alpha, \beta \in[0, \pi]$ there are the relations

$$
\begin{aligned}
(n-1)^{2} & =\mu_{n-2}(0, \pi, 0)=\mu_{n-1}(0, \pi, \pi) \leqslant \mu_{n-1}(0, \pi, \beta)=\mu_{n}(0,0, \beta) \leqslant \mu_{n}(0, \alpha, \beta) \\
& \leqslant \mu_{n}(0, \pi, \beta) \leqslant \mu_{n}(0, \pi, 0)=(n+1)^{2}
\end{aligned}
$$

Therefore, it is natural to consider the functions $\lambda_{n}(0, \alpha, \beta):=\sqrt{\mu_{n}(0, \alpha, \beta)}(n=$ $1,2, \ldots)$ in two arguments $(\alpha, \beta) \in[0, \pi] \times[0, \pi]$ in the form $\lambda_{n}(0, \alpha, \beta)=n+$ $\delta_{n}(\alpha, \beta)$, where $\delta_{n}(\alpha, \beta)$ must satisfy the inequalities $-1 \leqslant \delta_{n}(\alpha, \beta) \leqslant 1$ and, by the properties of EVF, be increasing in α and decreasing in β.

Substituting $\lambda=\lambda_{n}(0, \alpha, \beta)=n+\delta_{n}(\alpha, \beta)$ in (3.1), for $\delta_{n}=\delta_{n}(\alpha, \beta)$ we obtain the (transcendental) equation:

$$
\begin{equation*}
\sin (\alpha-\beta) \cos \pi \delta_{n}-\left(\frac{\cos \alpha \cdot \cos \beta}{n+\delta_{n}}+\left(n+\delta_{n}\right) \sin \alpha \sin \beta\right) \sin \pi \delta_{n}=0 \tag{3.2}
\end{equation*}
$$

Solving this equation as trigonometrical equation of the type $a \cos \pi \delta_{n}+b \sin \pi \delta_{n}=$ 0 and using the property $-1 \leqslant \delta_{n}(\alpha, \beta) \leqslant 1$, we obtain

$$
\begin{align*}
\delta_{n}(\alpha, \beta)=\frac{1}{\pi}\left[\arccos \frac{\cos \alpha}{\sqrt{\left(n+\delta_{n}(\alpha, \beta)\right)^{2} \sin ^{2} \alpha+\cos ^{2} \alpha}}\right. & - \\
& \left.-\arccos \frac{\cos \beta}{\sqrt{\left(n+\delta_{n}(\alpha, b)\right)^{2} \sin ^{2} \beta+\cos ^{2} \beta}}\right] \tag{3.3}
\end{align*}
$$

Thus, Lemma 1 is proved.
Although (3.3) is not a representation for $\delta_{n}(\alpha, \beta)$, but only an equation, many properties of $\delta_{n}(\alpha, \beta)$ can be derived. For example, it follows from (3.3) that $-1 \leqslant \delta_{n}(\alpha, \beta) \leqslant 1$. Besides, it is easy to compute the values

$$
\left.\begin{array}{cl}
\delta_{n}(0,0) & =0, \quad \delta_{n}\left(0, \quad \frac{\pi}{2}\right)=-\frac{1}{2}, \\
\delta_{n}\left(\frac{\pi}{2}, \quad 0\right) & =\frac{1}{2}, \quad \delta_{n}(0, \pi)=-1, \tag{3.4}\\
\delta_{n}(\pi, 0) & \left.=1, \quad \frac{\pi}{2}\right)=0,
\end{array} \quad \delta_{n}\left(\frac{\pi}{2}, \pi\right)=-\frac{1}{2}, \quad \frac{\pi}{2}\right)=\frac{1}{2}, \quad \delta_{n}(\pi, \pi)=0 . ~ \$
$$

Differentiating (3.2) in α and in β, we obtain

$$
\begin{align*}
& \frac{\partial \delta_{n}(\alpha, \beta)}{\partial \alpha}= \\
& \frac{\cos (\alpha-\beta) \cos \pi \delta_{n}(\alpha, \beta)+\left(\frac{\sin \alpha \cos \beta}{n+\delta_{n}(\alpha, \beta)}-\left(n+\delta_{n}(\alpha, \beta)\right) \cos \alpha \sin \beta\right) \sin \pi \delta_{n}(\alpha, \beta)}{\left(\pi \sin (\alpha-\beta)-\frac{\cos \alpha \cos \beta}{\left(n+\delta_{n}(\alpha, \beta)\right)^{2}}+\sin \alpha \sin \beta\right) \sin \pi \delta_{n}(\alpha, \beta)+} \\
& \quad \frac{+\pi\left(\frac{\cos \alpha \cos \beta}{n+\delta_{n}(\alpha, \beta)}+\left(n+\delta_{n}(\alpha, \beta)\right) \sin \alpha \sin \beta\right) \cos \pi \delta_{n}(\alpha, \beta)}{}, \\
& \frac{\partial \delta_{n}(\alpha, \beta)}{\partial \beta}=\frac{\left(\frac{\cos \alpha \sin \beta}{n+\delta_{n}}-\left(n+\delta_{n}\right) \sin \alpha \cos \beta\right) \sin \pi \delta_{n}-\cos (\alpha-\beta) \cos \pi \delta_{n}}{\left(\pi \sin (\alpha-\beta)-\frac{\cos \alpha \cos \beta}{\left(n+\delta_{n}\right)^{2}}-\sin \alpha \sin \beta\right) \sin \pi \delta_{n}+} \tag{3.5}
\end{align*}
$$

It follows from (3.4)-(3.6) that

$$
\begin{array}{rlrl}
\frac{\partial \delta_{n}(0,0)}{\partial \alpha} & =\frac{n}{\pi}, & \frac{\partial \delta_{n}\left(0, \frac{\pi}{2}\right)}{\partial \alpha} & =\frac{1}{\pi}\left(n-\frac{1}{2}\right), \\
\frac{\partial \delta_{n}\left(\frac{\pi}{2}, 0\right)}{\partial \alpha} & =\frac{\partial \delta_{n}(0, \pi)}{\partial \alpha} & =\frac{n-1}{\pi} \\
\frac{\partial \delta_{n}(\pi, 0)}{\partial \alpha} & =\frac{n+1}{\pi}, & \frac{\partial \delta_{n}\left(\frac{\pi}{2}, \frac{\pi}{2}\right)}{\partial \alpha} & =\frac{1}{\pi n},
\end{array} \frac{\partial \delta_{n}\left(\frac{\pi}{2}, \pi\right)}{\partial \alpha}=\frac{1}{\pi\left(n-\frac{1}{2}\right)},
$$

and

$$
\begin{aligned}
\frac{\partial \delta_{n}(0,0)}{\partial \beta} & =-\frac{n}{\pi}, \\
\frac{\partial \delta_{n}\left(\frac{\pi}{2}, 0\right)}{\partial \beta} & \left.=-\frac{n+\frac{1}{2}}{\pi}, \frac{\partial \delta_{n}\left(0, \frac{\pi}{2}\right)}{\partial \beta}=-\frac{1}{2 \beta} \frac{\pi}{2}\right) \\
\frac{\partial \delta_{n}\left(\pi-\frac{1}{2}\right)}{\partial \beta}, & =-\frac{1}{\pi n}, \quad \frac{\partial \delta_{n}(0, \pi)}{\partial \beta}=-\frac{n-1}{\pi} \\
& =-\frac{n+1}{\pi}, \frac{\partial \delta_{n}\left(\frac{\pi}{2}, \pi\right)}{\partial \beta}=-\frac{n-\frac{1}{2}}{\pi} \\
\frac{\partial \beta}{\pi} & =-\frac{1}{\pi\left(n+\frac{1}{2}\right)}, \frac{\partial \delta_{n}(\pi, \pi)}{\partial \beta}=-\frac{n}{\pi}
\end{aligned}
$$

These formulae are useful for obtaining the asymptotics of the norming constants a_{n} and b_{n}, since by (1.8) and (2.7)-(2.9)

$$
\begin{aligned}
& \frac{1}{a_{n}(\alpha, \beta)}=\frac{\partial \mu(\alpha+\pi n, \beta)}{\partial \gamma}=2\left[n+\delta_{n}(\alpha, \beta)\right] \cdot \frac{\partial \delta_{n}(\alpha, \beta)}{\partial \alpha}+o(1) \\
& \frac{1}{b_{n}(\alpha, \beta)}=\frac{\partial \mu(\alpha, \beta+\pi n)}{\partial \delta}=2\left[n+\delta_{n}(\alpha, \beta)\right] \cdot \frac{\partial \delta_{n}(\alpha, \beta)}{\partial \beta}+o(1)
\end{aligned}
$$

when $n \rightarrow \infty$.
Now we will show that (1.4)-(1.7) are the consequence of (1.8) and (1.9). It is evident from (3.3) that $\delta_{n}(\pi, 0)=1$. So we obtain (1.7) from (1.8) and Lemma 2. Let us write temporarily $x_{n, \alpha}(\beta)=\frac{\cos \beta}{\sqrt{\left(n+\delta_{n}(\alpha, \beta)\right)^{2} \sin ^{2} \beta+\cos ^{2} \beta}}$. Then $\delta_{n}(\pi, \beta)=1-\frac{1}{\pi} \arccos x_{n, \pi}(\beta)$. If $\sin \beta \neq 0(\beta \in(0, \pi)), x_{n, \pi}(\beta)=O\left(\frac{1}{n}\right)$ and

$$
x_{n, \pi}(\beta)=\frac{\operatorname{ctg} \beta}{\sqrt{\left(n+\delta_{n}(\pi, \beta)\right)^{2}+\operatorname{ctg}^{2} \beta}}=\frac{\operatorname{ctg} \beta}{n}+\operatorname{ctg} \beta \cdot O\left(\frac{1}{n^{2}}\right)
$$

Using $\arccos x=\frac{\pi}{2}-\arcsin x$ and $\arcsin x=x+O\left(x^{3}\right)$ we obtain

$$
\delta_{n}(\pi, \beta)=1-\frac{1}{2}+\frac{1}{\pi} x_{n, \pi}(\beta)+O\left(x_{n, \pi}^{3}(\beta)\right)=\frac{1}{2}+\frac{\operatorname{ctg} \beta}{\pi\left(n+\frac{1}{2}\right)}+\operatorname{ctg} \beta \cdot O\left(\frac{1}{n^{2}}\right) .
$$

Substituting $\delta_{n}(\pi, \beta)$ into (1.8) and using Lemma 2 we obtain (1.5). Similarly $\delta_{n}(\alpha, 0)=\frac{1}{\pi} \arccos x_{n, 0}(\alpha)=\frac{1}{2}-\frac{1}{\pi} \arcsin x_{n, 0}(\alpha)=\frac{1}{2}-\frac{\operatorname{ctg} \alpha}{\pi\left(n+\frac{1}{2}\right)}+\operatorname{ctg} \alpha \cdot O\left(\frac{1}{n^{2}}\right)$ and we obtain (1.6). When $\sin \alpha \neq 0, \sin \beta \neq 0(\alpha, \beta \in(0, \pi))$, similarly we obtain

$$
\delta_{n}(\alpha, \beta)=\frac{1}{\pi n}(\operatorname{ctg} \beta-\operatorname{ctg} \alpha)+\operatorname{ctg} \alpha \cdot O\left(\frac{1}{n^{2}}\right)+\operatorname{ctg} \beta \cdot O\left(\frac{1}{n^{2}}\right)
$$

and substituting into (1.8) we obtain (1.4).
It is useful to remark that $\left\{\delta_{n}(\alpha, \beta)\right\}_{n=1}^{\infty}$ form a sequence of functions, which are analytic in the domain $(0, \pi) \times(0, \pi)$, continuous on $[0, \pi] \times[0, \pi]$ and the limit function $\delta_{\infty}(\alpha, \beta)$ is discontinuous:

$$
\delta_{\infty}(\alpha, \beta)= \begin{cases}-1, & \alpha=0, \quad \beta=\pi \\ -\frac{1}{2}, & \alpha=0, \quad \beta \in(0, \pi) \text { and } \beta=\pi, \quad \alpha \in(0, \pi), \\ 0, & (\alpha, \beta) \in(0, \pi) \times(0, \pi), \quad(\alpha=0, \beta=0), \quad(\alpha=\pi, \beta=\pi), \\ \frac{1}{2}, & \alpha=\pi, \quad \beta \in(0, \pi) \text { and } \beta=0, \quad \alpha \in(0, \pi), \\ 1, & \alpha=\pi, \quad \beta=0 .\end{cases}
$$

From this point of view it is interesting to compare the principal part $\left[n+\delta_{n}(\alpha, \beta)\right]^{2}$ of our formula (1.8) and the remark 1 in article [3, p. 768].

It is also easy to see that for $\alpha \in(0, \pi]$ and $\beta \in[0, \pi) \delta_{n}(\alpha, \beta)=\delta_{n}(\pi-\beta, \pi-\alpha)$. This equality is, on the other hand, a consequence of the equality $\mu_{n}(q, \alpha, \beta)=$ $\mu_{n}\left(q^{*}, \pi-\beta, \pi-\alpha\right)\left(\right.$ see $\left[3\right.$, p. 763]), where $q^{*}(x)=q(\pi-x)$.

4. The proof of Lemma 2

Let $y_{i}(x, \mu)=y_{i}(x, \mu, q), i=1,2$, be the solutions of (1.1), which satisfy the initial conditions $y_{1}(0, \mu)=1, y_{1}^{\prime}(0, \mu)=0$ and $y_{2}(0, \mu)=0, y_{2}^{\prime}(0, \mu)=1$. For these solutions the estimates are known (see [10], also [1], [2], [6]), which, in the case of equation $-y^{\prime \prime}+t q(x) y=\lambda^{2} y$, can be written in the form $\left(\sigma_{0}(x)=\int_{0}^{x}|q(s)| d s\right)$:

$$
\begin{aligned}
& \left|y_{1}\left(x, \lambda^{2}, t q\right)-\cos \lambda x\right| \leqslant \frac{|t| \sigma_{0}(x)}{|\lambda|} e^{|\operatorname{Im} \lambda| x+\frac{t \sigma_{0}(x)}{|\lambda|}} \\
& \left|y_{2}\left(x, \lambda^{2}, t q\right)-\frac{\sin \lambda x}{\lambda}\right| \leqslant \frac{|t| \sigma_{0}(x)}{|\lambda|^{2}} e^{|\operatorname{Im} \lambda| x+\frac{t \sigma_{0}(x)}{|\lambda|}}
\end{aligned}
$$

The solution $\varphi(x, \mu, t q, \alpha)=y_{1}(x, \mu) \sin \alpha-y_{2}(x, \mu) \cos \alpha$ can be written in the form

$$
\varphi\left(x, \lambda^{2}, t q, \alpha\right)=\left(\cos \lambda x+r_{1}(x, t q, \lambda)\right) \sin \alpha-\left(\frac{\sin \lambda x}{\lambda}+r_{2}(x, t q, \lambda)\right) \cos \alpha
$$

where for real $\mu=\lambda^{2}>0(\operatorname{Im} \mu=\operatorname{Im} \lambda=0) r_{1}(x, t q, \lambda)=O\left(\frac{1}{\lambda}\right)$ and $r_{2}(x, t q, \lambda)=O\left(\frac{1}{\lambda^{2}}\right)$ uniformly in $t \in[0,1], x \in[0, \pi]$ and $q \in B L_{\mathbf{R}}^{1}[0, \pi]$. Then for eigenfunctions $\varphi_{n}(x, t q)=\varphi\left(x, \mu_{n}(t q, \alpha, \beta), t q, \alpha\right)$ in the case $\sin \alpha \neq 0$ we have $\varphi_{n}^{2}(x, t q)=\cos ^{2} \lambda_{n} x \cdot \sin ^{2} \alpha+O\left(\frac{1}{n}\right)$, and in the case $\sin \alpha=0(\alpha=\pi)$, $\varphi_{n}^{2}(x, t q, \pi)=\frac{\sin ^{2} \lambda_{n} x}{\lambda_{n}^{2}}+O\left(\frac{1}{n^{3}}\right)$. It follows that, if $\sin \alpha \neq 0$, then

$$
\left\|\varphi_{n}\right\|^{2}=\sin ^{2} \alpha \int_{0}^{\pi} \frac{1+\cos 2 \lambda_{n} x}{2} d x+O\left(\frac{1}{n^{3}}\right)=\frac{\pi}{2} \sin ^{2} \alpha+O\left(\frac{1}{n}\right)
$$

and if $\sin \alpha=0$, we have

$$
\left\|\varphi_{n}\right\|^{2}=\frac{1}{\lambda_{n}^{2}} \int_{0}^{\pi} \frac{1-\cos 2 \lambda_{n} x}{2} d x+O\left(\frac{1}{n}\right)=\frac{\pi}{2 \lambda_{n}^{2}}\left(1+O\left(\frac{1}{n}\right)\right)
$$

Thus, if we define the normalized eigenfunctions as $h_{n}(x, t q)=\frac{\varphi_{n}(x, t q)}{\left\|\varphi_{n}\right\|}$, then in both cases we have

$$
h_{n}^{2}(x, t q)=\frac{\varphi_{n}^{2}(x, t q)}{\left\|\varphi_{n}\right\|^{2}}=\frac{1 \pm \cos 2 \lambda_{n} x}{\pi}+O\left(\frac{1}{n}\right)
$$

and the estimate of the rest is uniform in $x \in[0, \pi], t \in[0,1], \alpha, \beta \in[0, \pi]$ and $q \in B L_{\mathbf{R}}^{1}[0, \pi]$. And so

$$
\begin{aligned}
\int_{0}^{1} & {\left[\int_{0}^{\pi} q(x) h_{n}^{2}(x, t q, \alpha, \beta) d x\right] d t } \\
& =\frac{1}{\pi} \int_{0}^{\pi} q(x) d x \pm \frac{1}{\pi} \int_{0}^{1}\left[\int_{0}^{\pi} q(x) \cos 2 \lambda_{n}(t q, \alpha, \beta) d x\right] d t+O\left(\frac{1}{n}\right) \\
& =[q]+r_{n}(q, \alpha, \beta)
\end{aligned}
$$

and since $\lambda_{n}(t q, \alpha, \beta) \rightarrow \infty$ when $n \rightarrow \infty$, then $r_{n}(q, \alpha, \beta)=o(1)$ (uniformly in $\alpha, \beta \in[0, \pi]$ and $q \in B L_{\mathbf{R}}^{1}[0, \pi]$, by Riemann-Lebesgue lemma. Lemma 2 is proved.

REFERENCES

[1] Levitan, B. M., Sargsyan, I. S. Sturm-Liouville and Dirac operators (in Russian), Nauka, Moskwa, 1988.
[2] Marchenko, V. A. The Sturm-Liouville operators and their applications (in Russian), Naukova Dumka, Kiev, 1977.
[3] Isaacson, E. L., Trubowitz, E. The inverse Sturm-Liouville problem, I, Com. Pure and Appl. Math., 36 (1983), 767-783.
[4] Isaacson, E. L., Mckean, H. P., Trubowitz, E. The inverse Sturm-Liouville problem, II, Com. Pure and Appl. Math., 37 (1984), 1-11.
[5] Dahlberg, B. E. I., Trubowitz, E. The inverse Sturm-Liouville problem, III, Com. Pure and Appl. Math., 37 (1984), 255-267.
[6] Pöschel, J., Trubowitz, E. Inverse Spectral Theory. Academic Press, 1987.
[7] Zikov, V. V., On inverse Sturm-Liouville problems on a finite segment, Izv. Akad. Nauk SSSR, Ser. Mat., 31, 5 (1967), 965-976 (in Russian).
[8] Marchenko, V. A. Concerning the theory of differential operators of the second order, Trudy Moskov. Math. Obshch., 1 (1952), 327-420 (in Russian).
[9] Bibikov, J. N., The general course of ordinary differential equations, Leningrad, 1981 (in Russian).
[10] Harutyunyan, T. N., Hovsepyan, M. S. On the solutions of the Sturm-Liouville equation, Mathem. in Higher School, I, 3 (2005), 59-74 (in Russian).
(received 02.01.2008)
Yerevan State University, Department of Mathematics and Mechanics
E-mail: hartigr@yahoo.co.uk

[^0]: AMS Subject Classification: 34L20, 47E05

