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ON THE UNIQUENESS OF MEROMORPHIC
FUNCTIONS SHARING THREE WEIGHTED VALUES

Indrajit Lahiri and Gautam Kumar Ghosh

Abstract. We prove a uniqueness theorem for meromorphic functions sharing three weight-
ed values, as consequences of which a number of results follow.

1. Introduction, Definitions and Results

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. For a ∈ C∪{∞} we say that f , g share the value a CM (counting
multiplicities) if f , g have the same a-points with the same multiplicity and we say
that f , g share the value a IM (ignoring multiplicities) if we do not consider the
multiplicities. We denote by E a set of nonnegative real numbers of finite linear
measure, not necessarily the same at each of its occurrence. By S(r, f) we mean
any quantity satisfying S(r, f) = o{T (r, f)} as r →∞(r 6∈ E) , where T (r, f) is the
Nevanlinna characteristic function of f . By N0(r, a; f, g) we denote the reduced
counting function of the common a-points of f and g. If f and g share 0, 1,∞ IM,
we denote by N0(r) the counting function of those zeros of f − g which are not the
zeros of f(f − 1) and 1/f . For the standard notations and definitions of the value
distribution theory we refer the reader to [1].

Let a1, a2, a3, a4 be four elements of C. Then the cross-ratio of these numbers
is defined as

(a1, a2, a3, a4) =
(a1 − a3)(a2 − a4)
(a2 − a3)(a1 − a4)

.

If ak = ∞ for some k ∈ {1, 2, 3, 4} then we define the cross-ratio as

(a1, a2, a3, a4) = lim
ak→∞

(a1 − a3)(a2 − a4)
(a2 − a3)(a1 − a4)

.

If a, b, c, d are distinct elements of C ∪ {∞}, in the paper we denote by L(w) the
following bilinear transformation

L(w) =
(w − c)(b− d)
(w − d)(b− c)

.

Clearly L(a) = (a, b, c, d) and a = (a, 1, 0,∞).
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In 1989 N. Terglane [6] proved the following theorem.

Theorem A. Let a, b, c, d be four distinct elements of C∪{∞}. Further suppose
that f and g are two distinct nonconstant meromorphic functions sharing b, c, d
CM. If N0(r, a; f, g) 6= S(r, f) and (a, b, c, d) ∈ {−1, 2, 1

2} then f is a bilinear
transformation of g.

In 2002 H. X. Yi and X. M. Li [7] considered the problem of removing the
hypothesis (a, b, c, d) ∈ {−1, 2, 1

2} in Theorem A. They proved the following results.

Theorem B. Let a1, a2, b, c, d be five distinct elements of C ∪ {∞} and f , g
be two nonconstant meromorphic functions sharing b, c, d CM. If N0(r, a1; f, g) 6=
S(r, f) and N0(r, a2; f, g) 6= S(r, f) then f ≡ g.

Theorem C. Let f and g be two distinct nonconstant meromorphic functions
sharing three values b, c, d ∈ C ∪ {∞} CM. If N0(r, a; f, g) 6= S(r, f) for some
a ∈ C ∪ {∞} \ {b, c, d}, then (a, b, c, d) is a rational number and N(r, a; f) =
T (r, f)+S(r, f), N(r, a; g) = T (r, g)+S(r, g) and N0(r, a; f, g) = 1

pT (r, f)+S(r, f),
where p is a positive integer.

Theorem D. Let f and g be two distinct nonconstant meromorphic functions
sharing three values b, c, d ∈ C ∪ {∞} CM. If N0(r, a; f, g) = T (r, f) + S(r, f)
for some a ∈ C ∪ {∞} \ {b, c, d}, then (a, b, c, d) ∈ {−1, 2, 1

2}, f is a bilinear
transformation of g and assume one of the following relations:
(I) L(f) = eγ , L(g) = e−γ and (a, b, c, d) = −1,

(II) L(f) = 1 + eγ , L(g) = 1 + e−γ and (a, b, c, d) = 2,

(III) L(f) =
1

1 + eγ
, L(g) =

1
1 + e−γ

and (a, b, c, d) =
1
2
,

where γ is a nonconstant entire function.

Theorem E. Let f and g be two distinct nonconstant meromorphic func-
tions sharing three values b, c, d ∈ C ∪ {∞} CM. If N0(r, a; f, g) 6= S(r, f)
and N0(r, a; f, g) 6= T (r, f) + S(r, f) for some a ∈ C ∪ {∞} \ {b, c, d}, then
(a, b, c, d)(6= 0, 1,−1, 2, 1

2 ) is a rational number and

N0(r, a; f, g) =
1
p
T (r, f) + S(r, f),

where p(> 1) is a positive integer, f is not a bilinear transformation of g and
assumes one of the following relations:

(I) L(f) =
esγ − 1

e(p+1)γ − 1
, L(g) =

e−sγ − 1
e−(p+1)γ − 1

and (a, b, c, d) =
s

p + 1
,

(II) L(f) =
e(p+1)γ − 1

e(p+1−s)γ − 1
, L(g) =

e−(p+1)γ − 1
e−(p+1−s)γ − 1

and (a, b, c, d) =
p + 1

p + 1− s
,

(III) L(f) =
esγ − 1

e−(p+1−s)γ − 1
, L(g) =

e−sγ − 1
e(p+1−s)γ − 1

and (a, b, c, d) =
s

s− p− 1
,

where γ is a nonconstant entire function and 1 ≤ s ≤ p.
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Considering the following examples we see that in Theorem D the strength of
sharing of none of the values can be weakened from CM to IM.

Example 1.1. Let f =
4(1− ez)
1− 3ez

and g =
(1− ez)3

1− 3ez
. Then f and g share 0

IM and 1,∞ CM. Since f − 2 =
2(1 + ez)
1− 3ez

and g− 2 =
(1 + ez)(4ez − e2z − 1)

1− 3ez
, we

see that N0(r, 2; f, g) = T (r, f)+S(r, f) but the conclusion of Theorem D does not
hold.

Example 1.2. Let f =
ez − 3
1− 3ez

and g =
e2z(ez − 3)

1− 3ez
. Then f , g share 0,∞

CM and 1 IM. Since f + 1 = −2(1 + ez)
1− 3ez

and g + 1 =
(1 + ez)(1 + e2z − 4ez)

1− 3ez
, we

see that N0(r,−1; f, g) = T (r, f) + S(r, f) but the conclusion of Theorem D does
not hold.

Example 1.3. Let f =
1− 3ez

4(1− ez)
and g =

1− 3ez

(1− ez)3
. Then f , g share 0, 1

CM and ∞ IM. Since f − 1
2

= − 1 + ez

4(1− ez)
and g − 1

2
=

(1 + ez)(1− 4ez + e2z)
2(1− ez)3

,

we see that N0(r,
1
2
; f, g) = T (r, f)+S(r, f) but the conclusion of Theorem D does

not hold.
Interchanging f and g in the above examples we see that in Theorem E also

CM sharing of values cannot be replaced by IM sharing of values.
In the paper we investigate the possibility of relaxing the nature of sharing the

three values. To this end we use the idea of weighted value sharing which measures
how close a value is being shared CM or being shared IM. We also intend to prove
a single uniqueness theorem which includes all the results mentioned above.

In the following definition we explain the idea of weighted value sharing.
Definition 1.1. [2, 3] Let k be a nonnegative integer or infinity. For a ∈

C ∪ {∞}, we denote by Ek(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f and g share the value a with weight k.

The definition implies that if f and g share a value a with weight k then z0

is a zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with
multiplicity m(≤ k) and z0 is a zero of f −a with multiplicity m(> k) if and only if
it is a zero of g− a with multiplicity n(> k) where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for all integers p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

We now state the main results of the paper.

Theorem 1.1. Let f and g be two distinct nonconstant meromorphic functions
sharing (0, k1), (1, k2), (∞, k3), where k1k2k3 > k1 +k2 +k3 +2. If N0(r, a; f, g) 6=
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S(r, f) for some a 6∈ {0, 1,∞} then one of the following holds:

(I) f =
esγ − 1

e(p+1)γ − 1
, g =

e−sγ − 1
e−(p+1)γ − 1

and a =
s

p + 1
,

(II) f =
e(p+1)γ − 1

e(p+1−s)γ − 1
, g =

e−(p+1)γ − 1
e−(p+1−s)γ − 1

and a =
p + 1

p + 1− s
,

(III) f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1
e(p+1−s)γ − 1

and a =
s

s− p− 1
,

where s and p are positive integers with 1 ≤ s ≤ p and s, p + 1 are relatively prime
and γ is a nonconstant entire function. Further

N0(r, a; f, g) =
1
p
T (r, f) + S(r, f).

Theorem 1.2. Let f and g be two distinct nonconstant meromorphic functions
sharing (b, k1), (c, k2), (d, k3), where k1k2k3 > k1 + k2 + k3 + 2 and b, c, d are three
distinct elements of C ∪ {∞}. If N0(r, a; f, g) 6= S(r, f) for some a ∈ C ∪ {∞} \
{b, c, d} then one of the following holds:

(I) L(f) =
esγ − 1

e(p+1)γ − 1
, L(g) =

e−sγ − 1
e−(p+1)γ − 1

and (a, b, c, d) =
s

p + 1
,

(II) L(f) =
e(p+1)γ − 1

e(p+1−s)γ − 1
, L(g) =

e−(p+1)γ − 1
e−(p+1−s)γ − 1

and (a, b, c, d) =
p + 1

p + 1− s
,

(III) L(f) =
esγ − 1

e−(p+1−s)γ − 1
, L(g) =

e−sγ − 1
e(p+1−s)γ − 1

and (a, b, c, d) =
s

s− p− 1
,

where s and p are positive integers with 1 ≤ s ≤ p and s, p + 1 are relatively prime
and γ is a nonconstant entire function. Further

N0(r, a; f, g) =
1
p
T (r, f) + S(r, f).

Following corollaries of Theorem 1.2 improve Theorem A–Theorem E respec-
tively.

Corollary 1.1. Theorem A holds even if f , g share (b, k1), (c, k2), (d, k3),
where k1k2k3 > k1 + k2 + k3 + 2.

Corollary 1.2. Theorem B holds even if f , g share (b, k1), (c, k2), (d, k3),
where k1k2k3 > k1 + k2 + k3 + 2.

Corollary 1.3. Theorem C holds even if f , g share (b, k1), (c, k2), (d, k3),
where k1k2k3 > k1 + k2 + k3 + 2.

Corollary 1.4. Theorem D holds even if f , g share (b, k1), (c, k2), (d, k3),
where k1k2k3 > k1 + k2 + k3 + 2.
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Corollary 1.5. Theorem E holds even if f , g share (b, k1), (c, k2), (d, k3),
where k1k2k3 > k1 + k2 + k3 + 2.

2. Lemmas

In this section we state three lemmas, which are necessary to prove the main
results.

Lemma 2.1. [4] Let f and g be two distinct non-constant meromorphic func-
tions sharing (0, k1), (1, k2), and (∞, k3), where kj(j = 1, 2, 3) are positive integers

satisfying k1k2k3 > k1 + k2 + k3 + 2. If lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

>
1
2

then one of the

following relations holds: (i) f + g ≡ 1, (ii) (f − 1)(g − 1) ≡ 1, and (iii) fg ≡ 1.

Lemma 2.2. [4] Let f and g be two distinct non-constant meromorphic func-
tions sharing (0, k1), (1, k2) and (∞, k3), where kj(j = 1, 2, 3) are positive integers

satisfying k1k2k3 > k1 + k2 + k3 + 2. If 0 < lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

≤ 1
2

then one of the
following holds:

(i) f =
esγ − 1

e(p+1)γ − 1
, g =

e−sγ − 1
e−(p+1)γ − 1

(1 ≤ s ≤ p),

(ii) f =
e(p+1)γ − 1

e(p+1−s)γ − 1
, g =

e−(p+1)γ − 1
e−(p+1−s)γ − 1

(1 ≤ s ≤ p),

(iii) f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1
e(p+1−s)γ − 1

(1 ≤ s ≤ p),

where s and p(≥ 2) are positive integers such that s, p + 1 are relatively prime and
γ is a nonconstant entire function.

Lemma 2.3. [5] Let f be a non-constant meromorphic function and

R(f) =
∑m

i=0 aif
i

∑n
j=0 bjf j

be a non-constant irreducible rational function in f with constant coefficients {ai}
and {bj} satisfying am 6= 0 and bn 6= 0. Then

T (r,R(f)) = max{m,n}T (r, f) + O(1).

3. Proofs of theorems and corollaries

Proof of Theorem 1.1. Since N0(r, a; f, g) ≤ N0(r) and N0(r, a; f, g) 6= S(r, f),
we see that

lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

> 0.

We now consider the following two cases.
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Case I. Let lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

>
1
2
. Then the three possibilities of Lemma 2.1

come up for consideration.

Let f + g ≡ 1. Since N0(r, a; f, g) 6= S(r, f), we see that a = 1
2 . Also 0 and

1 are Picard’s exceptional values of f and g. So there exists a nonconstant entire

function γ such that f =
1

eγ + 1
and g =

1
e−γ + 1

, which is possibility (I) of the

theorem for p = 1.

Let (f − 1)(g − 1) ≡ 1. Since N0(r, a; f, g) 6= S(r, f), we see that a = 2. Also
1 and ∞ are Picard’s exceptional values of f and g. So there exists a nonconstant
entire function γ such that f = eγ + 1 and g = e−γ + 1, which is possibility (II) of
the theorem for p = 1.

Let fg ≡ 1. Since N0(r, a; f, g) 6= S(r, f), we see that a = −1. Also 0 and
∞ are Picard’s exceptional values of f and g. So there exists a nonconstant entire
function γ such that f = −eγ and g = −e−γ , which is possibility (III) of the
theorem for p = 1.

Also we see in view of Lemma 2.3 that

N0(r, a; f, g) = N(r, 1; eγ) = T (r, eγ) + S(r, eγ) = T (r, f) + S(r, f).

Case II. Let 0 < lim sup
r→∞,r 6∈E

N0(r)
T (r, f)

≤ 1
2
. Then we consider the three possibili-

ties of Lemma 2.2.

Let

f =
esγ − 1

e(p+1)γ − 1
=

1 + eγ + e2γ + · · ·+ e(s−1)γ

1 + eγ + e2γ + · · ·+ epγ

and

g =
e−sγ − 1

e−(p+1)γ − 1
=

1 + e−γ + e−2γ + · · ·+ e−(s−1)γ

1 + e−γ + e−2γ + · · ·+ e−pγ
.

Since N0(r, a; f, g) 6= S(r, f), we see from above that a = s
p+1 , which is attained at

the roots of eγ − 1 = 0. This is possibility (I) of the theorem.

Let

f =
e(p+1)γ − 1

e(p+1−s)γ − 1
=

1 + eγ + e2γ + · · ·+ epγ

1 + eγ + e2γ + · · ·+ e(p−s)γ

and

g =
e−(p+1)γ − 1

e−(p+1−s)γ − 1
=

1 + e−γ + e−2γ + · · ·+ e−pγ

1 + e−γ + e−2γ + · · ·+ e−(p−s)γ
.

Since N0(r, a; f, g) 6= S(r, f), we see from above that a = p+1
p+1−s , which is attained

at the roots of eγ − 1 = 0. This is possibility (II) of the theorem.

Let

f =
esγ − 1

e−(p+1−s)γ − 1
= −eγ 1 + eγ + e2γ + · · ·+ e(s−1)γ

1 + e−γ + e−2γ + · · ·+ e−(p−s)γ
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and

g =
e−sγ − 1

e(p+1−s)γ − 1
= −eγ 1 + e−γ + e−2γ + · · ·+ e−(s−1)γ

1 + eγ + e2γ + · · ·+ e(p−s)γ
.

Since N0(r, a; f, g) 6= S(r, f), we see from above that a = s
s−p−1 , which is attained

at the roots of eγ − 1 = 0. This is possibility (III) of the theorem.

Again from above we see in view of Lemma 2.3

N0(r, a; f, g) = N(r, 1; eγ) = T (r, eγ) + S(r, eγ) =
1
p
T (r, f) + S(r, f).

This proves the theorem.

Proof of Theorem 1.2. From the hypotheses of the theorem we see that L(f)
and L(g) share (0, k2), (1, k1), (∞, k3). Also in view of Lemma 2.3 we get

N0(r, L(a); L(f), L(g)) = N0(r, a; f, g) 6= S(r, f) = S(r, L(f)).

Since k1 and k2 are interchangeable, Theorem 1.2 follows from Theorem 1.1
applied to L(f) and L(g). This proves the theorem.

Proof of Corollary 1.1. From the hypotheses we see that the possibilities of
Theorem 1.2 occur only for p = 1. Hence L(f) is a bilinear transformation of L(g).
Therefore f is a bilinear transformation of g.

Proof of Corollary 1.2. If f 6≡ g, by Theorem 1.2 we see that L(a1) = L(a2)
and so a1 = a2, which contradicts the hypotheses. Hence f ≡ g.

Proof of Corollary 1.3. By the hypotheses and Theorem 1.2 we see that L(a) =
(a, b, c, d) is a rational number.

Also in view of Theorem 1.2 and Lemma 2.3 we can verify that

N(r, a; f) = N(r, L(a); L(f)) = T (r, L(f)) + S(r, L(f)) = T (r, f) + S(r, f)

and

N(r, a; g) = N(r, L(a); L(g)) = T (r, L(g)) + S(r, L(g)) = T (r, g) + S(r, g).

Further by Theorem 1.2 we obtain

N0(r, a; f, g) =
1
p
T (r, f) + S(r, f).

Proof of Corollary 1.4. By the hypotheses we see that p = 1 in Theorem 1.2
and so the corollary follows.

Proof of Corollary 1.5. By the hypotheses we get p > 1 in Theorem 1.2. Hence
the corollary follows.
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