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GROWTH AND OSCILLATION THEORY OF SOLUTIONS
OF SOME LINEAR DIFFERENTIAL EQUATIONS

Benharrat Beläıdi

Abstract. The basic idea of this paper is to consider fixed points of solutions of the
differential equation f (k) + A (z) f = 0, k ≥ 2, where A (z) is a transcendental meromorphic
function with ρ (A) = ρ > 0. Instead of looking at the zeros of f (z) − z, we proceed to a slight
generalization by considering zeros of f (z) − ϕ (z), where ϕ is a meromorphic function of finite
order, while the solution of respective differential equation is of infinite order.

1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribution
theory and with basic Wiman Valiron theory as well (see [7], [8], [12], [13]). In
addition, we will use λ (f) and λ (1/f) to denote respectively the exponents of con-
vergence of the zero-sequence and the pole-sequence of a meromorphic function f ,
ρ (f) to denote the order of growth of f , λ (f) and λ (1/f) to denote respectively
the exponents of convergence of the sequence of distinct zeros and distinct poles
of f . A meromorphic function ϕ (z) is called a small function of a meromorphic
function f (z) if T (r, ϕ) = o (T (r, f)) as r → +∞, where T (r, f) is the Nevanlinna
characteristic function of f . In order to express the rate of growth of meromorphic
solutions of infinite order, we recall the following definition.

Definition 1.1. [4], [11], [14] Let f be a meromorphic function. Then the
hyper-order ρ2 (f) of f (z) is defined by

ρ2 (f) = lim
r→+∞

log log T (r, f)
log r

. (1.1)

To give some estimates of fixed points, we recall the following definitions.

AMS Subject Classification: 34M10, 30D35.
Keywords and phrases: Linear differential equations, Meromorphic solutions, Hyper order,

Exponent of convergence of the sequence of distinct zeros, Hyper exponent of convergence of the
sequence of distinct zeros.

233



234 B. Beläıdi

Definition 1.2. [4], [10], [11] Let f be a meromorphic function. Then the
exponent of convergence of the sequence of distinct fixed points of f (z) is defined
by

τ (f) = λ (f − z) = lim
r→+∞

log N
(
r, 1

f−z

)

log r
, (1.2)

where N
(
r, 1

f

)
is the counting function of distinct zeros of f (z) in {|z| < r}.

Definition 1.3. [9], [10], [11] Let f be a meromorphic function. Then the
hyper exponent of convergence of the sequence of distinct zeros of f (z) is defined
by

λ2 (f) = lim
r→+∞

log log N
(
r, 1

f

)

log r
. (1.3)

Definition 1.4. [10], [11], [14] Let f be a meromorphic function. Then the
hyper exponent of convergence of the sequence of distinct fixed points of f (z) is
defined by

τ2 (f) = λ2 (f − z) = lim
r→+∞

log log N
(
r, 1

f−z

)

log r
. (1.4)

Thus τ2 (f) = λ2 (f − z) is an indication of oscillation of distinct fixed points of
f (z).

For k ≥ 2, we consider the linear differential equation

f (k) + A (z) f = 0, (1.5)

where A (z) is a transcendental meromorphic function with finite order ρ (A) =
ρ > 0. Many important results have been obtained on the fixed points of general
transcendental meromorphic functions for almost four decades (see [16]). However,
there are a few studies on the fixed points of solutions of differential equations. It
was in year 2000 that Z. X. Chen first pointed out the relation between the exponent
of convergence of distinct fixed points and the rate of growth of solutions of second
order linear differential equations with entire coefficients (see [4]). In [14], Wang and
Yi investigated fixed points and hyper order of differential polynomials generated by
solutions of second order linear differential equations with meromorphic coefficients.
In [10], Laine and Rieppo gave improvement of the results of [14] by considering
fixed points and iterated order. In [15], Wang and Lü have investigated the fixed
points and hyper order of solutions of second order linear differential equations
with meromorphic coefficients and their derivatives and have obtained the following
result:

Theorem A. [15] Suppose that A (z) is a transcendental meromorphic function
satisfying δ (∞, A) = limr→+∞

m(r,A)
T (r,A) = δ > 0, ρ (A) = ρ < +∞. Then every

meromorphic solution f (z) 6≡ 0 of the equation

f ′′ + A (z) f = 0, (1.6)
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satisfies that f and f ′, f ′′ all have infinitely many fixed points and

τ (f) = τ(f
′
) = τ(f

′′
) = ρ (f) = +∞, (1.7)

τ2 (f) = τ2(f
′
) = τ2(f

′′
) = ρ2 (f) = ρ. (1.8)

Recently, Theorem A has been generalized to higher order differential equations
by Liu Ming-Sheng and Zhang Xiao-Mei as follows [11]:

Theorem B. [11] Suppose that k ≥ 2 and A (z) is a transcendental meromor-
phic function satisfying δ (∞, A) = limr→+∞

m(r,A)
T (r,A) = δ > 0, ρ (A) = ρ < +∞.

Then every meromorphic solution f (z) 6≡ 0 of (1.5), satisfies that f and f ′, f ′′,
. . . , f (k) all have infinitely many fixed points and

τ (f) = τ(f ′) = · · · = τ(f (k)) = ρ (f) = +∞, (1.9)

τ2 (f) = τ2(f ′) = · · · = τ2(f (k)) = ρ2 (f) = ρ. (1.10)

The main purpose of this paper is to study the relation between solutions and
their derivatives of the differential equation (1.5) and small meromorphic functions.
We obtain an extension of Theorems A–B. In fact, we prove the following results:

Theorem 1.1. Let A (z) be a transcendental meromorphic function of finite
order ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0. Suppose, moreover, that either:

(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.

Let dj (j = 0, 1, 2) be polynomials that are not all equal to zero, ϕ (z) ( 6≡ 0) be a
meromorphic function of finite order. If f (z) 6≡ 0 is a meromorphic solution of
(1.6) with λ(1/f) < +∞, then the differential polynomial g (z) = d2f

′′+d1f
′+d0f

satisfies λ (g − ϕ) = +∞.

Theorem 1.2. Let k ≥ 2 and A (z) be a transcendental meromorphic function
of finite order ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0. Suppose, moreover, that
either:

(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.

If ϕ (z) 6≡ 0 is a meromorphic function with finite order ρ (ϕ) < +∞, then every
meromorphic solution f (z) 6≡ 0 of (1.5), satisfies

λ (f − ϕ) = λ(f ′ − ϕ) = · · · = λ(f (k) − ϕ) = ρ (f) = +∞, (1.11)

λ2 (f − ϕ) = λ2(f ′ − ϕ) = · · · = λ2(f (k) − ϕ) = ρ2 (f) = ρ. (1.12)

Setting ϕ (z) = z in Theorem 1.1 and Theorem 1.2, we obtain the following
corollaries:
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Corollary 1.1. Let A (z) be a transcendental meromorphic function of finite
order ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0. Suppose, moreover, that either:

(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.

Let dj (j = 0, 1, 2) be polynomials that are not all equal to zero. If f (z) 6≡ 0 is a

meromorphic solution of (1.6) with λ
(

1
f

)
< +∞, then the differential polynomial

g (z) = d2f
′′ + d1f

′ + d0f has infinitely many fixed points and satisfies λ (g − z) =
+∞.

Corollary 1.2. Let k ≥ 2 and A (z) be a transcendental meromorphic func-
tion of finite order ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0. Suppose, moreover,
that either:

(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.

Then every meromorphic solution f (z) 6≡ 0 of (1.5), satisfies that f and f ′, f ′′,
. . . , f (k) all have infinitely many fixed points and

τ (f) = τ(f ′) = τ(f ′′) = · · · = τ(f (k)) = ρ (f) = +∞, (1.13)

τ2 (f) = τ2(f ′) = τ2(f ′′) = · · · = τ2(f (k)) = ρ2 (f) = ρ. (1.14)

2. Some Lemmas

We need the following lemmas in the proofs of our theorems.

Lemma 2.1. [6] Let f be a transcendental meromorphic function of finite order
ρ, let Γ = {(k1, j1) , (k2, j2) , . . . , (km, jm)} denote a finite set of distinct pairs of
integers that satisfy ki > ji ≥ 0 for i = 1, . . . ,m and let ε > 0 be a given constant.
Then the following estimations hold:
(i) There exists a set E1 ⊂ [0, 2π) that has linear measure zero, such that if ψ ∈
[0, 2π)−E1, then there is a constant R1 = R1 (ψ) > 1 such that for all z satisfying
arg z = ψ and |z| ≥ R1 and for all (k, j) ∈ Γ, we have

∣∣∣∣
f (k) (z)
f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε)
. (2.1)

(ii) There exists a set E2 ⊂ (1,∞) that has finite logarithmic measure lm (E2) =∫ +∞
1

χ
E2

(t)

t dt < +∞, where χ
E2

is the characteristic function of E2, such that for
all z satisfying |z| /∈ E2 ∪ [0, 1] and for all (k, j) ∈ Γ, we have

∣∣∣∣
f (k) (z)
f (j) (z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε)
. (2.2)
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We recall a special case of an important result due to Chiang and Hayman
in [5]:

Lemma 2.2. [5] Let f be a meromorphic solution of the differential equation

f (n) + An−1 (z) f (n−1) + · · ·+ A1 (z) f ′ + A0 (z) f = 0 (2.3)

in the complex plane, assuming that not all coefficients Aj (z) are constants. Given
a real constant σ > 1, and denoting T (r) :=

∑n−1
j=0 T (r,Aj), we have

log m (r, f) < r1+σT (r) {log T (r)}σ (2.4)

outside of an exceptional set E3 of finite linear measure.
To avoid some problems caused by the exceptional set we recall the following

Lemma.

Lemma 2.3. ([1,p. 68]). Let g : [0,+∞) → R and h : [0, +∞) → R be mono-
tone non-decreasing functions such that g (r) ≤ h (r) outside of an exceptional set
E4 of finite linear measure. Then for any α > 1, there exists r0 > 0 such that
g (r) ≤ h (αr) for all r > r0.

Lemma 2.4. Let k ≥ 2 and A (z) be a transcendental meromorphic function
of finite order ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0. Suppose, moreover, that
either:

(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.

Then every meromorphic solution f (z) 6≡ 0 of (1.5) satisfies ρ (f) = +∞ and
ρ2 (f) = ρ (A) = ρ.

Proof. First, we prove that ρ (f) = +∞. We suppose that ρ (f) = β < +∞
and then we obtain a contradiction. Rewrite (1.5) as

A = −f (k)

f
. (2.5)

By ρ (f) = β < +∞, we have

m

(
r,

f (k)

f

)
= O (log r) . (2.6)

It follows from the definition of deficiency δ (∞, A) that for sufficiently large r, we
have

m (r,A) ≥ δ

2
T (r,A) . (2.7)

So when r sufficiently large, we have by (2.5)–(2.7)

T (r,A) ≤ 2
δ
m (r,A) =

2
δ
m

(
r,

f (k)

f

)
= O (log r) . (2.8)
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Therefore, by (2.8), we obtain a contradiction since A is a transcendental mero-
morphic function with ρ (A) = ρ > 0. Hence ρ (f) = +∞.

Now, we prove that γ = ρ2 (f) = ρ (A) = ρ. By ρ (f) = +∞, there exists a set
E with finite linear measure such that

m

(
r,

f (k)

f

)
= O (log (rT (r, f))) (2.9)

for r /∈ E. It follows from the definition of deficiency δ(∞, A) and (2.9) that for
sufficiently large r /∈ E, we have

T (r,A) ≤ 2
δ
m (r,A) =

2
δ
m

(
r,

f (k)

f

)
= O (log (rT (r, f))) . (2.10)

By Lemma 2.3, we have for any α > 1

T (r,A) ≤ O (log (αrT (αr, f))) . (2.11)

for sufficiently large r. Hence by the definition of hyper-order, we obtain that

γ = ρ2 (f) = lim
r→+∞

log log T (r, f)
log r

≥ ρ (A) = ρ. (2.12)

To prove the converse inequality, we observe that all poles of f occur at the poles
of A only. If the multiplicity of the poles of f is uniformly bounded, we have

T (r, f) = m (r, f) + O
(
N (r,A)

)
= m (r, f) + O (T (r,A)) , (2.13)

while if δ (∞, f) > 0, then

T (r, f) = O (m (r, f)) . (2.14)

Applying now either (2.13) or (2.14) with Lemma 2.2 and Lemma 2.3, we immedi-
ately get the required reversed inequality.

Lemma 2.5. [3] Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution with ρ (f) = +∞ of the equation

f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = F, (2.15)

then λ (f) = λ (f) = ρ (f) = +∞.

Lemma 2.6 Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic func-
tions. If f is a meromorphic solution of the equation (2.15) with ρ (f) = +∞ and
ρ2 (f) = ρ, then f satisfies λ2 (f) = λ2 (f) = ρ2 (f) = ρ.

Proof. By equation (2.15), we can write

1
f

=
1
F

(
f (k)

f
+ Ak−1

f (k−1)

f
+ · · ·+ A1

f
′

f
+ A0

)
. (2.16)
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If f has a zero at z0 of order α (> k) and if A0, A1, . . . , Ak−1 are all analytic at
z0, then F has a zero at z0 of order at least α− k. Hence,

n

(
r,

1
f

)
≤ k n

(
r,

1
f

)
+ n

(
r,

1
F

)
+

k−1∑
j=0

n (r,Aj) (2.17)

and

N

(
r,

1
f

)
≤ k N

(
r,

1
f

)
+ N

(
r,

1
F

)
+

k−1∑
j=0

N (r,Aj) . (2.18)

By (2.16), we have

m

(
r,

1
f

)
≤

k∑
j=1

m

(
r,

f (j)

f

)
+

k−1∑
j=0

m (r,Aj) + m

(
r,

1
F

)
+ O (1) . (2.19)

Applying the Lemma of the logarithmic derivative (see [8]), we have

m

(
r,

f (j)

f

)
= O (log T (r, f) + log r) (j = 1, . . . , k) , (2.20)

holds for all r outside a set E ⊂ (0, +∞) with a finite linear measure m (E) < +∞.
By (2.18), (2.19) and (2.20), we get

T (r, f) = T

(
r,

1
f

)
+ O (1)

≤ kN
(
r,

1
f

)
+

k−1∑
j=0

T (r,Aj) + T (r, F ) + O (log (rT (r, f))) (|z| = r /∈ E) .
(2.21)

Since ρ (f) = +∞, then there exists {r′n} (r′n → +∞) such that

lim
r′n→+∞

log T (r′n, f)
log r′n

= +∞. (2.22)

Set the linear measure of E, m (E) = γ < +∞, then there exists a point rn ∈
[r′n, r′n + γ + 1]− E. From

log T (rn, f)
log rn

≥
log T

(
r
′
n, f

)

log (r′n + γ + 1)
=

log T (r′n, f)
log r′n + log (1 + (γ + 1) /r′n)

, (2.23)

it follows that

lim
rn→+∞

log T (rn, f)
log rn

= +∞. (2.24)

Set σ = max{ ρ(Aj) | j = 0, . . . , k − 1, ρ(F ) }. Then for a given arbitrary large
β > σ,

T (rn, f) ≥ rβ
n (2.25)

holds for sufficiently large rn. On the other hand, for any given ε with 0 < 2ε <
β − σ, we have

T (rn, Aj) ≤ rσ+ε
n (j = 0, . . . , k − 1) , T (rn, F ) ≤ rσ+ε

n (2.26)
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for sufficiently large rn. Hence, we have

max
{

T (rn, F )
T (rn, f)

,
T (rn, Aj)
T (rn, f)

(j = 0, . . . , k − 1)
}
≤ rσ+ε

n

rβ
n

→ 0, rn → +∞. (2.27)

Therefore,

T (rn, F ) ≤ 1
k + 3

T (rn, f) , T (rn, Aj) ≤ 1
k + 3

T (rn, f) (j = 0, . . . , k − 1)

(2.28)
holds for sufficiently large rn. From

O (log rn + log T (rn, f)) = o (T (rn, f)) , (2.29)

we obtain that
O (log rn + log T (rn, f)) ≤ 1

k + 3
T (rn, f) (2.30)

also holds for sufficiently large rn. Thus, by (2.21), (2.28), (2.30), we have

T (rn, f) ≤ k (k + 3) N

(
rn,

1
f

)
. (2.31)

It yields λ2 (f) = λ2 (f) = ρ2 (f) = ρ.

Lemma 2.7. [7,p. 344] Let f (z) =
∑∞

n=0 an zn be an entire function, µ (r) be
the maximum term, i.e., µ (r) = max{|an| rn | n = 0, 1, . . . } and let νf (r) be the
central index of f , i.e., νf (r) = max{m, µ (r) = |am| rm}. Then

νf (r) = r
d

dr
log µ (r) < [log µ (r)]2 ≤ [log M (r, f)]2 (2.32)

holds outside a set E5 ⊂ (1, +∞) of r of finite logarithmic measure.

Lemma 2.8. (Wiman-Valiron, [7], [13]) Let f (z) be a transcendental entire
function, and let z be a point with |z| = r at which |f (z)| = M (r, f). Then the
estimation

f (k) (z)
f (z)

=
(

νf (r)
z

)k

(1 + o (1)) (k > 1 is an integer), (2.33)

holds for all |z| outside a set E6 of r of finite logarithmic measure.

Lemma 2.9. [2] Suppose that f (z) is a meromorphic function with ρ (f) = β <
+∞. Then for any given ε > 0, there is a set E7 ⊂ (1, +∞) of finite logarithmic
measure, such that

|f (z)| ≤ exp
{
rβ+ε

}
(2.34)

holds for |z| = r /∈ [0, 1] ∪ E7, r → +∞.

Lemma 2.10. Let f (z) be a meromorphic function with ρ (f) = +∞ and the
exponent of convergence of the poles of f (z), λ (1/f) < +∞. Let dj (z) (j = 0, 1, 2)
be polynomials that are not all equal to zero. Then

g (z) = d2 (z) f
′′

+ d1 (z) f
′
+ d0 (z) f (2.35)

satisfies ρ (g) = +∞.
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Proof. We suppose that ρ (g) = ρ < +∞ and then we obtain a contradiction.
First, we suppose that d2 (z) 6≡ 0. Set f (z) = w (z) /h (z), where h (z) is canonical
product (or polynomial) formed with the non-zero poles of f (z), λ (h) = ρ (h) =
λ (1/f) = ρ1 < +∞, w (z) is an entire function with ρ (w) = ρ (f) = +∞. We have

f ′ (z) =
w′h− h′w

h2
and f ′′ (z) =

w′′

h
− wh′′

h2
− 2

w′h′

h2
+ 2

(h′)2 w

h3
. (2.36)

Hence

f ′′ (z)
f (z)

=
w′′

w
− h′′

h
− 2

w′h′

wh
+ 2

(h′)2

h2
, (2.37)

f ′ (z)
f (z)

=
w′

w
− h′

h
. (2.38)

By Lemma 2.1 (ii), there exists a set E1 ⊂ (1, +∞) that has finite logarithmic
measure, such that for all z satisfying |z| /∈ E1 ∪ [0, 1], we have

∣∣∣∣
h(j)(z)
h(z)

∣∣∣∣ ≤ |z|j (ρ1−1+ε) (j = 1, 2) . (2.39)

Substituting (2.39) into (2.37) and (2.38), we obtain for all z satisfying |z| /∈ E1 ∪
[0, 1]

f ′′ (z)
f (z)

=
w′′

w
+ O (zα)

w′

w
+ O (zα) , (2.40)

f ′ (z)
f (z)

=
w′

w
+ O (zα) , (2.41)

where α (0 < α < +∞) is a constant and may be different at different places. Sub-
stituting (2.40) and (2.41) into (2.35), we obtain

d2 (z)
(

w′′

w
+ O (zα)

w′

w
+ O (zα)

)
+ d1 (z)

(
w′

w
+ O (zα)

)
+ d0 (z) =

g (z)h (z)
w (z)

.

(2.42)
It follows that

d2 (z)
w′′

w
+ (O (zα) d2 (z) + d1 (z))

w′

w
+ O (zα) d2 (z) + O (zα) d1 (z) + d0 (z)

=
g (z)h (z)

w (z)
. (2.43)

Hence,

d2 (z)
w′′

w
+ O (zm)

w′

w
+ O (zm) =

g (z) h (z)
w (z)

, (2.44)

where m (0 < m < +∞) is some constant. By Lemma 2.8, there exists a set E2 ⊂
(1, +∞) with logarithmic measure lm (E2) < +∞ and we can choose z satisfying
|z| = r /∈ [0, 1] ∪ E2, and |w (z)| = M (r, w), such that

w(j) (z)
w (z)

=
(

νw (r)
z

)j

(1 + o (1)) (j = 1, 2). (2.45)
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Since ρ (g) = ρ < +∞ and ρ (h) = λ (1/f) = ρ1 < +∞ by Lemma 2.9, there
exists a set E3 that has finite logarithmic measure, such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E3, r → +∞ we have

|g (z)| ≤ exp
{
rρ+1

}
, |h (z)| ≤ exp

{
rρ1+1

}
. (2.46)

By Lemma 2.7, there is a set E4 ⊂ (1,+∞) that has finite logarithmic measure,
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E4, we have

|νw (r)| < (log M (r, w))2 . (2.47)

Since ρ (w) = +∞, there exists {r′n} (r′n → +∞) such that

lim
r′n→+∞

log νw (r′n)
log r′n

= +∞. (2.48)

Set the logarithmic measure of E1 ∪ E2 ∪ E3 ∪ E4,

lm (E1 ∪ E2 ∪ E3 ∪ E4) = γ < +∞,

then there exists a point rn ∈ [r′n, (γ + 1) r′n]− E1 ∪ E2 ∪ E3 ∪ E4. From

log νw (rn)
log rn

≥ log νw (r′n)
log ((γ + 1) r′n)

=
log νw (r′n)(

1 + log(γ+1)
log r′n

)
log r′n

, (2.49)

it follows that

lim
rn→+∞

log νw (rn)
log rn

= +∞. (2.50)

Then for a given arbitrary large β > 2 (ρ1 + ρ + m + 3),

νw (rn) ≥ rβ
n (2.51)

holds for sufficiently large rn. Now we take point zn satisfying |zn| = rn and
w (zn) = M (rn, w), by (2.44) and (2.45), we get

|d2 (zn)|
(

νw (rn)
rn

)2

|1 + o (1)| ≤

≤ 2Lrm
n

(
νw (rn)

rn

)
|1 + o (1)|+

∣∣∣∣
g (zn) h (zn)

w (zn)

∣∣∣∣ , (2.52)

where L > 0 is some constant. By Lemma 2.7 and (2.51), we get

M (rn, w) > exp
(

r
β
2
n

)
. (2.53)

Hence by (2.46), (2.53) as rn → +∞
|g (zn)h (zn)|

M (rn, w)
→ 0 (2.54)
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holds. By (2.51), (2.52) , (2.54),we get

|d2 (zn)| rβ
n ≤ |d2 (zn)| νw (rn) ≤ 2LKrm+1

n , (2.55)

where K > 0 is some constant. This is a contradiction by β > 2 (ρ1 + ρ + m + 3).
Hence ρ (g) = +∞.

Now suppose d2 ≡ 0, d1 6≡ 0. Using a similar reasoning as above, we get a
contradiction. Hence ρ (g) = +∞.

Finally, if d2 ≡ 0, d1 ≡ 0, d0 6≡ 0, then we have g (z) = d0 (z) f (z) and by d0

is a polynomial, then we get ρ (g) = +∞.

3. Proof of Theorem 1.1

First, we suppose d2 6≡ 0. Suppose that f 6≡ 0 is a solution of equation (1.6)
with λ

(
1
f

)
< +∞. Then by Lemma 2.4, we have ρ (f) = +∞. Set w = g − ϕ =

d2f
′′ + d1f

′ + d0f − ϕ, then by Lemma 2.10, we have ρ (w) = ρ (g) = ρ (f) = +∞.
In order to the prove λ (g − ϕ) = +∞, we need to prove only λ (w) = +∞. By
substituting f ′′ = −Af into w, we get

w = d1f
′ + (d0 − d2A) f − ϕ. (3.1)

Differentiating both a sides of equation (3.1), we obtain

w′ = (−d2A + d0 + d′1)f
′ + (−d1A− (d2A)′ + d

′
0)f − ϕ′. (3.2)

Set α1 = d1, α0 = d0−d2A, β1 = −d2A+d0 +d′1, β0 = −d1A− (d2A)′+d′0. Then
we have

α1f
′ + α0f = w + ϕ, (3.3)

β1f
′ + β0f = w′ + ϕ′. (3.4)

Set
h = α1β0 − β1α0. (3.5)

We divide it into two cases to prove.
Case 1. If h ≡ 0, then by (3.3)–(3.5), we get

α1w
′ − β1w = −(α1ϕ

′ − β1ϕ) = F. (3.6)

Now we prove that α1ϕ
′ − β1ϕ 6≡ 0, i.e., d1

d2

ϕ′

ϕ − d0+d′1
d2

+ A 6≡ 0. Suppose that

A = d0+d′1
d2

− d1
d2

ϕ′

ϕ . Then we obtain

m (r,A) ≤ m

(
r,

d0 + d′1
d2

)
+ m

(
r,

ϕ′

ϕ

)
+ m

(
r,

d1

d2

)
+ O (1) . (3.7)

Since d1
d2

and d0+d′1
d2

are rational functions, then

m

(
r,

d1

d2

)
= O (ln r) , m

(
r,

d0 + d′1
d2

)
= O (ln r) . (3.8)
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By ρ (ϕ) < +∞, we have

m

(
r,

ϕ′

ϕ

)
= O (ln r) . (3.9)

It follows from the definition of deficiency δ(∞, A) that for sufficiently large r,
we get

m (r,A) ≥ δ

2
T (r,A) . (3.10)

So when r sufficiently large, we have by (3.7)–(3.10)

T (r,A) ≤ 2
δ
m (r,A) ≤ O (ln r) , (3.11)

and this contradicts that A is a transcendental meromorphic function with ρ (A) =
ρ > 0. Hence α1ϕ

′ − β1ϕ 6≡ 0 and then F 6≡ 0. By F 6≡ 0, and Lemma 2.5, we
obtain λ (w) = λ (w) = ρ (w) = +∞, i.e., λ (g − ϕ) = +∞.

Case 2. If h 6≡ 0, then by (3.3)-(3.5), we get

f =
α1(w′ + ϕ′)− β1(w + ϕ)

h
. (3.12)

Substituting (3.12) into equation (1.6), we obtain

α1

h
w′′′ + φ2w

′′ + φ1w
′ + φ0w = −

((
α1ϕ

′ − β1ϕ

h

)′′
+ A

(
α1ϕ

′ − β1ϕ

h

))
= F,

(3.13)
where φj (j = 0, 1, 2) are meromorphic functions with ρ (φj) < +∞ (j = 0, 1, 2).

By α1ϕ
′−β1ϕ 6≡ 0, ρ

(
α1ϕ′−β1ϕ

h

)
< +∞ and Lemma 2.4, we know that F 6≡ 0. By

Lemma 2.5, we obtain λ (w) = λ (w) = ρ (w) = +∞, i.e., λ (g − ϕ) = +∞.
Now suppose d2 ≡ 0, d1 6≡ 0 or d2 ≡ 0, d1 ≡ 0 and d0 6≡ 0. Using a similar

reasoning to that above we get λ (w) = λ (w) = ρ (w) = +∞, i.e., λ (g − ϕ) = +∞.

4. Proof of Theorem 1.2

Suppose that f (z) 6≡ 0 is a meromorphic solution of equation (1.5). Then
by Lemma 2.4, we have ρ (f) = +∞ and ρ2 (f) = ρ (A). Set wj = f (j) −
ϕ (j = 0, 1, . . . , k), then ρ (wj) = ρ (f) = +∞, ρ2 (wj) = ρ2 (f) = ρ (A)
(j = 0, 1, . . . , k), λ (wj) = λ

(
f (j) − ϕ

)
(j = 0, 1, . . . , k). Differentiating both sides

of wj = f (j) − ϕ and replacing f (k) with f (k) = −Af , we obtain

w
(k−j)
j = −Af − ϕ(k−j) (j = 0, 1, . . . , k) . (4.1)

Then we have

f = −w
(k−j)
j + ϕ(k−j)

A
. (4.2)

Substituting (4.2) into equation (1.5), we get
(

w
(k−j)
j

A

)(k)

+ w
(k−j)
j = −

((
ϕ(k−j)

A

)(k)

+ ϕ(k−j)

)
. (4.3)
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By (4.3) we can write

w
(2k−j)
j + Φ2k−j−1w

(2k−j−1)
j + · · ·+ Φk−jw

(k−j)
j

= −A

((
ϕ(k−j)

A

)(k)

+ A

(
ϕ(k−j)

A

))
, (4.4)

where Φk−j (z) , . . . , Φ2k−j−1 (z) (j = 0, 1, . . . , k) are meromorphic functions with

ρ (Φk−j) ≤ ρ, . . . , ρ (Φ2k−j−1) ≤ ρ (j = 0, 1, . . . , k). By A 6≡ 0 and ρ
(

ϕ(k−j)

A

)
<

+∞, then by Lemma 2.4, we have

−A

((
ϕ(k−j)

A

)(k)

+ A

(
ϕ(k−j)

A

))
6≡ 0. (4.5)

Hence, by Lemma 2.5, we have λ (wj) = ρ (wj) = +∞ and by Lemma 2.6 λ2 (wj) =
ρ2 (wj) = ρ (A) . Thus

λ(f (j) − ϕ) = ρ (f) = +∞, λ2(f (j) − ϕ) = ρ2 (f) = ρ (A) = ρ (4.6)

(j = 0, 1, . . . , k).
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