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COMPACT COMPOSITION OPERATORS
ON HARDY-ORLICZ SPACES

Ajay K. Sharma and S. D. Sharma

Abstract. In this paper, compact composition operators acting on Hardy-Orlicz spaces

HΦ =
{

f ∈ H(D) : sup
0<r<1

∫

∂D
Φ(log+ |f(reiθ)|) dσ < ∞

}

are studied. In fact, we prove that if Φ is a twice differentiable, non-constant, non-decreasing
non-negative, convex function on R, then the composition operator Cϕ induced by a holomorphic

self-map ϕ of the unit disk is compact on Hardy-Orlicz spaces HΦ if and only if it is compact on
the Hardy space H2.

1. Introduction

Let D be the open unit disk in the complex plane C and ϕ be a holomorphic
self-map of D. Then the equation Cϕf = f ◦ ϕ, for f analytic in D defines a
composition operator Cϕ with inducing map ϕ. As a consequence of the Littlewood
subordination principle, every ϕ induces a bounded composition operator on the
classical Hardy spaces Hp (0 < p < ∞) and the weighted Bergman spaces Ap

α for
all p (0 < p < ∞) and for all α (−1 < α < ∞) of the disk [4]. Amongst the nice
composition operators on these spaces are compact composition operators.

The study of compact composition operators on H2 was initiated by H. J.
Schwartz [9] in his thesis in the late 1960’s. This work was continued by Shapiro
and Taylor [10], who showed that Cϕ is not compact whenever ϕ has an angular de-
rivative at some point of the unit circle. Non-existence of the angular derivative is
not a sufficient condition for compactness of Cϕ in general. MacCluer and Shapiro
[7] showed that the non-existence of the angular derivative is also a sufficient con-
dition for compactness of Cϕ on the weighted Bergman spaces Ap

α but it fails to
be a sufficient condition for compactness of Cϕ on Hardy spaces Hp. However the
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angular derivative condition does characterize the compactness of Cϕ on Hp if the
inducing map is univalent.

Finally J. H. Shapiro [12] in 1987 was able to discover the connection between
the essential norm of a composition operator on the Hardy space H2 and the
Nevanlinna counting function for ϕ, which is defined as Nϕ(w) =

∑
z∈ϕ−1(w) log 1

|z| ,
and obtained the general expression

||Cϕ||2e = lim sup
|w|→1−

Nϕ(w)
log 1

|w|
,

where by the essential norm of Cϕ, we mean its distance, in the operator norm,
from the space of compact operators on H2. In particular, he proved that Cϕ is
compact on H2 if and only if Nϕ(w) = o

(
log 1

|w|
)

as |w| → 1, thus providing a
complete function theoretic characterization of compact composition operators in
terms of the inducing map’s Nevanlinna counting function Nϕ.

Another solution to the compactness problem can be given by means of the
positive measures mλ that are defined on the unit circle ∂D by the Poisson repre-
sentation

<λ + ϕ(z)
λ− ϕ(z)

=
∫

∂D
P (z, ζ) dmλ(ζ)

for each λ ∈ ∂D. These measures are often called the Aleksandrov measures of ϕ.
In [2], Cima and Matheson showed that the essential norm of Cϕ on H2 can also
be expressed as

‖Cϕ‖2e = sup
λ∈∂D

‖σλ‖,

where σλ is the singular part of mλ. In particular, it follows that Cϕ is compact on
the Hardy space H2 if and only if all the measures mλ are absolutely continuous.
If ϕ is a holomorphic-self map of D, then Liu, Cao and Wang [5] show that Cϕ

is bounded on each of the Hardy-Orlicz spaces. Furthermore, they discuss the
compactness of Cϕ on a particular subspace of HΦ, a question that is intimately
related to the main result of this paper. In fact, we are inspired by the following
results.

(1). If Cϕ is compact on one of the Hardy space Hp for some p (0 < p < ∞),
then it is compact on all of the Hardy spaces Hp (0 < p < ∞) [10].

(2). A holomorphic composition operator is compact on L1 if and only if it is
compact on H2 [11].

(3). For an arbitrary ϕ the compactness of Cϕ on Hardy spaces Hp is quite
different from the compactness of Cϕ on weighted Bergman spaces Ap

α. For example,
there exists inner function ϕ such that Cϕ is compact on Ap

α for all p (0 < p < ∞)
and for all α (−1 < α < ∞) but it is well known that no inner function can induce
a compact composition operator on any Hardy space Hp [7].

(4). That Cϕ is compact on the Nevanlinna class N if and only if it is compact
on H2 [1].
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All these results lead us to ask whether the compactness of Cϕ on Hardy-Orlicz
spaces implies compactness of Cϕ on H2 and conversely. The purpose of this paper
is to give an affirmative answer to this question.

2. Preliminaries

Let H(D) denote the space of all holomorphic functions on D. Let σ denote
the normalized Lebesgue measure on the unit circle ∂D, that is, σ(∂D) = 1. Let
ST 2(R) denote the class of strongly convex functions Φ : [−∞,∞) → [0,∞) (that
is, Φ is non-negative, convex and nondecreasing with Φ(t)

t →∞ as t →∞), which
satisify
(i) Φ(t) = 0 for all t < 0 with Φ(0) = Φ′(0) = 0,
(ii) Φ′′ exists for all t > 0 and,
(iii) Φ(2t) ≤ CΦ(t) for some positive constant C and for all t > 0.

For Φ ∈ ST 2(R), we define the Hardy-Orlicz space HΦ by

HΦ =
{

f ∈ H(D) : sup
0<r<1

∫

∂D
Φ(log+ |f(reiθ)|) dσ < ∞}

.

Although the integral expression above does not define a norm in HΦ, it holds that
the distance

d(f, g) =
∫

∂D
Φ(log+ |f(reiθ)− g(reiθ)|) dσ

defines a translation-invariant metric on HΦ, and turns HΦ into a complete metric
space. Abusing notation, we will denote

‖f‖Φ = sup
0<r<1

∫

∂D
Φ(log+ |f(reiθ)|) dσ,

for f ∈ HΦ. Obviously, the inequalitities

log+ x ≤ log(1 + x) ≤ 1 + log+ x, x ≥ 0

and
2 log+ x ≤ log(1 + x2) ≤ 1 + 2 log+ x, x ≥ 0

and the fact that Φ is nondecreasing convex function imply that

Φ(log+ x) ≤ Φ(log(1 + x)) ≤ Φ(1 + log+ x)

≤ 1
2
Φ(2) +

1
2
Φ(2 log+ x) ≤ 1

2
Φ(2) +

1
2
CΦ(log+ x)

and

Φ(log+ x) ≤ Φ(2 log+ x) ≤ Φ(log(1 + x2)) ≤ Φ(1 + 2 log+ x)

≤ 1
2
Φ(2) +

1
2
Φ(4 log+ x) ≤ 1

2
Φ(2) +

1
2
CΦ(log+ x).
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Hence f ∈ HΦ if and only if

sup
0<r<1

∫

∂D
Φ(log(1 + |f(reiθ)|)) dσ < ∞

or if and only if

sup
0<r<1

∫

∂D
Φ(log(1 + |f(reiθ)|2)) dσ < ∞.

3. Compactness

As noted in the introduction, we want to prove the following result.

Theorem 3.1. Let Φ ∈ ST 2(R) and ϕ be a holomorphic self-map of D. Then
Cϕ is compact on HΦ if and only if Cϕ is compact on H2.

In order to prove the theorem, we need a series of lemmas.
First of all we recall the remarkable formula of C.S. Stanton for integral means

of subharmonic functions in the disk D [13]. If u is a positive subharmonic function
on D and ϕ is a holomorphic self-map of D, then for 0 < r < 1,

1
2π

∫ 2π

0

u(ϕ(reiθ)) dθ = u(ϕ(0)) +
1
2π

∫

rD
Nϕ(r, z) dµ(z),

where µ is the Riesz measure of u, and Nϕ(r, ·) denotes the partial Nevanlinna
counting function of ϕ defined by

Nϕ(r, z) =
∑

w∈ϕ−1(z),|w|≤r

log
r

|w|

for r ∈ (0, 1). Let f be an analytic map. Applying Stanton’s formula to the
subharmonic function z → Φ(log(1 + |f(z)|2)), we obtain

1
2π

∫ 2π

0

Φ(log(1+|f(ϕ(reiθ))|2)) dθ = Φ(log(1+|f(ϕ(0))|2))+ 1
2π

∫

rD
Nϕ(r, z) dµ(z),

where µ is the Riesz measure of Φ(log(1+|f(z)|2)). An easy calculation on the same
lines as in [14] yields that, if Φ ∈ ST 2(R), f ∈ H(D) and g(z) = Φ(log(1+ |f(z)|2)),
z ∈ D, then

∇2g(z) = 4
[
Φ′′(log(1 + |f(z)|2))|f(z)|2 + Φ′(log(1 + |f(z)|2))] |f ′(z)|2

(1 + |f(z)|2)2

and the Riesz measure µg of g is given by

dµg(z) = 4
[
Φ′′(log(1 + |f(z)|2))|f(z)|2 + Φ′(log(1 + |f(z)|2))] |f ′(z)|2

(1 + |f(z)|2)2 dA(z),

where dA(z) is the two dimensional area measure on D.
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Set

fΦ(z) =
2
π

[
Φ′′(log(1 + |f(z)|2))|f(z)|2 + Φ′(log(1 + |f(z)|2))] |f ′(z)|2

(1 + |f(z)|2)2 .

Thus, we have

1
2π

∫ 2π

0

Φ(log(1 + |f(ϕ(reiθ))|2)) dθ

= Φ(log(1 + |f(ϕ(0))|2)) +
∫

rD
fΦ(z)Nϕ(r, z) dA(z).

Since Nϕ(r, z) increases monotonically to Nϕ(z), an application of Monotone con-
vergence theorem yields

lim
r→1

1
2π

∫ 2π

0

Φ(log(1 + |f(reiθ)|2)) dθ

= Φ(log(1 + |f(ϕ(0))|2)) +
∫

D
fΦ(z)Nϕ(z) dA(z).

The important special case of the previous formula is obtained if we choose ϕ to
be the identity map.

‖f‖Φ ≈ Φ(log(1 + |f(0)|2)) +
∫

D
fΦ(z) log

1
|z| dA(z).

The following lemma asserts that sequences that are norm bounded in HΦ are
uniformly bounded on compact subsets of D. In other words, for 0 < r < 1, there
has to be a uniform bound for all point-evaluation functionals corresponding to
points in rD.

Lemma 3.2. Let Φ ∈ ST 2(R). Then for z = ρeiθ ∈ D

|f(z)| ≤ exp
(
Φ−1

(2‖f‖Φ
1− ρ

))

for all f ∈ HΦ.

Proof. Since f is analytic

f(z) =
∫ 2π

0

P (r, θ − t)f(eit )dσ(t),

where P (., .) is the Poisson kernel. Replacing the unit disk D by rD, where 0 < r < 1
is arbitrarily fixed, we get for 0 ≤ ρ < 1,

f(z) =
1
2π

∫ 2π

0

P (ρeiθ, reiθ)f(eit) dt.

Since Φ(log+ |f |) is convex and increasing, we have by Jensen’s inequality

Φ(log+ |f(ρeiθ)|) ≤ 1
2π

∫ 2π

0

P (ρeiθ, reiθ)Φ(log+ |f(reiθ)|) dt.



220 A. K. Sharma, S. D. Sharma

Using the inequality P (ρeiθ, reiθ) ≤ 2
r − ρ

, we get

Φ(log+ |f(ρeiθ)|) ≤ 2
1− ρ

‖f‖Φ.

That is,

|f(z)| ≤ exp
(
Φ−1

(2‖f‖Φ
1− ρ

))
.

The following lemma characterizes the compactness of Cϕ on HΦ in terms of
sequential convergence.

Lemma 3.3. Let ϕ be a holomorphic self-map of D. Then Cϕ is compact on
HΦ if and only if for every sequence {fn}, which is norm bounded and converges
to zero uniformly on compact subsets of D, we have ‖fn ◦ ϕ‖Φ → 0.

The proof is similar to that of Proposition 3.11 in [3]. So we omit the details.
In what follows we say that a positive Borel measure µ on D is a vanishing

Carleson measure if

lim
δ→0

µ(S(δ, ζ))
δ

= 0

uniformly in ζ ∈ ∂D where 0 < δ < 1 and S(δ, ζ) = {z ∈ D : |z− ζ| < δ}. The next
criterion for compactness of Cϕ on H2 which is due to Shapiro [12] and MacCluer
[6] is useful in the proof of the main result.

Lemma 3.4. For a holomorphic self-map ϕ of D, the following are equivalent:
(i) Cϕ is compact on H2.

(ii) Nϕ(z) = o
(

log 1
|z|

)
as |z| → 1−.

(iii) The pull-back measure µϕ = σ ◦ ϕ−1 is a vanishing Carleson measure on D.

We are now in a position to prove the main result of this paper.

Proof of Theorem 3.1. First assume that Cϕ is compact on H2. The approach
to the proof comes from [13, Chapter 10]. Fix a sequence {fn} that is bounded by
a finite constant M in HΦ and converges to zero uniformly on compact subsets of
D. By Lemma 3.3, it is enough to show that ‖fn ◦ ϕ‖Φ → 0. Let ε > 0 be given.
Then it follows by Lemma 3.4, that we can choose r, 0 < r < 1 such that

Nϕ(z) < ε log
1
|z| , whenever r ≤ |z| < 1.

Since fn → 0 uniformly on compact subsets of D, so is f ′n. Thus we can choose
η(ε) so that

|fn| <
√

ε and |f ′n| <
√

ε

on rD whenever n > η(ε). Hence for such n we have

‖Cϕfn‖Φ ≤ Φ(log(1 + |fn(ϕ(0))|2)) +
∫

D
fΦ

n (z)Nϕ(z)dA(z).
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Since |fn(ϕ(0))| → 0 as n →∞ so

Φ(log(1 + |fn(ϕ(0))|2)) → 0 as n →∞
Thus it remains to show that

lim
n→∞

∫

D
fΦ

n (z)Nϕ(z)dA(z) = 0.

Now ∫

D
fΦ

n (z)Nϕ(z) dA(z) =
∫

rD
+

∫

D\rD
fΦ

n (z)Nϕ(z) dA(z) = I + II.

We first show that the first term above is bounded by a constant multiple of ε.

I ≤ 2
π

(Φ′′(log(1 + ε)ε + Φ′(log(1 + ε))) ε

∫

rD
Nϕ(z)dA(z)

≤ 2
π

(Φ′′(log(1 + ε)ε + Φ′(log(1 + ε))) ε (‖ϕ‖Φ − |ϕ(0)|2))

≤ 2
π

(Φ′′(log(1 + ε)ε + Φ′(log(1 + ε))) ε.

Finally, we show that the second term above is bounded by a constant multiple
of ε.

II ≤ ε

∫

D\rD
fΦ

n (z) log
1
|z|dA(z) ≤ ε (‖fn‖Φ − log(1 + |fn(0)|2)) ≤ ε‖fn‖Φ ≤ εM.

To prove the converse direction we assume that Cϕ is compact on HΦ. Because
of Lemma 3.4, we only need to verify that the pull-back measure σ ◦ ϕ−1 is a
vanishing Carleson measure on D. To prove this let a = (1 − δ)ζ, where ζ ∈ ∂D
and 0 < δ < 1. Let

ga(eiθ) =
1− |a|2
|1− aeiθ|2 .

Then ga is non-negative and ga ∈ L1(dσ). Let K(eiθ) = Φ−1(ga(eiθ)). Then K is
well defined, for K is strictly increasing in the range of ga. Since Φ is convex, Φ−1

is concave and so there is a constant C > 0 such that Φ−1(s) ≤ Cs for sufficiently
large s. Thus K ∈ L1(dσ). We set

h(z) = exp
{ ∫ 2π

0

H(z, eit)K(eit) dσ(t)
}
,

where H(z, eit) denotes the Herglotz kernel for D; namely,

H(z, eit) =
eit + z

eit − z
, z ∈ D.

Then
Φ(log+ |h(eiθ)|) = Φ(K(eiθ)) = ga(eiθ) ∈ L1(dσ).
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This means that h ∈ HΦ. Let

fa(z) =
2(1− |a|)2
(1− az)2

h(z).

Then clearly fa → 0 uniformly on compact subsets of D as |a| → 1. Moreover,

‖fa‖Φ = sup
0<r<1

∫ 2π

0

Φ(log+ |fa(reiθ)|) dσ(θ)

≤ sup
0<r<1

∫ 2π

0

Φ(log+(2|h(reiθ)|)) dθ

2π

≤ sup
0<r<1

∫ 2π

0

Φ
(

log+ 2 + log+
(

exp
{ ∫ 2π

0

H(reiθ, eit)K(eit) dσ(t)
})) dθ

2π

≤ 1
2
Φ(2 log+ 2) +

1
2
C sup

0<r<1

∫ 2π

0

1− |a|2
|1− areiθ|2

dθ

2π
=

1
2
Φ(2 log+ 2) +

1
2
C.

On the other hand
1− |a|2
|1− az|2 ≥ <

( 1− |a|2
(1− az)2

)
=

1− |a|2
(1− |a|)2<

(1− |a|
1− az

)2

=
1− |a|2

(1− |a|)2<
(
1 +

|a|(1− zζ)
(1− |a|)

)−2

,
(
ζ =

a

|a|
)

>
1
2

1− |a|2
(1− |a|)2 ≥

1
2δ

,

if |1−zζ|
1−|a| < γ0 for some fixed 0 < γ0 < 1/4, that is, if z ∈ S(γ0δ, ζ). That is,

Φ−1
( 1− |a|2
|1− az|2

)
≥ Φ−1

( 1
2δ

)

if z ∈ S(γ0δ, ζ). Thus for z ∈ S(γ0δ, ζ),

Φ(log+ |fa(z)|) = Φ(log+ 2(1− |a|)2
(1− az)2

|h(z)|) ≥ Φ(log+(expΦ−1
( 1

2δ

)
) =

1
2δ

.

Hence for all ζ ∈ ∂D and 0 < δ < 1, we have
1
2δ

µϕ(S(γ0δ, ζ)) ≤
∫

S(γ0δ,ζ)

Φ(log+ |fa(z)|)dµϕ(z)

≤
∫

D
Φ(log+ |fa(z)|)dµϕ(z)

≤ lim
r→1

∫ 2π

0

Φ(log+ |(fa ◦ ϕ)(reiθ)|) dθ

2π
= ‖fa ◦ ϕ‖Φ.

But the compactness of Cϕ on HΦ forces ‖fa ◦ ϕ‖Φ to tend to 0 as |a| → 1, which
implies that

lim
δ→0

µϕ(S(γ0δ, ζ))
δ

= 0,

uniformly in ζ ∈ ∂D. Hence µϕ is a vanishing-Carleson measure on D.
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Remark. One can certainly consider HΦ spaces when either Φ does not belong
to ST 2(R) or Φ is log-convex but not convex. However, Theorem 3.1 may fail if
we consider Hardy-Orlicz space HΦ induced by an arbitrary convex. For example,
if Φ is a non-negative function on R such that Φ(x) → 0, as x → −∞, and Φ is
non-decreasing but Φ(x) > 0 for some x 6= 0, then compactness of Cϕ on HΦ is
quite different from the compactness of Cϕ on H2. Here HΦ is defined as follows;

HΦ = {f ∈ H(D) :
∫ 2π

0

Φ(log|γf(reiθ)|) dσ(θ)

is bounded for 0 ≤ r < 1 and for some γ > 0. }

In fact, if we take Φ(x) = 0 for x ≤ 1, and Φ(x) = ∞ for x > 1, then HΦ becomes
H∞ and it is well known that the Cϕ is compact on H∞ if and only if ‖ϕ‖∞ < 1
[9]. Thus ϕ(z) = 1 − (1 − z)b 0 < b < 1 is a conformal map of D whose closure
intersects the unit circle only at 1 and so ϕ induces a non-compact composition
operator on H∞. However ϕ induces a compact composition operator on H2 [3, p.
131].
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