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A CLASS OF MULTIVALENT HARMONIC FUNCTIONS
INVOLVING A GENERALIZED RUSCHEWEYH TYPE OPERATOR

Waggas Galib Atshan, S. R. Kulkarni and R. K. Raina

Abstract. A class of p-valent harmonic functions associated with a certain generalized
Ruscheweyh type operator is introduced. Among the various properties investigated for this class
of functions are the results giving the coefficient bounds, distortion properties and extreme points.

1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in
a complex domain C if both u and v are real harmonic in C. In any simply-
connected domain D ⊂ C, we can write f = h + g, where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and sense-preserving in D is that
|h′(z)| > |g′(z)| in D. See Clunie and Sheil-Small [3].

Denote by H(p) the class of functions f = h+ g that are harmonic multivalent
and sense-preserving in the unit disk U = {z : |z| < 1}. For f = h + g ∈ H(p), we
may express the analytic functions h and g as

h(z) = zp +
∞∑

n=p+1
anzn, g(z) =

∞∑
n=p

bnzn, |bp| < 1. (1.1)

Let W (p) denote the subclass of H(p) consisting of functions f = h + g, where h
and g are given by

h(z) = zp −
∞∑

n=p+1
|an|zn, g(z) = −

∞∑
n=p

|bn|zn, |bp| < 1. (1.2)

We introduce here a new class Hk
λ(p, α, β) of harmonic functions of the form

(1.1) that satisfy the inequality

Re

{
(1− β)

Dk+p−1
λ f(z)

zp
+ β

(Dk+p−1
λ f(z))′

pzp−1

}
≥ α

p
, (1.3)
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where 0 ≤ α < p, p ∈ N = {1, 2, . . . }, λ ≥ 0, β ≥ 0, k ∈ N0 and

Dk+p−1
λ f(z) = Dk+p−1

λ h(z) + Dk+p−1
λ g(z). (1.4)

The operator Dk+p−1
λ denotes the generalized Ruscheweyh derivative operator in-

troduced in [2]. For h and g given by (1.1), we obtain

Dk+p−1
λ h(z) = zp +

∞∑
n=p+1

(1 + λ(n− p))C(k, n, p)anzn, (1.5)

Dk+p−1
λ g(z) =

∞∑
n=p

(1 + λ(n− p))C(k, n, p)bnzn, (1.6)

where λ ≥ 0, p ∈ N, k > −p and

C(k, n, p) =
(

n + k − 1
k + p− 1

)
. (1.7)

We deem it worthwhile to point here the relevance of the function class
Hk

λ(p, α, β) with those classes of functions which have been studied recently. Indeed,
we observe that:

(i) H0
0(1, α, 1) ≡ NH(α) (Ahuja and Jahangiri [1]);

(ii) Hk
λ(p, α, 1) ≡ Hk

λ(p, α) (Al Shaqsi and Darus [2]);
(iii) Hk

λ(1, 0, 1) ≡ Hk
λ (Darus and Al Shaqsi [4]);

(iv) H0
0(1, 0, 1) ≡ S∗H (Silverman [6]);

(v) H0
λ(1, 0, 1) ≡ H(λ) (Yalçin and Öztürk ][7]).

Also, we note that the analytic part of the class Hk
0(p, α, 1) was introduced

and studied by Goel and Sohi [5].
We further denote by W k

λ (p, α, β) the subclass of Hk
λ(p, α, β) that satisfies the

relation
W k

λ (p, α, β) = W (p) ∩Hk
λ(p, α, β). (1.8)

In this paper we study a class of p-valent harmonic functions involving a certain
generalized Ruscheweyh type operator. We obtain the coefficient bounds, distortion
properties and extreme points for this class of functions.

2. Coefficient bounds

Theorem 1. Let f = h + g (h and g being given by (1.1)). If

∞∑
n=p+1

((n− p)β + p)(1 + λ(n− p))C(k, n, p)|an|+

+
∞∑

n=p
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|bn| ≤ p− α, (2.1)

where λ ≥ 0, β ≥ 0, 0 ≤ α < p, p ∈ N and k ∈ N0, then f is harmonic p-valent
sense-preserving in U and f ∈ Hk

λ(p, α, β).



Harmonic functions involving Ruscheweyh type operator 209

Proof. Let w(z) = (1−β)Dk+p−1
λ

f(z)

zp +β
(Dk+p−1

λ
f(z))′

pzp−1 . To prove that Re{w} ≥
α
p , it is sufficient to show equivalently that |p − α + pw(z)| ≥ |p + α − pw(z)|.
Substituting for w(z) and making use of (1.4) to (1.6), and resorting to simple
calculations, we find that

|p− α + pw(z)| ≥ 2p− α−
∞∑

n=p+1
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|an||zn−p|

−
∞∑

n=p
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|bn||zn−p| (2.2)

and

|p + α− pw(z)| ≤ α +
∞∑

n=p+1
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|an||zn−p|+

+
∞∑

n=p
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|bn||zn−p|, (2.3)

where C(k, n, p) is given by (1.7). Evidently, (2.2) and (2.3) in conjunction with
(2.1) yields

|p− α + pw(z)| − |p + α− pw(z)| ≥ 0.

The harmonic functions

f(z) = zp +
∞∑

n=p+1

xn

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
zn+

+
∞∑

n=p

yn

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
(z)n (2.4)

(
∑∞

n=p+1 |xn|+
∑∞

n=p |yn| = p− α) show that the coefficient bound given by (2.1)
is sharp.

The functions of the form (2.4) are in Hk
λ(p, α, β) because in view of (2.1), we

infer that
∞∑

n=p+1
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|an|+

+
∞∑

n=p
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|bn| =

∞∑
n=p+1

|xn|+
∞∑

n=p
|yn| = p− α.

The restriction imposed in Theorem 1 on the moduli of the coefficients of f = h+g
implies that for arbitrary rotation of the coefficients of f , the resulting functions
would still be harmonic multivalent and f ∈ Hk

λ(p, α, β).
The following theorem shows that the condition (2.1) is also necessary for

function f to belong to W k
λ (p, α, β).

Theorem 2. Let f = h + g with h and g are given by (1.2). Then f ∈
W k

λ (p, α, β) if and only if
∞∑

n=p+1
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|an|+

+
∞∑

n=p
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|bn| ≤ p− α, (2.5)
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where λ ≥ 0, β ≥ 0, 0 ≤ α < p, p ∈ N and k ∈ N0.

Proof. By noting that W k
λ (p, α, β) ⊂ Hk

λ(p, α, β), the sufficiency part of Theo-
rem 2 follows at once from Theorem 1. To prove the necessary part, let us assume
that f ∈ W k

λ (p, α, β). Using (1.3), we get

Re

{
(1− β)

(
Dk+p−1

λ h(z) + Dk+p−1
λ g(z)

zp

)
+

+ β

(
(Dk+p−1

λ h(z))′ + (Dk+p−1
λ g(z))′

pzp−1

)}

= Re

{
1−

∞∑
n=p+1

((
n

p
− 1)β + 1)(1 + λ(n− p))C(k, n, p)|an|zn−p −

−
∞∑

n=p
((

n

p
− 1)β + 1)(1 + λ(n− p))C(k, n, p)|bk|(z)n−p

}
≥ α

p
.

If we choose z to be real and let z → 1−, we obtain

1−
∞∑

n=p+1
((

n

p
− 1)β + 1)(1 + λ(n− p))C(k, n, p)|an|−

−
∞∑

n=p
((

n

p
− 1)β + 1)(1 + λ(n− p))C(k, n, p)|bn| ≥ α

p
.

Hence
∞∑

n=p+1
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|an|+

+
∞∑

n=p
((n− p)β + p)(1 + λ(n− p))C(k, n, p)|bn| ≤ p− α,

which completes the proof of Theorem 2.

3. Distortion bounds and extreme points

In this section we obtain the distortion bounds for functions belonging to the
class W k

λ (p, α, β) and also provide extreme points for this class W k
λ (p, α, β).

Theorem 3. If f ∈ W k
λ (p, α, β), for λ ≥ 0, β ≥ 0, 0 ≤ α < p, p ∈ N, k ∈ N0

and |z| = r > 1, then

|f(z)| ≤ (1 + |bp|)rp +
(p− α)− |bp|

(β + p)(λ + 1)(p + k)
rp+1, (3.1)

and

|f(z)| ≥ (1− |bp|)rp − (p− α)− |bp|
(β + p)(λ + 1)(p + k)

rp+1. (3.2)
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Proof. We only prove the first inequality (3.1). The proof for the second
inequality (3.2) is similar, and is hence omitted.

Suppose f ∈ W k
λ (p, α, β). Using (1.1) and (2.1) of Theorem 1, we find that

|f(z)| ≤ (1 + |bp|)rp +
∞∑

n=p+1
(|an|+ |bn|)rn ≤ (1 + |bp|)rp +

∞∑
n=p+1

(|an|+ |bn|)rp+1

= (1 + |bp|)rp +
1

(β + p)(1 + λ)(p + k)
×

∞∑
n=p+1

(β + p)(1 + λ)(p + k)(|an|+ |bn|)rp+1

≤ (1 + |bp|)rp +
1

(β + p)(1 + λ)(p + k)
×

∞∑
n=p+1

((n− p)β + p)(1 + λ(n− p))C(k, n, p)(|an|+ bn|)rp+1

≤ (1 + |bp|)rp +
1

(β + p)(1 + λ)(p + k)
[(p− α)− |bp|]rp+1.

The bounds given in Theorem 3 ( for the functions f = h + g of the form (1.2))
also hold for functions of the form (1.1) if the coefficient condition (2.1) is satisfied.
The functions

f(z) = zp + |bp|(z)p +
(p− α)− |bp|

(β + p)(1 + λ)(p + k)
(z)p+1 (3.3)

and

f(z) = zp − |bp|(z)p − (p− α)− |bp|
(β + p)(1 + λ)(p + k)

(z)p+1 (3.4)

for |bp| < 1 show that the bounds given in Theorem 3 are sharp.

The covering result given below in Corollary 1 follows from the inequality (3.2)
of Theorem 3.

Corollary 1. If f ∈ W k
λ (p, α, β), then

{
w : |w| < (1− |bp|)− (p− α)− |bp|

(β + p)(λ + 1)(k + p)

}
⊂ f(U). (3.5)

The next theorem gives the extreme points of the closed convex hulls of
W k

λ (p, α, β), denoted by clcoW k
λ (p, α, β)

Theorem 4. f ∈ clcoW k
λ (p, α, β) if and only if

f(z) =
∞∑

n=p
(σnhn + Engn), (3.6)
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where z ∈ U , hp(z) = zp,

hn(z) = zp − p− α

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
zn, (n = p + 1, p + 2 . . . )

(3.7)

gn(z) = zp − p− α

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
(z)n, (n = p, p + 1, . . . )

(3.8)

and ∞∑
n=p

(σn + En) = 1(σn ≥ 0, En ≥ 0).

In particular, the extreme points of W k
λ (p, α, β) are {hn} and {gn}.

Proof. Suppose f(z) is of the form (3.6). Using (3.7) and (3.8), we get

f(z) =
∞∑

n=p
(σnhn + Engn)

=
∞∑

n=p
(σn + En)zp −

∞∑
n=p+1

p− α

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
σnzn

−
∞∑

n=p

p− α

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
En(z)n

= zp −
∞∑

n=p+1

p− α

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
σnzn

−
∞∑

n=p

p− α

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
En(z)n.

Then
∞∑

n=p+1
[((n−p)β+p)(1+λ(n−p))C(k, n, p)]

p− α

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
σn

+
∞∑

n=p
[((n−p)β+p)(1+λ(n−p))C(k, n, p)]

p− α

((n− p)β + p)(1 + λ(n− p))C(k, n, p)
En

= (p− α)

(
∞∑

n=p
(σn + En)− σp

)
= (p− α)(1− σp) ≤ p− α

which implies that f ∈ clcoW k
λ (p, α, β).

Conversely, assume that f ∈ W k
λ (p, α, β). Putting

σn =
((n− p)β + p)(1 + λ(n− p))C(k, n, p)

p− α
|an| (n = p + 1, p + 2, . . . ),

En =
((n− p)β + p)(1 + λ(n− p))C(k, n, p)

p− α
|bn| (n = p, p + 1, p + 2, . . . ),

we get

f(z) =
∞∑

n=p

(σnhn + Engn),

and this completes the proof of Theorem 4.
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