COMPACT COMPOSITION OPERATORS ON HARDY-ORLICZ SPACES

Ajay K. Sharma and S. D. Sharma

Abstract. In this paper, compact composition operators acting on Hardy-Orlicz spaces

$$H^{\Phi} = \left\{ f \in H(\mathbb{D}) : \sup_{0 < r < 1} \int_{\partial \mathbb{D}} \Phi(\log^+ |f(re^{i\theta})|) \, d\sigma < \infty \right\}$$

are studied. In fact, we prove that if Φ is a twice differentiable, non-constant, non-decreasing non-negative, convex function on \mathbb{R} , then the composition operator C_{φ} induced by a holomorphic self-map φ of the unit disk is compact on Hardy-Orlicz spaces H^{Φ} if and only if it is compact on the Hardy space H^2 .

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and φ be a holomorphic self-map of \mathbb{D} . Then the equation $C_{\varphi}f = f \circ \varphi$, for f analytic in \mathbb{D} defines a composition operator C_{φ} with inducing map φ . As a consequence of the Littlewood subordination principle, every φ induces a bounded composition operator on the classical Hardy spaces H^p $(0 and the weighted Bergman spaces <math>A^p_{\alpha}$ for all p $(0 and for all <math>\alpha$ $(-1 < \alpha < \infty)$ of the disk [4]. Amongst the nice composition operators on these spaces are compact composition operators.

The study of compact composition operators on H^2 was initiated by H. J. Schwartz [9] in his thesis in the late 1960's. This work was continued by Shapiro and Taylor [10], who showed that C_{φ} is not compact whenever φ has an angular derivative at some point of the unit circle. Non-existence of the angular derivative is not a sufficient condition for compactness of C_{φ} in general. MacCluer and Shapiro [7] showed that the non-existence of the angular derivative is also a sufficient condition for compactness of C_{φ} on the weighted Bergman spaces A^p_{α} but it fails to be a sufficient condition for compactness of C_{φ} on Hardy spaces H^p . However the

AMS Subject Classification: Primary 47B33, 46E38; Secondary 30D55.

Keywords and phrases: Hardy-Orlicz space, Composition operator, Nevanlinna counting function, vanishing Carleson measure.

First named author is supported by CSIR-grant (F.No. 9/100(100)2002 EMR-1).

²¹⁵

angular derivative condition does characterize the compactness of C_{φ} on H^p if the inducing map is univalent.

Finally J. H. Shapiro [12] in 1987 was able to discover the connection between the essential norm of a composition operator on the Hardy space H^2 and the Nevanlinna counting function for φ , which is defined as $N_{\varphi}(w) = \sum_{z \in \varphi^{-1}(w)} \log \frac{1}{|z|}$, and obtained the general expression

$$||C_{\varphi}||_e^2 = \limsup_{|w| \to 1^-} \frac{N_{\varphi}(w)}{\log \frac{1}{|w|}},$$

where by the essential norm of C_{φ} , we mean its distance, in the operator norm, from the space of compact operators on H^2 . In particular, he proved that C_{φ} is compact on H^2 if and only if $N_{\varphi}(w) = o\left(\log \frac{1}{|w|}\right)$ as $|w| \to 1$, thus providing a complete function theoretic characterization of compact composition operators in terms of the inducing map's Nevanlinna counting function N_{φ} .

Another solution to the compactness problem can be given by means of the positive measures m_{λ} that are defined on the unit circle $\partial \mathbb{D}$ by the Poisson representation

$$\Re \frac{\lambda + \varphi(z)}{\lambda - \varphi(z)} = \int_{\partial \mathbb{D}} P(z, \zeta) \, dm_{\lambda}(\zeta)$$

for each $\lambda \in \partial \mathbb{D}$. These measures are often called the Aleksandrov measures of φ . In [2], Cima and Matheson showed that the essential norm of C_{φ} on H^2 can also be expressed as

$$\|C_{\varphi}\|_e^2 = \sup_{\lambda \in \partial \mathbb{D}} \|\sigma_{\lambda}\|,$$

where σ_{λ} is the singular part of m_{λ} . In particular, it follows that C_{φ} is compact on the Hardy space H^2 if and only if all the measures m_{λ} are absolutely continuous. If φ is a holomorphic-self map of \mathbb{D} , then Liu, Cao and Wang [5] show that C_{φ} is bounded on each of the Hardy-Orlicz spaces. Furthermore, they discuss the compactness of C_{φ} on a particular subspace of H^{Φ} , a question that is intimately related to the main result of this paper. In fact, we are inspired by the following results.

(1). If C_{φ} is compact on one of the Hardy space H^p for some p ($0), then it is compact on all of the Hardy spaces <math>H^p$ (0) [10].

(2). A holomorphic composition operator is compact on L^1 if and only if it is compact on H^2 [11].

(3). For an arbitrary φ the compactness of C_{φ} on Hardy spaces H^p is quite different from the compactness of C_{φ} on weighted Bergman spaces A^p_{α} . For example, there exists inner function φ such that C_{φ} is compact on A^p_{α} for all p ($0) and for all <math>\alpha$ ($-1 < \alpha < \infty$) but it is well known that no inner function can induce a compact composition operator on any Hardy space H^p [7].

(4). That C_{φ} is compact on the Nevanlinna class N if and only if it is compact on H^2 [1]. All these results lead us to ask whether the compactness of C_{φ} on Hardy-Orlicz spaces implies compactness of C_{φ} on H^2 and conversely. The purpose of this paper is to give an affirmative answer to this question.

2. Preliminaries

Let $H(\mathbb{D})$ denote the space of all holomorphic functions on \mathbb{D} . Let σ denote the normalized Lebesgue measure on the unit circle $\partial \mathbb{D}$, that is, $\sigma(\partial \mathbb{D}) = 1$. Let $ST^2(\mathbb{R})$ denote the class of strongly convex functions $\Phi : [-\infty, \infty) \to [0, \infty)$ (that is, Φ is non-negative, convex and nondecreasing with $\frac{\Phi(t)}{t} \to \infty$ as $t \to \infty$), which satisify

- (i) $\Phi(t) = 0$ for all t < 0 with $\Phi(0) = \Phi'(0) = 0$,
- (ii) Φ'' exists for all t > 0 and,
- (iii) $\Phi(2t) \leq C\Phi(t)$ for some positive constant C and for all t > 0.

For $\Phi \in ST^2(\mathbb{R})$, we define the Hardy-Orlicz space H^{Φ} by

$$H^{\Phi} = \big\{ f \in H(\mathbb{D}) : \sup_{0 < r < 1} \int_{\partial \mathbb{D}} \Phi(\log^+ |f(re^{i\theta})|) \, d\sigma < \infty \big\}.$$

Although the integral expression above does not define a norm in H^{Φ} , it holds that the distance

$$d(f,g) = \int_{\partial \mathbb{D}} \Phi(\log^+ |f(re^{i\theta}) - g(re^{i\theta})|) \, d\sigma$$

defines a translation-invariant metric on H^{Φ} , and turns H^{Φ} into a complete metric space. Abusing notation, we will denote

$$||f||_{\Phi} = \sup_{0 < r < 1} \int_{\partial \mathbb{D}} \Phi(\log^+ |f(re^{i\theta})|) \, d\sigma,$$

for $f \in H^{\Phi}$. Obviously, the inequalitities

$$\log^+ x \le \log(1+x) \le 1 + \log^+ x, \qquad x \ge 0$$

and

$$2\log^+ x \le \log(1+x^2) \le 1+2\log^+ x, \qquad x \ge 0$$

and the fact that Φ is nondecreasing convex function imply that

$$\Phi(\log^+ x) \le \Phi(\log(1+x)) \le \Phi(1+\log^+ x)$$

$$\le \frac{1}{2}\Phi(2) + \frac{1}{2}\Phi(2\log^+ x) \le \frac{1}{2}\Phi(2) + \frac{1}{2}C\Phi(\log^+ x)$$

and

$$\begin{aligned} \Phi(\log^+ x) &\leq \Phi(2\log^+ x) \leq \Phi(\log(1+x^2)) \leq \Phi(1+2\log^+ x) \\ &\leq \frac{1}{2}\Phi(2) + \frac{1}{2}\Phi(4\log^+ x) \leq \frac{1}{2}\Phi(2) + \frac{1}{2}C\Phi(\log^+ x). \end{aligned}$$

Hence $f \in H^{\Phi}$ if and only if

$$\sup_{0 < r < 1} \int_{\partial \mathbb{D}} \Phi(\log(1 + |f(re^{i\theta})|)) \, d\sigma < \infty$$

or if and only if

$$\sup_{0 < r < 1} \int_{\partial \mathbb{D}} \Phi(\log(1 + |f(re^{i\theta})|^2)) \, d\sigma < \infty.$$

3. Compactness

As noted in the introduction, we want to prove the following result.

THEOREM 3.1. Let $\Phi \in ST^2(\mathbb{R})$ and φ be a holomorphic self-map of \mathbb{D} . Then C_{φ} is compact on H^{Φ} if and only if C_{φ} is compact on H^2 .

In order to prove the theorem, we need a series of lemmas.

First of all we recall the remarkable formula of C.S. Stanton for integral means of subharmonic functions in the disk \mathbb{D} [13]. If u is a positive subharmonic function on \mathbb{D} and φ is a holomorphic self-map of \mathbb{D} , then for 0 < r < 1,

$$\frac{1}{2\pi}\int_0^{2\pi} u(\varphi(re^{i\theta}))\,d\theta = u(\varphi(0)) + \frac{1}{2\pi}\int_{r\mathbb{D}} N_\varphi(r,z)\,d\mu(z),$$

where μ is the Riesz measure of u, and $N_{\varphi}(r, \cdot)$ denotes the partial Nevanlinna counting function of φ defined by

$$N_{\varphi}(r, z) = \sum_{w \in \varphi^{-1}(z), |w| \le r} \log \frac{r}{|w|}$$

for $r \in (0,1)$. Let f be an analytic map. Applying Stanton's formula to the subharmonic function $z \to \Phi(\log(1+|f(z)|^2))$, we obtain

$$\frac{1}{2\pi} \int_0^{2\pi} \Phi(\log(1+|f(\varphi(re^{i\theta}))|^2)) \, d\theta = \Phi(\log(1+|f(\varphi(0))|^2)) + \frac{1}{2\pi} \int_{r\mathbb{D}} N_{\varphi}(r,z) \, d\mu(z),$$

where μ is the Riesz measure of $\Phi(\log(1+|f(z)|^2))$. An easy calculation on the same lines as in [14] yields that, if $\Phi \in ST^2(\mathbb{R})$, $f \in H(\mathbb{D})$ and $g(z) = \Phi(\log(1+|f(z)|^2))$, $z \in \mathbb{D}$, then

$$\nabla^2 g(z) = 4 \left[\Phi''(\log(1+|f(z)|^2)) |f(z)|^2 + \Phi'(\log(1+|f(z)|^2)) \right] \frac{|f'(z)|^2}{(1+|f(z)|^2)^2}$$

and the Riesz measure μ_q of g is given by

$$d\mu_g(z) = 4 \Big[\Phi''(\log(1+|f(z)|^2)) |f(z)|^2 + \Phi'(\log(1+|f(z)|^2)) \Big] \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} dA(z),$$

where dA(z) is the two dimensional area measure on \mathbb{D} .

 Set

$$f^{\Phi}(z) = \frac{2}{\pi} \left[\Phi''(\log(1+|f(z)|^2)) |f(z)|^2 + \Phi'(\log(1+|f(z)|^2)) \right] \frac{|f'(z)|^2}{(1+|f(z)|^2)^2}$$

Thus, we have

$$\frac{1}{2\pi} \int_0^{2\pi} \Phi(\log(1 + |f(\varphi(re^{i\theta}))|^2)) \, d\theta$$

= $\Phi(\log(1 + |f(\varphi(0))|^2)) + \int_{r\mathbb{D}} f^{\Phi}(z) N_{\varphi}(r, z) \, dA(z).$

Since $N_{\varphi}(r, z)$ increases monotonically to $N_{\varphi}(z)$, an application of Monotone convergence theorem yields

$$\begin{split} \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \Phi(\log(1 + |f(re^{i\theta})|^2)) \, d\theta \\ &= \Phi(\log(1 + |f(\varphi(0))|^2)) + \int_{\mathbb{D}} f^{\Phi}(z) N_{\varphi}(z) \, dA(z). \end{split}$$

The important special case of the previous formula is obtained if we choose φ to be the identity map.

$$||f||_{\Phi} \approx \Phi(\log(1+|f(0)|^2)) + \int_{\mathbb{D}} f^{\Phi}(z) \log \frac{1}{|z|} dA(z).$$

The following lemma asserts that sequences that are norm bounded in H^{Φ} are uniformly bounded on compact subsets of \mathbb{D} . In other words, for 0 < r < 1, there has to be a uniform bound for all point-evaluation functionals corresponding to points in $r\mathbb{D}$.

LEMMA 3.2. Let
$$\Phi \in ST^2(\mathbb{R})$$
. Then for $z = \rho e^{i\theta} \in \mathbb{D}$
 $|f(z)| \leq \exp\left(\Phi^{-1}\left(\frac{2||f||_{\Phi}}{1-\rho}\right)\right)$

for all $f \in H^{\Phi}$.

Proof. Since f is analytic

$$f(z) = \int_0^{2\pi} P(r, \theta - t) f(e^{it}) d\sigma(t),$$

where P(.,.) is the Poisson kernel. Replacing the unit disk \mathbb{D} by $r\mathbb{D}$, where 0 < r < 1 is arbitrarily fixed, we get for $0 \le \rho < 1$,

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} P(\rho e^{i\theta}, r e^{i\theta}) f(e^{it}) dt.$$

Since $\Phi(\log^+ |f|)$ is convex and increasing, we have by Jensen's inequality

$$\Phi(\log^+ |f(\rho e^{i\theta})|) \le \frac{1}{2\pi} \int_0^{2\pi} P(\rho e^{i\theta}, r e^{i\theta}) \Phi(\log^+ |f(r e^{i\theta})|) dt.$$

A. K. Sharma, S. D. Sharma

Using the inequality $P(\rho e^{i\theta}, r e^{i\theta}) \leq \frac{2}{r-\rho}$, we get

$$\Phi(\log^+ |f(\rho e^{i\theta})|) \le \frac{2}{1-\rho} ||f||_{\Phi}.$$

That is,

$$|f(z)| \le \exp\left(\Phi^{-1}\left(\frac{2\|f\|_{\Phi}}{1-\rho}\right)\right). \quad \bullet$$

The following lemma characterizes the compactness of C_{φ} on H^{Φ} in terms of sequential convergence.

LEMMA 3.3. Let φ be a holomorphic self-map of \mathbb{D} . Then C_{φ} is compact on H^{Φ} if and only if for every sequence $\{f_n\}$, which is norm bounded and converges to zero uniformly on compact subsets of \mathbb{D} , we have $\|f_n \circ \varphi\|_{\Phi} \to 0$.

The proof is similar to that of Proposition 3.11 in [3]. So we omit the details.

In what follows we say that a positive Borel measure μ on $\overline{\mathbb{D}}$ is a vanishing Carleson measure if

$$\lim_{\delta \to 0} \frac{\mu(S(\delta, \zeta))}{\delta} = 0$$

uniformly in $\zeta \in \partial \mathbb{D}$ where $0 < \delta < 1$ and $S(\delta, \zeta) = \{z \in \mathbb{D} : |z - \zeta| < \delta\}$. The next criterion for compactness of C_{φ} on H^2 which is due to Shapiro [12] and MacCluer [6] is useful in the proof of the main result.

LEMMA 3.4. For a holomorphic self-map φ of \mathbb{D} , the following are equivalent: (i) C_{φ} is compact on H^2 .

(ii)
$$N_{\varphi}(z) = o\left(\log \frac{1}{|z|}\right) as |z| \to 1^-.$$

(iii) The pull-back measure $\mu_{\varphi} = \sigma \circ \varphi^{-1}$ is a vanishing Carleson measure on $\overline{\mathbb{D}}$.

We are now in a position to prove the main result of this paper.

Proof of Theorem 3.1. First assume that C_{φ} is compact on H^2 . The approach to the proof comes from [13, Chapter 10]. Fix a sequence $\{f_n\}$ that is bounded by a finite constant M in H^{Φ} and converges to zero uniformly on compact subsets of \mathbb{D} . By Lemma 3.3, it is enough to show that $||f_n \circ \varphi||_{\Phi} \to 0$. Let $\epsilon > 0$ be given. Then it follows by Lemma 3.4, that we can choose r, 0 < r < 1 such that

$$N_{\varphi}(z) < \epsilon \log \frac{1}{|z|}$$
, whenever $r \le |z| < 1$.

Since $f_n \to 0$ uniformly on compact subsets of \mathbb{D} , so is f'_n . Thus we can choose $\eta(\epsilon)$ so that

$$|f_n| < \sqrt{\epsilon} \text{ and } |f'_n| < \sqrt{\epsilon}$$

on $r\mathbb{D}$ whenever $n > \eta(\epsilon)$. Hence for such n we have

$$\|C_{\varphi}f_n\|_{\Phi} \le \Phi(\log(1+|f_n(\varphi(0))|^2)) + \int_{\mathbb{D}} f_n^{\Phi}(z)N_{\varphi}(z)dA(z)$$

Since $|f_n(\varphi(0))| \to 0$ as $n \to \infty$ so

$$\Phi(\log(1+|f_n(\varphi(0))|^2)) \to 0 \text{ as } n \to \infty$$

Thus it remains to show that

$$\lim_{n \to \infty} \int_{\mathbb{D}} f_n^{\Phi}(z) N_{\varphi}(z) dA(z) = 0.$$

Now

$$\int_{\mathbb{D}} f_n^{\Phi}(z) N_{\varphi}(z) \, dA(z) = \int_{r\mathbb{D}} + \int_{\mathbb{D} \setminus r\mathbb{D}} f_n^{\Phi}(z) N_{\varphi}(z) \, dA(z) = I + II.$$

We first show that the first term above is bounded by a constant multiple of ϵ .

$$I \leq \frac{2}{\pi} (\Phi''(\log(1+\epsilon)\epsilon + \Phi'(\log(1+\epsilon))) \epsilon \int_{r\mathbb{D}} N_{\varphi}(z) dA(z)$$

$$\leq \frac{2}{\pi} (\Phi''(\log(1+\epsilon)\epsilon + \Phi'(\log(1+\epsilon))) \epsilon (||\varphi||_{\Phi} - |\varphi(0)|^2))$$

$$\leq \frac{2}{\pi} (\Phi''(\log(1+\epsilon)\epsilon + \Phi'(\log(1+\epsilon))) \epsilon.$$

Finally, we show that the second term above is bounded by a constant multiple of $\epsilon.$

$$II \leq \epsilon \int_{\mathbb{D}\backslash r\mathbb{D}} f_n^{\Phi}(z) \log \frac{1}{|z|} dA(z) \leq \epsilon \left(\|f_n\|_{\Phi} - \log(1 + |f_n(0)|^2) \right) \leq \epsilon \|f_n\|_{\Phi} \leq \epsilon M.$$

To prove the converse direction we assume that C_{φ} is compact on H^{Φ} . Because of Lemma 3.4, we only need to verify that the pull-back measure $\sigma \circ \varphi^{-1}$ is a vanishing Carleson measure on $\overline{\mathbb{D}}$. To prove this let $a = (1 - \delta)\zeta$, where $\zeta \in \partial \mathbb{D}$ and $0 < \delta < 1$. Let

$$g_a(e^{i\theta}) = \frac{1 - |a|^2}{|1 - \overline{a}e^{i\theta}|^2}.$$

Then g_a is non-negative and $g_a \in L^1(d\sigma)$. Let $K(e^{i\theta}) = \Phi^{-1}(g_a(e^{i\theta}))$. Then K is well defined, for K is strictly increasing in the range of g_a . Since Φ is convex, Φ^{-1} is concave and so there is a constant C > 0 such that $\Phi^{-1}(s) \leq Cs$ for sufficiently large s. Thus $K \in L^1(d\sigma)$. We set

$$h(z) = \exp\big\{\int_0^{2\pi} H(z, e^{it}) K(e^{it}) \, d\sigma(t)\big\},\$$

where $H(z, e^{it})$ denotes the Herglotz kernel for \mathbb{D} ; namely,

$$H(z, e^{it}) = \frac{e^{it} + z}{e^{it} - z}, \qquad z \in \mathbb{D}.$$

Then

$$\Phi(\log^+ |h(e^{i\theta})|) = \Phi(K(e^{i\theta})) = g_a(e^{i\theta}) \in L^1(d\sigma).$$

This means that $h \in H^{\Phi}$. Let

$$f_a(z) = \frac{2(1-|a|)^2}{(1-\overline{a}z)^2}h(z).$$

Then clearly $f_a \to 0$ uniformly on compact subsets of \mathbb{D} as $|a| \to 1$. Moreover,

$$\begin{split} \|f_a\|_{\Phi} &= \sup_{0 < r < 1} \int_0^{2\pi} \Phi(\log^+ |f_a(re^{i\theta})|) \, d\sigma(\theta) \\ &\leq \sup_{0 < r < 1} \int_0^{2\pi} \Phi(\log^+(2|h(re^{i\theta})|)) \, \frac{d\theta}{2\pi} \\ &\leq \sup_{0 < r < 1} \int_0^{2\pi} \Phi\left(\log^+ 2 + \log^+ \left(\exp\left\{\int_0^{2\pi} H(re^{i\theta}, e^{it}) K(e^{it}) \, d\sigma(t)\right\}\right)\right) \frac{d\theta}{2\pi} \\ &\leq \frac{1}{2} \Phi(2\log^+ 2) + \frac{1}{2} C \sup_{0 < r < 1} \int_0^{2\pi} \frac{1 - |a|^2}{|1 - \overline{a}re^{i\theta}|^2} \, \frac{d\theta}{2\pi} = \frac{1}{2} \Phi(2\log^+ 2) + \frac{1}{2} C. \end{split}$$

On the other hand

$$\begin{split} \frac{1-|a|^2}{1-\overline{a}z|^2} &\geq \Re\Big(\frac{1-|a|^2}{(1-\overline{a}z)^2}\Big) = \frac{1-|a|^2}{(1-|a|)^2} \Re\Big(\frac{1-|a|}{1-\overline{a}z}\Big)^2 \\ &= \frac{1-|a|^2}{(1-|a|)^2} \Re\Big(1+\frac{|a|(1-z\overline{\zeta})}{(1-|a|)}\Big)^{-2}, \quad \left(\zeta = \frac{a}{|a|}\right) \\ &> \frac{1}{2} \frac{1-|a|^2}{(1-|a|)^2} \geq \frac{1}{2\delta}, \end{split}$$

if $\frac{|1-z\overline{\zeta}|}{|1-|a|} < \gamma_0$ for some fixed $0 < \gamma_0 < 1/4$, that is, if $z \in S(\gamma_0 \delta, \zeta)$. That is, $\Phi^{-1}\left(\frac{1-|a|^2}{|1-\overline{a}z|^2}\right) \ge \Phi^{-1}\left(\frac{1}{2\delta}\right)$

$$\Psi \left(\frac{1}{|1 - \overline{a}z|^2} \right) \ge \Psi \quad \left(\int_{\overline{a}z} \int_{\overline{a}$$

if $z \in S(\gamma_0 \delta, \zeta)$. Thus for $z \in S(\gamma_0 \delta, \zeta)$,

$$\Phi(\log^+ |f_a(z)|) = \Phi(\log^+ \frac{2(1-|a|)^2}{(1-\overline{a}z)^2} |h(z)|) \ge \Phi(\log^+(\exp\Phi^{-1}\left(\frac{1}{2\delta}\right)) = \frac{1}{2\delta}.$$

Hence for all $\zeta \in \partial \mathbb{D}$ and $0 < \delta < 1$, we have

$$\begin{split} \frac{1}{2\delta} \mu_{\varphi}(S(\gamma_0 \delta, \zeta)) &\leq \int_{S(\gamma_0 \delta, \zeta)} \Phi(\log^+ |f_a(z)|) d\mu_{\varphi}(z) \\ &\leq \int_{\overline{\mathbb{D}}} \Phi(\log^+ |f_a(z)|) d\mu_{\varphi}(z) \\ &\leq \lim_{r \to 1} \int_0^{2\pi} \Phi(\log^+ |(f_a \circ \varphi)(re^{i\theta})|) \frac{d\theta}{2\pi} = \|f_a \circ \varphi\|_{\Phi}. \end{split}$$

But the compactness of C_{φ} on H^{Φ} forces $||f_a \circ \varphi||_{\Phi}$ to tend to 0 as $|a| \to 1$, which implies that

$$\lim_{\delta \to 0} \frac{\mu_{\varphi}(S(\gamma_0 \delta, \zeta))}{\delta} = 0.$$

uniformly in $\zeta \in \partial D$. Hence μ_{φ} is a vanishing-Carleson measure on \mathbb{D} .

REMARK. One can certainly consider H^{Φ} spaces when either Φ does not belong to $ST^2(\mathbb{R})$ or Φ is log-convex but not convex. However, Theorem 3.1 may fail if we consider Hardy-Orlicz space H^{Φ} induced by an arbitrary convex. For example, if Φ is a non-negative function on \mathbb{R} such that $\Phi(x) \to 0$, as $x \to -\infty$, and Φ is non-decreasing but $\Phi(x) > 0$ for some $x \neq 0$, then compactness of C_{φ} on H^{Φ} is quite different from the compactness of C_{φ} on H^2 . Here H^{Φ} is defined as follows;

$$H^{\Phi} = \{ f \in H(\mathbb{D}) : \int_{0}^{2\pi} \Phi(\log|\gamma f(re^{i\theta})|) \, d\sigma(\theta)$$

is bounded for $0 \le r < 1$ and for some $\gamma > 0$.

In fact, if we take $\Phi(x) = 0$ for $x \leq 1$, and $\Phi(x) = \infty$ for x > 1, then H^{Φ} becomes H^{∞} and it is well known that the C_{φ} is compact on H^{∞} if and only if $\|\varphi\|_{\infty} < 1$ [9]. Thus $\varphi(z) = 1 - (1 - z)^b \ 0 < b < 1$ is a conformal map of \mathbb{D} whose closure intersects the unit circle only at 1 and so φ induces a non-compact composition operator on H^{∞} . However φ induces a compact composition operator on H^2 [3, p. 131].

ACKNOWLEDGEMENT. We are extremely thankful to referees for going through the manuscript thoroughly and pointing out several typographical and mathematical errors which strengthened the manuscript a lot.

REFERENCES

- J. S. Choa and H. O. Kim, Compact composition operators on the Nevanlinna class, Proc. Amer. Math. Soc. 125 (1997), 145–151.
- [2] J. Cima and A. Matheson, Essential norms of a Composition operators and Aleksandrov Measures, Pacific J. Math. 179 (1997), 59–63.
- [3] C. C. Cowen and B. D. MacCluer, Composition Operators on Apaces of Analytic Functions, CRC Press Boca Raton, New York, 1995.
- [4] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. 23 (1925)
- [5] L. Liu, G. Cao and X. Wang, Composition operators on Hardy-Orlicz spaces, Acta Math. Sci. Ser. B Engl. Ed. 25 (2005), 105–111.
- [6] B. D. MacCluer, Compact composition operators on $H^p(B_N)$, Michigan Math. J. **32** (1985), 237–248.
- [7] B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators on Hardy and Bergman spaces, Can. J. Math. 38 (1986), 878–906.
- [8] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker, New York, 1991.
- [9] H. J. Schwartz, Composition operators on H^p , Thesis, University of Toledo, 1969.
- [10] J. H. Shapiro and P. D. Taylor, Compact, nuclear and Hilbert-Schmidt composition operators on H², Indiana Univ. Math J. 23 (1973), 471–496.
- [11] J. H. Shapiro and C. Sundberg, Compact composition operators on L¹, Proc. Amer. Math. Soc. 108 (1990), 443–449.
- [12] J. H. Shapiro, The essential norm of a composition operator, Ann. Math. 125 (1987), 375–404.
- [13] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York. 1993.

A. K. Sharma, S. D. Sharma

[14] M. Stoll, A Characterization of Hardy-Orlicz spaces on Planar Domains, Proc. Amer. Math. Soc. 117 (1993) 1032–1038.

(received 15.08.2007, in revised form 18.10.2007)

Department of Mathematics, University of Jammu, Jammu-180006, India *E-mail*: aksju_760yahoo.com, somdatt_jammu@yahoo.co.in