BOUNDS ON ROMAN DOMINATION NUMBERS OF GRAPHS

B.P. Mobaraky and S.M. Sheikholeslami

Abstract

Roman dominating function of a graph G is a labeling function $f: V(G) \rightarrow$ $\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2 . The Roman domination number $\gamma_{R}(G)$ of G is the minimum of $\Sigma_{v \in V(G)} f(v)$ over such functions. In this paper, we find lower and upper bounds for Roman domination numbers in terms of the diameter and the girth of G.

1. Introduction

For G, a simple graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V and $E)$, the open neighborhood $N(v)$ of the vertex v is the set $\{u \in V(G) \mid u v \in E(G)\}$ and its closed neighborhood is $N[v]=N(v) \cup\{v\}$. Similarly, the open neighborhood of a set $S \subseteq V$ is the set $N(S)=\bigcup_{v \in S} N(v)$, and its closed neighborhood is $N[S]=N(S) \cup S$. The minimum and maximum vertex degrees in G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. A subset S of vertices of G is a dominating set if $N[S]=V$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A subset S of vertices of G is a 2-packing if for each pair of vertices $u, v \in S, N[u] \cap N[v]=\emptyset$.

A Roman dominating function (RDF) on a graph $G=(V, E)$ is defined in [13], [15] as a function $f: V \longrightarrow\{0,1,2\}$ satisfying the condition that a vertex v with $f(v)=0$ is adjacent to at least one vertex u with $f(u)=2$. The weight of a RDF is defined as $w(f)=\sum_{v \in V} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, equals the minimum weight of a RDF on G. A $\gamma_{R}(G)$-function is a Roman dominating function of G with weight $\gamma_{R}(G)$. Observe that a Roman dominating function $f: V \rightarrow\{0,1,2\}$ can be presented by an ordered partition $\left(V_{0}, V_{1}, V_{2}\right)$ of V, where $V_{i}=\{v \in V \mid f(v)=i\}$.

Cockayne et. al [3] initiated the study of Roman domination, suggested originally in a Scientific American article by Ian Stewart [15]. Since $V_{1} \cup V_{2}$ is a dominating set when f is a RDF, and since placing weight 2 at the vertices of a dominating set yields a RDF, they observed that

$$
\begin{equation*}
\gamma(G) \leq \gamma_{R}(G) \leq 2 \gamma(G) \tag{1}
\end{equation*}
$$

AMS Subject Classification: 05C69, 05C05.
Keywords and phrases: Roman domination number, diameter, girth.

In a sense, $2 \gamma(G)-\gamma_{R}(G)$ measures "inefficiency" of domination, since the vertices with weight 1 in a RDF serve only to dominate themselves. The authors [3] investigated graph theoretic properties of RDFs and characterized $\gamma_{R}(G)$ for specific graphs. They found out the graphs G, those with $\gamma_{R}(G)=\gamma(G)+k$ when $k \leq 2$; and then for larger k by Xing et al. [16]. They also characterized the graphs G with property $\gamma_{R}(G)=2 \gamma(G)$ in terms of 2-packings, referring them to as Roman graphs. Henning [9] characterized Roman trees, while Song and Wang [14] identified the trees T with $\gamma_{R}(T)=\gamma(T)+3$. Computational complexity of $\gamma_{R}(G)$ is considered in [4]. In [12], linear-time algorithms are given for $\gamma_{R}(G)$ on interval graphs and on cographs, along with a polynomial-time algorithm for AT-free graphs. Chambers et al. [2] proved that $\gamma_{R}(G) \leq \frac{4 n}{5}$ when G is a connected graph of order $n \geq 3$, and determined when equality holds. They have also obtained sharp upper and lower bounds for $\gamma_{R}(G)+\gamma_{R}(\bar{G})$ and $\gamma_{R}(G) \gamma_{R}(\bar{G})$, where \bar{G} denotes the complement of G. Favaron et al. [7] proved that $\gamma_{R}(G)+\frac{\gamma(G)}{2} \leq n$ for any connected graph G of order $n \geq 3$. Other related domination models are studied in [1, 5, 6, 10, 11].

The purpose of this paper is to establish sharp lower and upper bounds for Roman domination numbers in terms of the diameter and the girth of G.

Cockayne et al. in [3] proved that:
Theorem A. For a graph G of order n,

$$
\gamma(G) \leq \gamma_{R}(G) \leq 2 \gamma(G)
$$

with equality in lower bound if and only if $G=\bar{K}_{n}$.
Theorem B. For paths P_{n} and cycles C_{n},

$$
\gamma_{R}\left(P_{n}\right)=\gamma_{R}\left(C_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil
$$

Theorem C. Let $G=K_{m_{1}, \ldots, m_{n}}$ be the complete n-partite graph with $m_{1} \leq$ $m_{2} \leq \ldots \leq m_{n}$. If $m_{1}=2$, then $\gamma_{R}(G)=3$.

Theorem D. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a γ_{R}-function for a simple graph G, such that $\left|V_{1}^{f}\right|$ is minimum. Then V_{1}^{f} is a 2-packing.

2. Bounds in terms of the diameter

In this section sharp lower and upper bounds for $\gamma_{R}(G)$ in terms of diam (G) are presented. Recall that the eccentricity of vertex v is $\operatorname{ecc}(v)=\max \{d(v, w): w \in V\}$ and the diameter of G is $\operatorname{diam}(G)=\max \{\operatorname{ecc}(v): v \in V\}$. Throughout this section we assume that G is a nontrivial graph of order $n \geq 2$.

Theorem 1. If a graph G has diameter two, then $\gamma_{R}(G) \leq 2 \delta$. Furthermore, this bound is sharp for infinite family of graphs.

Proof. Since G has diameter two, $N(u)$ dominates $V(G)$ for all vertex $u \in$ $V(G)$. Now, let $u \in V(G)$ and $\operatorname{deg}(u)=\delta$. Define $f: V(G) \longrightarrow\{0,1,2\}$ by $f(x)=2$ for $x \in N(u)$ and $f(x)=0$ otherwise. Obviously f is a RDF of G. Thus $\gamma_{R}(G) \leq 2 \delta$.

To prove sharpness, let G be obtained from Cartesian product $P_{2} \square K_{m}(m \geq$ 3) by adding a new vertex x and jointing it to exactly one vertex at each copy of K_{m}. Obviously, $\operatorname{diam}(G)=2$ and $\gamma_{R}(G)=4=2 \delta$. This completes the proof.

Next theorem presents a lower bound for Roman domination numbers in terms of the diameter.

Theorem 2. For a connected graph G,

$$
\gamma_{R}(G) \geq\left\lceil\frac{\operatorname{diam}(G)+2}{2}\right\rceil
$$

Furthermore, this bound is sharp for P_{3} and P_{4}.
Proof. The statement is obviously true for K_{2}. Let G be a connected graph of order $n \geq 3$ and $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function. Suppose that $P=$ $v_{1} v_{2} \ldots v_{\text {diam }(G)+1}$ is a diametral path in G. This diametral path includes at most two edges from the induced subgraph $G[N[v]]$ for each $v \in V_{1}^{f} \cup V_{2}^{f}$. Let $E^{\prime}=$ $\left\{v_{i} v_{i+1} \mid 1 \leq i \leq \operatorname{diam}(G)\right\} \cap \bigcup_{v \in V_{1}^{f} \cup V_{2}^{f}} E(G[N[v]])$. Then the diametral path contains at most $\left|V_{2}^{f}\right|-1$ edges not in E^{\prime}, joining the neighborhoods of the vertices of V_{2}^{f}. Since G is a connected graph of order at least $3, V_{2}^{f} \neq \emptyset$. Hence,

$$
\operatorname{diam}(G) \leq 2\left|V_{2}^{f}\right|+2\left|V_{1}^{f}\right|+\left(\left|V_{2}^{f}\right|-1\right) \leq 2 \gamma_{R}(G)-2
$$

and the result follows.
In the following theorem, an upper bound is presented for Roman domination numbers.

Theorem 3. For any connected graph G on n vertices,

$$
\gamma_{R}(G) \leq n-\left\lfloor\frac{1+\operatorname{diam}(G)}{3}\right\rfloor
$$

Furthermore, this bound is sharp.
Proof. Let $P=v_{1} v_{2} \ldots v_{\text {diam }(G)+1}$ be a diametral path in G. Moreover, let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(P)$-function. By Theorem B , the weight of f is $\left\lceil\frac{2 \operatorname{diam}(G)+2}{3}\right\rceil$. Define $g: V(G) \longrightarrow\{0,1,2\}$ by $g(x)=f(x)$ for $x \in V(P)$ and $g(x)=1$ for $x \in V(G) \backslash V(P)$. Obviously g is a RDF for G. Hence,

$$
\gamma_{R}(G) \leq w(f)+(n-\operatorname{diam}(G)-1)=n-\left\lfloor\frac{1+\operatorname{diam}(G)}{3}\right\rfloor
$$

To prove sharpness, let G be obtained from a path $P=v_{1} v_{2} \ldots v_{3 k}(k \geq 2)$ by adding a pendant edge $v_{3} u$. Obviously, G achieves the bound and the proof is complete.

For a connected graph G with $\delta \geq 3$, the bound in Theorem 3 can be improved as follows.

Theorem 4. For any connected graph G of order n with $\delta \geq 3$,

$$
\gamma_{R}(G) \leq n-\left\lfloor\frac{1+\operatorname{diam}(G)}{3}\right\rfloor-(\delta-2)\left\lfloor\frac{\operatorname{diam}(G)+2}{3}\right\rfloor
$$

Proof. Let $P=v_{1} v_{2} \ldots v_{\text {diam }(G)+1}$ be a diametral path in G and $f=$ $\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(P)$-function for which $\left|V_{1}^{f}\right|$ is minimized and V_{2}^{f} is a 2packing. Obviously, $\left|V_{2}^{f}\right|=\left\lfloor\frac{\operatorname{diam}(G)+2}{3}\right\rfloor$. Let $V_{2}^{f}=\left\{u_{1}, \ldots, u_{k}\right\}$ where $k=$ $\left\lfloor\frac{\text { diam }(G)+2}{3}\right\rfloor$. Since P is a diametral path, each vertex of V_{2}^{f} has at least $\delta-2$ neighbors in $V(G) \backslash V(P)$ and $N\left(u_{i}\right) \cap N\left(u_{j}\right)=\emptyset$ if $u_{i} \neq u_{j}$. Define $g: V(G) \longrightarrow\{0,1,2\}$ by $g(x)=f(x)$ for $x \in V(P), g(x)=0$ for $x \in \bigcup_{i=1}^{k} N\left(u_{i}\right) \cap(V(G) \backslash V(P))$ and $g(x)=1$ when $x \in V(G) \backslash\left(V(P) \cup\left(\bigcup_{i=1}^{k} N\left(u_{i}\right)\right)\right)$. Obviously g is a RDF for G and so

$$
\gamma_{R}(G) \leq w(g)=w(f)+n-\operatorname{diam}(G)-1-(\delta-2)\left\lfloor\frac{\operatorname{diam}(G)+2}{3}\right\rfloor
$$

Now the result follows from $w(f)=\left\lceil\frac{2 \mathrm{diam}(G)+2}{3}\right\rceil$.
The next theorem speaks of an interesting relationship between the diameter of G and the Roman domination number of \bar{G}, the complement of G.

Theorem 5. For a connected graph G with $\operatorname{diam}(G) \geq 3, \gamma_{R}(\bar{G}) \leq 4$.
Proof. Let $P=v_{1} v_{2} \ldots v_{m}$ be a diametral path in G where $m \geq 4$. Let $S=\left\{v_{1}, v_{m}\right\}$. Since $\operatorname{diam}(G) \geq 3$, each vertex $v \in V(G) \backslash S$ can be adjacent to at most one vertex of S in G. Consequently, S is a dominating set for \bar{G}. By (1), $\gamma_{R}(\bar{G}) \leq 2 \gamma(\bar{G}) \leq 4$ and the proof is complete.

3. Bounds in terms of the girth

In this section we present bounds on Roman domination numbers of a graph G containing cycles, in terms of its girth. Recall that the girth of G (denoted by $g(G))$ is the length of a smallest cycle in G. Throughout this section, we assume that G is a nontrivial graph of order $n \geq 3$ and contains a cycle.

The following result is very crucial for this section.
Lemma 6. For a graph G of order n with $g(G) \geq 3$ we have $\gamma_{R}(G) \geq\left\lceil\frac{2 g(G)}{3}\right\rceil$.
Proof. First note that if G is an n-cycle then $\gamma_{R}(G)=\left\lceil\frac{2 n}{3}\right\rceil$ by Theorem B. Now, let C be a cycle of length $g(G)$ in G. If $g(G)=3$ or 4 , then we need at least 1 or 2 vertices, respectively, to dominate the vertices of C and the statement follows by Theorem A. Let $g(G) \geq 5$. Then a vertex not in $V(C)$, can be adjacent to at most one vertex of C for otherwise we obtain a cycle of length less than $g(G)$ which is a contradiction. Now the result follows by Theorem A.

THEOREM 7. If $g(G)=4$, then $\gamma_{R}(G) \geq 3$. Equality holds if and only if G is a bipartite graph with partite sets X and Y with $|X|=2$, where X has one vertex of degree $n-2$ and the other of degree at least two.

Proof. Let $g(G)=4$. Then $\gamma_{R}(G) \geq 3$ by Lemma 6. If G is a bipartite graph satisfying the conditions, then obviously $g(G)=4$ and $\gamma_{R}(G)=3$ by Theorem C. Now let $g(G)=4$ and $\gamma_{R}(G)=3$ and $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function. Obviously, $\left|V_{1}^{f}\right|=\left|V_{2}^{f}\right|=1$. Suppose that $V_{1}^{f}=\{u\}$ and $V_{2}^{f}=\{v\}$. Since $\gamma_{R}(G)=$ $3,\{u, v\}$ is an independent set and v is adjacent to all vertices in $V(G) \backslash\{u, v\}$. Let $X=\{u, v\}$ and $Y=V(G) \backslash X$. Since $g(G)=4, Y$ is an independent set. Henceforth, u and v are contained in each 4-cycle of G. It follows that u has degree at least two. This completes the proof.

THEOREM 8. Let G be a simple connected graph of order $n, \delta(G) \geq 2$ and $g(G) \geq 5$. Then $\gamma_{R}(G) \leq n-\left\lfloor\frac{g(G)}{3}\right\rfloor$. Furthermore, the bound is sharp for cycles C_{n} with $n \geq 5$.

Proof. Let G be such a graph. Assume C is a cycle of G with $g(G)$ edges. If $G=C$, then the statement is valid by Theorem B. Now let G^{\prime} be obtained from G by removing the vertices of $V(C)$. Since $g(G) \geq 5$, each vertex of G^{\prime} can be adjacent to at most one vertex of C which implies $\delta\left(G^{\prime}\right) \geq 1$. Thus, $\gamma_{R}\left(G^{\prime}\right) \leq n-g(G)$. Let f and g be a $\gamma_{R}\left(G^{\prime}\right)$-function and $\gamma_{R}(C)$-function, respectively. Define $h: V(G) \rightarrow$ $\{0,1,2\}$ by $h(v)=f(v)$ for $v \in V\left(G^{\prime}\right)$ and $h(v)=g(v)$ for $v \in V(C)$. Obviously, h is a RDF of G and the result follows.

TheOrem 9. For a simple connected graph G of order n, if $g(G) \geq 5$, then $\gamma_{R}(G) \geq 2 \delta$. The bound is sharp for C_{5} and C_{6}.

Proof. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function such that $\left|V_{1}^{f}\right|$ is minimum and let C be a cycle with $g(G)$ edges. If $n=5$, then G is a 5 -cycle and $\gamma_{R}(G)=$ $4=2 \delta$. For $n \geq 6$, if $\delta \leq 2$, then $\gamma_{R}(G) \geq\left\lceil\frac{2 g(G)}{3}\right\rceil \geq 2 \delta$ by Lemma 6. Now, let $\delta \geq 3$. First suppose that $V_{1}^{f}=\emptyset$. Assume $v \in V_{0}^{f}$ and $N(v)=\left\{v_{1}, \ldots, v_{k}\right\}$ for some $k \geq \delta$. Without loss of generality, one may suppose $v_{1}, \ldots, v_{r} \in V_{2}^{f}$ and $v_{r+1}, \ldots, v_{k} \in V_{0}^{f}$ and for $j=r+1, \ldots, k, v_{j} v_{j}^{\prime} \in E(G)$ where $v_{j}^{\prime} \in V_{2}^{f}$ and $k>r$. Since $g(G) \geq 5$, the vertices of $v_{1}, \ldots, v_{r}, v_{r+1}^{\prime}, \ldots, v_{k}^{\prime}$ are distinct. Consequently, $\left|V_{2}^{f}\right| \geq 2 k$ which implies $\gamma_{R}(G) \geq 2 k \geq 2 \delta$. For the case $V_{1} \neq \emptyset$, by definition of $f,\left|V_{1}^{f}\right|$ is an independent set. Suppose that $u \in V_{1}^{f}$ and $N(u)=\left\{u_{1}, \ldots, u_{k}\right\}$ for some $k \geq \delta$. Obviously, $N(u) \subseteq V_{0}^{f}$. For each $j=1, \ldots, k$, one may consider $u_{j} v_{j} \in E(G)$ where $v_{j} \in V_{2}^{f}$. Since $g(G) \geq 5$, the vertices v_{1}, \ldots, v_{k} are distinct. Hence, $\gamma_{R}(G)=2\left|V_{2}^{f}\right|+\left|V_{1}^{f}\right| \geq 2 \delta+1$ and the proof is complete.

Theorem 10. For a simple connected graph G with $\delta \geq 2$ and $g(G) \geq 6$, $\gamma_{R}(G) \geq 4(\delta-1)$. This bound is sharp for C_{6}.

Proof. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function such that $\left|V_{1}^{f}\right|$ is minimum. Therefore, V_{1}^{f} is an independent set and $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$ if $w_{1} \neq w_{2}$ for
$w_{1}, w_{2} \in V_{1}^{f}$. For $V_{1}^{f} \neq \emptyset$ and $u \in V_{1}^{f}, N(u)=\left\{u_{1}, \ldots, u_{\operatorname{deg}(u)}\right\} \subseteq V_{0}^{f}$. Suppose that $N\left(u_{1}\right)=\left\{w_{1}, \ldots, w_{r}\right\}$ where $u=w_{1}$. Since $g(G) \geq 6, N(u) \cap N\left(u_{1}\right)=\emptyset$ and $N\left(u_{i}\right) \cap N\left(w_{j}\right)=\emptyset$ for each i, j. In this way, each vertex of V_{2}^{f} can be adjacent to at most one vertex in $\left(N(u) \cup N\left(u_{1}\right)\right) \cap V_{0}^{f}$. This implies that $\left|V_{2}^{f}\right| \geq 2(\delta-1)$ which follows the statement.

For $V_{1}^{f}=\emptyset,\left|V_{0}^{f}\right| \geq 2$ holds clearly. If $G\left[V_{0}^{f}\right]$ has an edge $u v$, analogous reasoning proves the statement. Let V_{0}^{f} be an independent set in G with $\left|V_{0}^{f}\right| \geq 2$ and $u, v \in V_{0}^{f}$. Since $g(G) \geq 6$ and V_{0}^{f} is an independent set, $|N(u) \cap N(v)| \leq 1$ and $N(u) \cup N(v) \subseteq V_{2}^{f}$. This implies that $\left|V_{2}^{f}\right| \geq 2 \delta-1$ and the result follows.

TheOrem 11. For a simple connected graph G with $\delta \geq 2$ and $g(G) \geq 7$, $\gamma_{R}(G) \geq 2 \Delta$. This bound is sharp for $g(G)=7$.

Proof. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function such that $\left|V_{1}^{f}\right|$ is minimum and let C be a cycle of G with $g(G)$ edges. Suppose $v \in V(G)$ is a vertex with degree Δ. By Theorem D, V_{1}^{f} is an independent set of G and $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$ if $w_{1} \neq w_{2}$ for $w_{1}, w_{2} \in V_{1}^{f}$. Consider $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{\Delta}\right\}$. For $v \notin V_{2}^{f}$, similar to the proof of Theorem 9, the statement follows. For $v \in V_{2}^{f}$, let $A=N[v] \cap V_{2}^{f}$ and $B=N(v) \cap V_{0}^{f}$. For $u \in B$, three cases might occur.

Case 1. u has a neighbor in $V_{2}^{f}-\{v\}$. In this case, consider $x_{u} \in\left(V_{2}^{f}-\{v\}\right) \cap$ $N(u)$.

Case 2. u has no neighbor in $V_{2}^{f}-\{v\}$ and u has some neighbor in V_{0}^{f}. For $y_{u} \in N(u) \cap V_{0}^{f}$, Since $g(G) \geq 7, y_{u} \notin B$. In this case, let $x_{u} \in V_{2}^{f} \cap N\left(y_{u}\right)$.

Case 3. u has no neighbor in $V_{0}^{f} \cup\left(V_{2}^{f}-\{v\}\right)$ and u has some neighbor in V_{1}^{f}. For $z_{u} \in V_{1}^{f} \cap N(u)$, Since G is connected and $\delta \geq 2, z_{u}$ has a neighbor in $V_{0}^{f}-\{u\}$, say y_{u}. On the other hand y_{u} has a neighbor in V_{2}^{f}, say x_{u}.

Since $g(G) \geq 7$, it is straightforward to verify that $A \cap\left\{x_{u} \mid u \in B\right\}=\emptyset$ and $x_{u} \neq x_{u^{\prime}}$ when $u \neq u^{\prime}$ and $u, u^{\prime} \in B$. Thus, $\left|V_{2}^{f}\right| \geq \Delta$ that implies the statement.

The bound is sharp for the graph $G=(V, E)$, where $V=\left\{v, u, w, v_{i}, u_{i}, w_{i} \mid\right.$ $1 \leq i \leq m\}$ and $E=\left\{v u, u w, w_{1} w_{2}, v v_{i}, v_{i} u_{i}, u_{i} w_{i} \mid 1 \leq i \leq m\right\}$ for $m \geq 2$ when $g(G)=7$.

REFERENCES

[1] A.P. Burger, E.J. Cockayne, W.R. Gründlingh, C.M. Mynhardt, J.H. van Vuuren and W. Winterbach. Finite order domination in graphs, J. Combin. Math. Combin. Comput. 49 (2004), 159-175.
[2] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. (to appear).
[3] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004), 11-22.
[4] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi, S.T. Hedetniemi and A.A. McRae, The algorithmic complexity of Roman domination, (submitted).
[5] E.J. Cockayne, O. Favaron, and C.M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl. 39 (2003), 87-100.
[6] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005), 1932.
[7] O. Favaron, H. Karami and S.M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math. (2008), doi:10.1016/j.disc.2008.09.043.
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
[9] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2) (2002), 325-334.
[10] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003), 101-115.
[11] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire a new strategy, The 18th British Combinatorial Conference (Brighton, 2001). Discrete Math. 266 (2003), 239-251.
[12] M. Liedloff, T. Kloks, J. Liu and S.-L. Peng, Roman domination over some graph classes, Graph-theoretic concepts in computer science, 103-114, Lecture Notes in Comput. Sci., 3787, Springer, Berlin, 2005.
[13] C.S. Revelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (7) (2000), 585-594.
[14] X. Song and X. Wang, Roman domination number and domination number of a tree, Chinese Quart. J. Math. 21 (2006), 358-367.
[15] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (6) (1999), 136-139.
[16] H.-M. Xing, X. Chen and X.-G. Chen, A note on Roman domination in graphs, Discrete Math. 306 (2006), 3338-3340.
(received 04.12.2007, in revised form 12.07.2008)
S.M. Sheikholeslami, Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I.R. Iran
E-mail: s.m.sheikholeslami@azaruniv.edu

