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A SPECTRALITY CONDITION FOR INFINITESIMAL
GENERATORS OF COSINE OPERATOR FUNCTIONS

Amina Šahović and Fikret Vajzović

Abstract. We will give a necessary and sufficient condition for the infinitesimal generator
of a strongly continuous cosine operator function C(t), such that ‖C(t)‖ ≤ 1 for all t ∈ R on
a reflexive, strictly convex (complex) Banach space with a Gâteaux differentiable norm to be a
spectral scalar type operator with the spectral family of hermitian bounded linear projectors.

1. Introduction

Strongly continuous semi-groups of spectral bounded operators on a Banach
space and their infinitesimal generators in particular were considered by many au-
thors (see e.g. [1], [2], [6]). In this paper we will consider the strongly continuous
cosine operator function C(t), such that ‖C(t)‖ ≤ 1 for all t ∈ R on a reflexive
strictly convex (complex) Banach space with a Gâteaux differentiable norm, and
we will prove (Theorem 3.1) that a necessary and sufficient condition for its infini-
tesimal generator to be the spectral scalar type operator with the spectral family of
hermitian bounded linear projectors is that all operators C(t), t ∈ R are hermitian
operators.

First, we recall some notations and basic notions. Let X be a complex Banach
space, and let B(X) denote the complex Banach algebra of all bounded linear
operators on X.

Definition 1.1. A function C : R → B(X) (R = (−∞, +∞)) satisfying
a) C(0) = I (I – the identity operator on X),
b) C(t + s) + C(t− s) = 2C(t)C(s), t, s ∈ R

is called a cosine operator function on X. It is strongly continuous if the vector-
valued function C(t)x is strongly continuous on R for each x ∈ X. If, in addition,
there exists a constant M (M > 1) such that ‖C(t)‖ ≤ M for all t ∈ R, then the
strongly continuous cosine operator function C(t) is said to be bounded.

Throughout this paper, C(t) is a bounded strongly continuous cosine operator
function such that ‖C(t)‖ ≤ 1 for all t ∈ R. The infinitesimal generator A of C(t)
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is defined by Ax = limt→0 2(C(t)x − x)/(t2) for all x ∈ X for which the last limit
exists. It is known that A is a closed operator with dense domain D(A) in X. The
spectrum of operator A is a subset of (−∞, 0].

Let us consider the function 〈·, ·〉 : X ×X → R defined by

〈x, y〉 := ‖x‖ · lim
t↘0

‖x + ty‖ − ‖x‖
t

, x, y ∈ X. (1.1)

Definition 1.2. The norm of (the normed linear space) X is said to be

Gâteaux differentiable if lim
t→0

‖x + ty‖ − ‖x‖
t

exists for every x, y ∈ X.

Definition 1.3. The normed linear space X is said to be strictly convex if
‖x + y‖ = ‖x‖+ ‖y‖ =⇒ x = ay for some real a > 0 and all x, y ∈ X.

Definition 1.4. A densely defined closed linear operator B is said to be
hermitian if

〈x,±iBx〉 = 0, x ∈ D(B), (1.2)
and if the spectrum of B is real.

It can be shown that the last definition and the following one are equivalent if
the norm of X is Gâteaux differentiable.

Definition 1.5. A densely defined linear operator A : X → X is said to be
hermitian if iA is the infinitesimal generator of a group of isometries.

We will need the following theorem (proved in [5]).
Theorem 1.6. Let X be a reflexive strictly convex complex Banach space

with a Gâteaux differentiable norm, and let C(t) be a bounded strongly continuous
cosine operator function on X. If all operators C(t), t ∈ R are hermitian, then the
residual spectrum of the infinitesimal generator of C(t) is an empty set.

2. Family of operators Fa, a ≥ 0

Family Fa, a ≥ 0 was introduced in [10] as

Fax := lim
a↘0

Fa,ax, x ∈ X, a ≥ 0, (2.1)

where

Fa,ax :=
1
πi

∫ a

0

du

∫ α+iu

α+i0

[λR(λ2, A) + λ̄R(λ̄2, A)] dλ, λ = α + iy, i =
√−1.

Here the resolvent of A is denoted by R(λ2, A), i.e., R(λ2, A) = (λ2I−A)−1 ∈ B(X).
This is a family of bounded linear operators for every bounded strongly continuous
cosine operator function.

In [5] it is proved that the limit in (2.1) exists for x ∈ X and a ≥ 0, and that

Fax =
2
π

∫ ∞

0

(
sin at

t

)2

C(2t)x dt =
2a

π

∫ ∞

0

(
sin t

t

)2

C

(
2t

a

)
x dt. (2.2)

Since ‖C(t)‖ ≤ 1 for all t ∈ R, (2.2) implies that ‖Fa‖ ≤ a for all a ≥ 0 and that
the function a 7→ Fa is strongly continuous on [0, +∞).
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Let us note some further properties of operators Fa, a ≥ 0 (proved in [5]):

i) lim
a→+∞

Fax

a
= x, x ∈ X. (2.3)

ii) FaFbx = FbFax = 2
∫ a

0
Fux du + (b− a)Fax, x ∈ X, 0 ≤ a ≤ b. (2.4)

iii) AFax = FaAx for all x ∈ D(A) and (2.5)
AFax = −a2Fax+

∫ a

0
(6u−2a)Fux du =

∫ a

0
[(a−u)u2]′u dFux for all x ∈ X.(2.6)

iv) C(t)Fax = − ∫ a

0
[(a− u) cos ut]′u dFux =

= cos atFax+
∫ a

0
[(a−u) cos ut]′′uuFux du for a ≥ 0, t ∈ R and x ∈ X.(2.7)

v) R(λ2, A)x = 2
∫ ∞

0

3u2 − λ2

(u2 + λ2)3
Fux du for all x ∈ X and λ ∈ C, Re λ > 0. (2.8)

vi) Define X̃a := Fa(X) for all a ≥ 0. Then X̃a ⊆ X̃b follows from 0 ≤ a ≤ b.
Moreover, subspaces X̃a, a ≥ 0 are invariant relative to A and C(t) for all
t ∈ R.

From (2.3) it follows that
⋃

a≥0 X̃a is dense in X. The operator f(A) is defined
on

⋃
a≥0 X̃a by

f(A)Fax := f(−a2)Fax +
∫ a

0

[(a− u)f(−u2)]′′uuFux du, x ∈ X, a ≥ 0, (2.9)

where f(−u2) is two times continuously differentiable for u ≥ 0. (The last assump-
tion ensures the existence of the integral in (2.9)). One readily shows that the
definition (2.9) is correct, i.e. that Fax = Fay for some a, b ≥ 0, x, y ∈ X implies
f(A)Fax = f(A)Fby (see [8]).

From (2.9) it follows that

f(A)Fax = −
∫ a

0

[(a− u)f(−u2)]′u dFux, x ∈ X, a ≥ 0. (2.10)

(The last integral is an abstract Stieltjes integral.)
In order to prove the main result of this paper, we have to formulate and

prove some facts. First, let us give the definition (2.1) of operators Fa, a ≥ 0 in
the following form

Fax := lim
a↘0

∫ a

0

Êu,ax du, x ∈ X,

where

Êu,ax :=
1
πi

∫ α+iu

α+i0

[λR(λ2, A) + λ̄R(λ̄2, A)]x dλ

=
2
π

∫ ∞

0

e−at sin ut

t
C(t)x dt, λ = α + iy,

(2.11)

for each u ≥ 0 and a > 0, x ∈ X.
Lemma 2.1. limα↘0 Êu,α(A + u2I)x exists for every x ∈ D(A).

Proof. Since ‖C(t)‖ ≤ 1 for all t ∈ R, by definition (2.11), it is easy to see that
operators Êu,α are bounded. Also, it is easy to see that the function (u, α) 7→ Êu,αx,
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x ∈ X is r times continuously differentiable on I (in the strong operator topology)
for all r = 1, 2, . . . . The set I consists of all (u, α) such that 0 < ε ≤ α ≤ ᾱ,
0 ≤ u ≤ a, where ε > 0, ᾱ > 0 and a > 0 are arbitrary, but fixed. Also, it is easy
to see that for each x ∈ X and (u, α) ∈ I

∂Êu,α

∂α
x = − 2

π

∫ +∞

0

e−at sin utC(t)x dt, (2.12)

∂Êu,α

∂u
x =

2
π

∫ +∞

0

e−at cos utC(t)x dt. (2.13)

Using the relation
d2

dt2
C(t)x = AC(t)x = C(t)Ax, x ∈ D(A), (2.12) and (2.13), we

obtain

∂Êu,α

∂u
(A + u2I)x = − 2

π
αx + α2 ∂Êu,α

∂u
x− 2uα

∂Êu,α

∂α
x, (2.14)

∂Êu,α

∂α
(A + u2I)x = − 2

π
ux + α2 ∂Êu,α

∂α
x + 2uα

∂Êu,α

∂u
x, (2.15)

for x ∈ D(A) and (u, α) ∈ I.

From (2.12) and (2.13) for all x ∈ X and (u, α) ∈ I, we get
∥∥∥∥∥α

∂Êu,α

∂α
x

∥∥∥∥∥ ≤ M‖x‖ and

∥∥∥∥∥α
∂Êu,α

∂u
x

∥∥∥∥∥ ≤ M‖x‖,

where M = 2/π. Therefore, from (2.15) we obtain
∥∥∥∥∥

∂Êu,α

∂α
(A + u2I)x

∥∥∥∥∥ ≤ K‖x‖, where the constant K = M(3a + ᾱ),

for x ∈ D(A), (u, α) ∈ I. But, then the relation Êu,β(A+u2I)x−Êu,γ(A+u2I)x =∫ γ

β

∂Êu,α

∂α
(A + u2I)x dα implies ‖(Êu,β − Êu,γ)(A + u2I)x‖ ≤ K‖x‖ |γ − β| → 0

(β, γ → 0) for all (u, β), (u, γ) ∈ I, x ∈ D(A). Hence, limα↘0 Êu,α(A+u2I)x exists
for x ∈ D(A). This proves the lemma.

Using the relation (Fb−Fa)n = n
∫ b

a
(b−u)n−1 dFu, which is valid for 0 ≤ a ≤ b

and for each n = 1, 2, . . . (proved in [5]), we easily get

eit(Fb−Fa) = I + it

∫ b

a

eit(b−a) dFu = I −
∫ b

a

(eit(b−a))′u dFu, (2.16)

for all 0 ≤ a ≤ b and t ∈ R.

Let ψ(u) and ϕ(u), u ∈ (−∞, 0] be two continuously differentiable (scalar-
valued) functions, and let 0 ≤ a ≤ b ≤ c ≤ d. Then

∫ b

a

ϕ(u) dFu

∫ d

c

ψ(v) dFv =
∫ d

c

ψ(v) dv

∫ b

a

ϕ(u) dFu, (2.17)
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where
∫ b

a
ϕ(u) dFu and

∫ d

c
ψ(v) dFv are Stieltjes integrals. ((2.17) formally follows

from the identity dFu dFv = dv dFu, 0 ≤ u ≤ v.)

Lemma 2.2. Let λ(u) be a two times continuously differentiable function on
[0, a], where a > 0 is an arbitrary real number. Then

e
i
∫ a

0
λ(u) dFu

Fax = −
∫ a

0

[
(a− u)e

i
∫ a

u
λ(t) dt

]′

u

dFux (2.18)

for each x ∈ X.

Proof. By induction, using (2.16) and (2.17), it can be easily proved that

e
i

n−1∑
k=0

tk(Fuk+1 − Fuk
)

= I−
n−1∑

k=0

e
i

n−1∑
j=k+1

tj(uj+1 − uj) ∫ uk+1

uk

(
e
itk(uk+1 − u))′

u
dFu

(2.19)
for each natural number n, where u0 < u1 < · · · < un and tk (k = 0, 1, . . . , n − 1)
are arbitrary numbers. Here, we assume that

∑n−1
j=k+1 tj(uj+1 − uj) = 0 when

k + 1 > n− 1.

Let now u0 < u1 < · · · < un, n ∈ N be a division of the interval [0, a]. Then, by
setting tk = λ(uk) in (2.19) and by taking the limit as max0≤k≤n−1(uk+1−uk) → 0
on both of its sides, we obtain

e
i
∫ a

0
λ(u) dFu

= I −
∫ a

0

(
e
i
∫ a

u
λ(t) dt

)′

u

dFu, (2.20)

where the integrals in (2.20) converge in the uniform operator topology. From
(2.20) and dFuFa = Fu du + (a − u)dFu for 0 ≤ u ≤ a (obtained from (2.4)), we
get that relation (2.18) is valid for all x ∈ X, a > 0, which proves the lemma.

The following lemma is proved in [5].

Lemma 2.3. If C(t) is a bounded strongly continuous cosine operator function
with the infinitesimal generator A, and if all operators C(t), t ∈ R are hermitian,
then operators Fa (for each a ≥ 0) are hermitian.

Using Lemma 2.2 and Lemma 2.3, we are able to prove the following proposi-
tion which gives a property of the operator f(A), defined by (2.10).

Proposition 2.4. Let C(t) be a bounded strongly continuous cosine function
with the infinitesimal generator A, and let all operators C(t), t ∈ R be hermit-
ian. If f(−u2) is a real (two times continuously differentiable) function such that
|f(−u2)| ≤ 1 (u ≥ 0), then ‖f(A)‖ ≤ 1.

Proof. First, let us remark that for every complex function f(−v2) which is
two times continuously differentiable for v ≥ 0, and such that |f(−v2)| = 1 for all
v ≥ 0, a real function λ(t) such that, for each a > 0

e
i
∫ a

u
λ(t) dt

= eiC · f(−u2), u ∈ [0, a], C – a real constant,
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can be found. Namely, it is sufficient to set λ(u) = −[ϕ′2(u)ϕ1(u) − ϕ2(u)ϕ′1(u)],
where ϕ1(u) = Re f(−u2), ϕ2(u) = Im f(−u2). By definition (2.10) of the operator
f(A) and (2.18) (Lemma 2.2), this implies that

f(A)Fax = e−iC · ei
∫ a

0
λ(u) dFu

Fax, (2.21)

for every x ∈ X, a ≥ 0.

By assumption, all C(t), t ∈ R are hermitian operators. Then, by Lemma
2.3, all operators Fa, a ≥ 0 are hermitian. Therefore, by Definition 1.5 and (2.21),
we conclude that ‖f(A)Fax‖ = ‖Fax‖ for all a ≥ 0 and all x ∈ X. This, and the
property (2.3) of the operators Fa show that f(A) is an isometric operator from X
to X. Since we can repeat the same procedure for the function 1/f(−v2), it follows
that f(A) is an isometric operator from X into X.

Now, let f(−u2) be a function satisfying the assumptions of the Lemma. Let
ϕ±(−u2) = f(−u2) ± i

√
1− f2(−u2), u ∈ [0,+∞). Then, functions ϕ±(−u2)

are complex functions (two times continuously differentiable), and such that
|ϕ±(−u2)| = 1, thus the operators ϕ±(A) are isometric operators from X into X
(as we have just proved). This, and f(A) = (ϕ+(A)+ϕ−(A))/2 imply ‖f(A)‖ ≤ 1,
proving the proposition.

Remark. By Proposition 2.4, Cayley transform U of the infinitesimal gen-
erator A of a bounded strongly continuous cosine operator function C(t) (U :=
(A + iI)(A − iI)−1) is an isometric operator from X into X, because UFax =

−
∫ a

0

[
(a− u)

u2 − i

u2 + i

]′

u

dFux, for all x ∈ X and a ≥ 0, and
∣∣∣∣
λ− i

λ + i

∣∣∣∣ =
∣∣∣∣
λ + i

λ− i

∣∣∣∣ = 1

for all real λ.

Using the result of Proposition 2.4, we can now prove the following

Lemma 2.5. If C(t) is a bounded strongly continuous cosine operator function,
and if all C(t), t ∈ R are hermitian operators, then the operators Êa,α, a ≥ 0,
α > 0, defined by (2.11) are uniformly bounded (‖Êa,α‖ ≥ 1 for all a ≥ 0, and
α > 0).

Proof. Let a, b, α > 0 be arbitrary, but fixed. Then, by (2.7), we have

Êa,αFbx =
2
π

∫ ∞

0

e−αt sin at

t
C(t)Fbx dt

= − 2
π

∫ ∞

0

e−αt sin at

t
dt

∫ b

0

[(b− u) cos ut]′u dFux

= −
∫ b

0

[
(b− u) · 2

π

∫ ∞

0

e−αt sin at cosut

t
dt

]′

u

dFux,
(2.22)

for each x ∈ X. Set f(−u2) :=
2
π

∫ ∞

0

e−αt sin at cos ut

t
dt for u ∈ [0, b]. Clearly, the

function f(−u2) is infinitely differentiable.
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Furthermore, since

I :=
∫ ∞

0

e−αt sin at cos ut

t
dt =

{ 1
2 arctg a−u

α + 1
2 arctg a+u

α , for a > u,

− 1
2 arctg u−a

α + 1
2 arctg a+u

α , for a < u,

and thus |I| ≤ π/2, we have |f(−u2)| ≤ 1 for u ∈ [0, b]. By Proposition 2.4, (2.22)
and (2.10), this implies that ‖Êa,α‖ ≤ 1 for each a, α > 0, proving the lemma.

3. A spectral operator

The following theorem is proved in [9].
Theorem A. Suppose X is a real Banach space. Then the “Riesz representa-

tion theorem” holds: Given δ ∈ X∗ there exists xδ ∈ X such that
‖xδ‖ = ‖δ‖ and 〈xδ, y〉 = δ(y) for all y ∈ X

if and only if X is reflexive with a Gâteaux differentiable norm. Furthermore, xδ

is unique (and the mapping δ 7→ xδ is continuous from the norm topology on X∗ to
the weak topology on X) if and only if X is also strictly convex.

Recall, in this paper, X is a complex Banach space. Set
(x, y) := 〈x, y〉 − i〈x, iy〉. (3.1)

Then the similar theorem (i.e., Theorem A with (·, ·) instead of 〈·, ·〉) holds. Hence,
if X is a (complex) reflexive strictly convex Banach space with a Gâteaux differen-
tiable norm, then for each fixed x ∈ X, (x, y) is a continuous linear functional in y
and |(x, y)| ≤ ‖x‖ · ‖y‖, x, y ∈ X.

We will need the following theorem (proved in [5]).
Theorem B. A necessary and sufficient condition for the real number −a2

0 to
be an eigenvalue of the infinitesimal generator A of a bounded strongly continuous
cosine operator function C(t) is that there exists a vector x0 ∈ D(A), x0 6= 0 such
that

Fax0 =
{

(a− a0)x0, a > a0,

0, 0 ≤ a ≤ a0,

where Fa, a ≥ 0 is the corresponding family defined by (2.1).
Such vector x0 is said to be an eigenvector belonging to the eigenvalue −a2

0.
Now we can prove the main result of this paper.
Theorem 3.1. Let X be a reflexive strictly convex Banach space with a

Gâteaux differentiable norm, and let C(t) be a bounded strongly continuous co-
sine operator function on X. The infinitesimal generator A of C(t) is a spectral
scalar type operator with the spectral family of hermitian bounded linear projectors
if and only if all C(t), t ∈ R are hermitian operators.

Proof. Let all C(t), t ∈ R be hermitian operators. First, we will prove that
for each a ≥ 0, limα↘0 Êa,αx exists for each x ∈ X (the operators Êa,α are defined
by (2.11)), and that operators defined for each a ≥ 0 by

Êax := lim
α↘0

Êa,αx, x ∈ X (3.2)

are uniformly bounded and ‖Êa‖ ≤ 1 (for all a ≥ 0).
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By Lemma 2.1, limα↘0 Êa,α(A + a2I)x exists for each x ∈ D(A). Hence, the
claim is valid in the case when −a2 belongs to the resolvent set of A, because in
this case the set of all (A + a2I)x, x ∈ D(A) is X. In the case when −a2 belongs
to the continuous spectrum of A, the set (A+a2I)[D(A)] is dense in X. Therefore,
Lemmas 2.1 and 2.5 and the Banach-Steinhaus theorem imply that limα↘0 Êa,αx

exists for each x ∈ X, the operator Êa is bounded and ‖Êa‖ ≤ 1. By Theorem 1.6,
the residual spectrum of the operator A is empty. So, it only remains to be shown
that limα↘0 Êλ0,αx (= Êλ0x) exists for each x ∈ X if −λ2

0 is an eigenvalue of A.

Let the set of all eigenvectors belonging to the eigenvalue −λ2
0 be denoted by

Lλ0 , and let the set of all x ∈ X for which (y, x) = 0 (for all y ∈ Lλ0) be denoted
by L⊥λ0

. Clearly, L⊥λ0
is a (closed) subspace of X.

By the Remark after Proposition 2.4, the Cayley transform U of the operator
A is an isometric operator (from X into X). By the definition (3.1), it follows that

(Ux, Uy) = (x, y) for all x, y ∈ X. (3.3)

It is easy to see that −λ2
0 is an eigenvalue of A if and only if

λ2
0 − i

λ2
0 + i

is an eigenvalue

of U , and that Lλ0 is the set of all eigenvectors belonging to this eigenvalue. From
this and (3.3) it easily follows that the subspace L⊥λ0

is invariant relative to the
operator U , and thus it is invariant relative to operators A and C(t), t ∈ R.

Let us show that the set Lλ0 +RA+λ2
0I is dense in X (here, RA+λ2

0I denotes
the range of A + λ2

0I). If it is not dense, then there is x0 ∈ X, x0 6= 0 such that

(x0, y) = 0 for all y ∈ Lλ0 +RA+λ2
0I . (3.4)

In particular, 〈x0, (A+λ2
0I)x〉 = 0 for each x ∈ D(A). Thus, 〈x0, (A+λ2

0I)Fax〉 = 0
for all x ∈ X and a ≥ 0, because Fax ∈ D(A). By (2.6)

(λ2
0 − a2)〈x0, Fax〉 −

∫ a

0

(2a− 6u)〈x0, Fux〉 du = 0. (3.5)

Set ϕ(a) := 〈x0, Fax〉 (x ∈ X is fixed). Now (3.5) becomes (λ2
0−a2)ϕ(a)− ∫ a

0
(2a−

6u)ϕ(u) du = 0. From this we see that the function ϕ(a) is infinitely differentiable
at a for a 6= λ2

0. So, differentiating the last equality two times at a, we get (λ2
0 −

a2)ϕ′′(a) = 0. It follows ϕ(a) = 0 for 0 ≤ a ≤ λ0 (because ϕ(0) = ϕ′(0) = 0).

On the other hand, 〈x0, Fax〉 = (a − λ0)〈x0, x〉 for a > λ0, because Fa

a x → x
(a →∞). So,

〈x0, Fax〉 =
{

0, for 0 ≤ a ≤ λ0,

(a− λ0)〈x0, x〉, for a > λ0.
(3.6)

Remark that 〈x0, F
n
a x〉 = (a − λn

0 )〈x0, x〉 for a > λ0, n = 1, 2, . . . . For n = 0 it is
obvious, for n = 1, 2, . . . , it is easy to prove by induction. Since

eitFax = x + itFax− t2
∫ a

0

eit(a−u)Fux du, (3.7)
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we have

〈x0, e
itFax〉 = 〈x0, x〉+ t〈x0, iFax〉−

− t2
∫ a

0

cos t(a− u)〈x0, Fux〉 du− t2
∫ a

0

sin t(a− u)〈x0, iFux〉 du, (3.8)

because 〈x, y〉 is continuous and linear in y for each x ∈ X.
Since operators Fa, a ≥ 0 are hermitian (by Lemma 2.3), from (3.6) and (3.8)

we get 〈x0, e
itFax0〉 = ‖x0‖2, and thus eitFax0 = x0 for all t ∈ R and 0 ≤ a ≤ λ0,

because all eitFa are isometric operators, and because X is strictly convex. Since

eitFax0 = x0 +
it

1!
Fax0 +

i2t2

2!
F 2

a x0 + · · ·, because Fa is a bounded operator, from

the last equality, for 0 ≤ a ≤ λ0, t ∈ R, we get iFax0 +
i2t

2
F 2

a x0 + · · · = 0, thus, by
taking the limit as t → 0,

Fax0 = 0 for 0 ≤ a ≤ λ0. (3.9)

From (3.8) and (3.6) for a > λ0 we obtain

〈x0, e
iyFax0〉 = ‖x0‖2 − t2

∫ a

λ0

cos t(a− u)(u− λ0)‖x0‖2 du,

because Fa, a ≥ 0 are hermitian. Since
∫ a

λ0
(u−λ0) cos t(a−u) du = 1

t2 [1− cos t(a−
λ0)], from the last equality it follows that

〈x0, e
itFax0〉 = ‖x0‖2 cos t(a− λ0) for a > λ0 and t ∈ R.

Particularly for t =
2π

a− λ0
we have 〈x0, e

i 2π
a−λ0

Fa
x0〉 = ‖x0‖2. Hence

e
i 2π
a−λ0

Fa
x0 = x0 for a > λ0, (3.10)

because eitFa is an isometric operator for each t ∈ R, and because X is strictly
convex. By (3.7),

x0 + i
2π

a− λ0
Fax0 − (2π)2

(a− λ0)2

∫ a

0

e
i 2π
a−λ0

(a− u)
Fux0 du = x0.

From this, we see that the function a 7→ Fa is differentiable at a for a 6= λ0.
Differentiating (3.10) at a we get

e
i 2π
a−λ0

Fa
[

F ′a
a− λ0

− Fa

(a− λ0)2

]
x0 = 0.

Thus, by (3.10),
F ′ax0

a− λ0
− Fax0

(a− λ0)2
= 0.

Set ϕ(a) := f(Fax0) (f ∈ X∗ is fixed). Then we have ϕ′(a) =
ϕ(a)

a− λ0
. By

(3.6), this implies ϕ(a) = (a − λ0)f(x0) for a > λ0. So, for a > λ0 we have
f(Fax0) = (a− λ0)f(x0) for each f ∈ X∗, thus

Fax0 = (a− λ0)x0 for a > λ0. (3.11)
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By Theorem B, from (3.9) and (3.11), it follows that x0 is an eigenvector belonging
to the eigenvalue −λ2

0 of A. By (3.4), this implies 〈x0, x0〉 = 0. Thus x0 = 0, which
is a contradiction, finishing the proof that the set Lλ0 +RA+λ2

0I is dense in X.

It is easy to show that limα↘0 Êλ0,αx exists for each x ∈ Lλ0 . Since Lλ0 +
RA+λ2

0I is dense in X, Lemmas 2.1 and 2.5, and the Banach-Steinhaus theorem
imply that in the case when −λ2

0 is an eigenvalue of A, limα↘0 Êλ0,αx exists for
each x ∈ X. Moreover, the operator Êλ0 is bounded and ‖Êλ0‖ ≤ 1. This completes
the proof of the claim: For each a ≥ 0, limα↘0 Êa,αx exists for each x ∈ X, and
operators Êa, a ≥ 0 (defined by (3.2)) are uniformly bounded and ‖Êa‖ ≤ 1 for all
a ≥ 0.

By the Lemma proved in [7, pp. 384–390] from the existence of these operators,
and because they are bounded, it follows that for each a ≥ 0 there is a bounded
projector Ea such that

EaEb = EbEa = Ea for 0 ≤ a ≤ b. (3.12)

Here, the operator Ea, a ≥ 0 is defined by

E0x := 0, x ∈ X,

Eax := lim
β↘0

2
π

∫ a

0

β

(a− u)2 + β2
Êux du, x ∈ X, a > 0.

(3.13)

The existence of the limit in (3.13) for all x ∈ X and a > 0 is proved in [10].

Clearly, ‖Ea‖ ≤ 1, for all a ≥ 0, because ‖Êax‖ ≤ ‖x‖ for all u ∈ [0, a]. Hence,

〈x,Eax〉 ≤ ‖x‖2, x ∈ X, a > 0. (3.14)

Let us show 0 ≤ 〈x,Eax〉, x ∈ X, a > 0.
Since all operators C(t), t ∈ R are hermitian, it is easy to see that operators

Ea, a ≥ 0 are hermitian; thus eitEa (t ∈ R, a > 0) are isometries. On the other
hand, because operators Ea are bounded, we can write

eitEax = x + itEax +
(it)2

2!
E2

ax + · · · .

From this, since E2
a = Ea, a ≥ 0, we get eitEax = x− Eax + eitEax. Hence

〈x, eitEax〉 = 〈x, x〉 − 〈x, Eax〉 = cos t〈x, Eax〉+ sin t〈x, iEax〉.
So, (1−cos t)〈x,Eax〉 = ‖x‖2−〈x, eitEax〉, because Ea are hermitian. Since ‖x‖2−
〈x, eitEax〉 ≥ 0 (all eitEa are isometries, thus 〈x, eitEax〉 ≤ ‖x‖2), from the last
equality we have 〈x,Eax〉 ≥ 0. This together with (3.14) proves

0 ≤ 〈x,Eax〉 ≤ ‖x‖2, x ∈ X, a > 0. (3.15)

In a similar way, it can be proved that for 0 ≤ a ≤ b and x ∈ X

‖(Eb − Ea)x‖ ≤ ‖x‖, (3.16)

0 ≤ 〈x, (Eb − Ea)x〉 ≤ ‖x‖2, (3.17)
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because operators Ea, a ≥ 0 are bounded and (Eb − Ea)n = Eb − Ea, a < b,
n = 1, 2, . . . . Furthermore, we note that lima→∞Eax = x, x ∈ X (proved in [10]).

If we set Xa := Ea(X), a ≥ 0, then it is easy to see that Xa is a closed subspace
of X, and that Xa is invariant relative to all operators A and C(t), t ∈ R, because
A and C(t) commute with Ea, a ≥ 0. Set

∆ := (−b2,−a2) and E∆ := Eb − Ea for 0 < a < b,
∆ := (−b2, 0] and E∆ := Eb for a = 0, and
∆ := (−∞,−a2) and E∆ := I − Ea for b = +∞.

Using (3.12), it is easy to verify that
E∆1E∆2 = E∆2E∆1 = E∆1∩∆2 for every two intervals ∆1, ∆2 ⊆ (−∞, 0].

Note that E∅ = 0 denotes the operator such that E∅x = 0 for each x ∈ X.
Set X∆ := E∆(X) and X ′

∆ := (I − E∆)(X). Since E2
∆ = E∆, it follows that

x = E∆x for each x ∈ X∆, (3.18)
and that E∆x = 0 for each x ∈ X ′

∆. So, each x ∈ X ′
∆ can be written in the form

x = x− E∆x. (3.19)
It is easy to verify that X∆ and X ′

∆ are closed subspaces of X, invariant relative
to the operator A. Let us prove that

x0 ⊥ X∆ =⇒ x0 ∈ X ′
∆. (3.20)

If x0 ⊥ X∆, i.e. if 〈x0, x〉 = 0 for all x ∈ X∆, then 〈x0, x0〉 = 〈x0, x0 − E∆x0 +
E∆x0〉 = 〈x0, (I − E∆)x0〉, because E∆x0 ∈ X∆. So, ‖x0‖2 = 〈x0, (I − E∆)x0〉.
From this, since 〈x0, (I−E∆)x0〉 ≤ ‖x0‖ ‖(I−E∆)x0‖, it follows that ‖x0‖ ≤ ‖(I−
E∆)x0‖, which together with ‖(I − E∆)x0‖ ≤ ‖x0‖ proves ‖(I − E∆)x0‖ = ‖x0‖.
Hence, 〈x0, (I−E∆)x0〉 = ‖x0‖ ‖(I−E∆)x0‖. From this, since X is strictly convex,
it follows that x0 = (I − E∆)x0. So, x0 ∈ X ′

∆.
Now let ∆ be an arbitrary open set in (−∞, 0] (referring to the relative topology

of (−∞, 0] induced by the topology of R), and let ∆ =
⋃

i≥1 ∆i, ∆i – mutually
disjoint intervals in (−∞, 0]. Set

X+
∆ :=

∨

i≥1

X∆i and X ′
∆ :=

⋂

i≥1

X ′
∆i

.

Here, the linear hull of subspaces X∆i = E∆i(X) is denoted by
∨

i≥1 X∆i . So,
x0 ∈ X+

∆ if and only if x can be written in the form x =
∑n

i=1 xi, xi ∈ X∆i ,
for some n ∈ N. If x ∈ X+

∆ then x =
∑n

i=1 xi =
∑n

i=1 E∆ixi (by (3.18)). From
this, and E∆iE∆j = 0, E∆i(I − E∆i) = 0 (i, j = 1, 2, . . . , n, i 6= j), we obtain
E∆ix = E∆ixi, thus x =

∑n
i=1 E∆ix. So, for x ∈ X+

∆ ,

x =
n∑

i=1

E∆ix for some n ∈ N. (3.21)

Clearly, the linear manifold X+
∆ , and the closed subspace X ′

∆ are invariant relative
to the operator A. It is easy to see that

x0 ⊥ X+
∆ =⇒ x0 ∈ X ′

∆. (3.22)
The proof is similar to the one of the statement (3.20).
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From (3.22) it follows that x0 ⊥ X+
∆ and x0 ⊥ X ′

∆ imply x0 = 0, thus X+
∆+X ′

∆

is dense in X. Since X+
∆ ∩ X ′

∆ = {0}, the sum X+
∆ + X ′

∆ is direct, denoted by
X+

∆+̇X ′
∆. Let us define the operator E∆ on the linear manifold X+

∆+̇X ′
∆ in the

following way: Every x ∈ X+
∆+̇X ′

∆ can be written in a unique way in the form

x = x∆ + x′∆, x∆ ∈ X+
∆ , x′∆ ∈ X ′

∆,

so, we can define E∆x := x∆. By (3.21), E∆x =
(∑n

i=1 E∆i

)
x. The opera-

tor
∑n

i=1 E∆i is a hermitian projector, because operators E∆i are hermitian and
E∆i

E∆j
= 0, i 6= j. Hence E2

∆x = E∆x and ‖E∆x‖ ≤ ‖x‖ (x ∈ X+
∆+̇X ′

∆).
Now, we see that E∆ can be extended to the hermitian projector E∆ defined

on the whole X. Clearly, E∆x = x for x ∈ X+
∆ and E∆x = 0 for x ∈ X ′

∆. Hence
E∆x = x for x ∈ X∆ := X

+

∆. Since X+
∆+̇X ′

∆ is dense in X, and X ′
∆ is closed, it

follows that X = X∆ + X ′
∆. From E∆x = x for x ∈ X∆ and E∆x = 0 for x ∈ X ′

∆,
it follows that X = X∆+̇X ′

∆.
It is easy to see that E∆ =

∑
i E∆i in the strong operator topology on X.

This is obvious if the number of intervals ∆i is finite. Let the number of intervals
∆i be infinite. Any vector x ∈ X can be written in the form

x = lim
n→∞

(x̃n + x′n), x̃n ∈ X∆, x′n ∈ X ′
∆, where x̃n =

n∑
i=1

x
(n)
i , x

(n)
i ∈ X∆i

.

Then,

E∆x = lim
n→∞

x̃n = lim
n→∞

n∑
i=1

x
(n)
i = lim

n→∞

n∑
i=1

E∆ix
(n)
i

= lim
n→∞

n∑
i=1

E∆i x̃n = lim
n→∞

( n∑
i=1

E∆i

)
x =

∑
i>1

E∆ix.

Let now ∆ and ∆̃ be open sets in (−∞, 0]. If ∆ ⊆ ∆̃, and if X = X∆+̇X ′
∆,

X = X∆̃+̇X ′
∆̃

are corresponding decompositions of the space X, then X∆ ⊆ X∆̃

and X ′
∆ ⊇ X ′

∆̃
. This easily follows from the fact that the claim holds in the case

when ∆ and ∆̃ are intervals. (In that case, thew claim follows from the fact that
E∆E∆̃ = E∆ for ∆ ⊆ ∆̃.) Furthermore, for open sets ∆ and ∆̃ (in (−∞, 0]), it
follows E∆E∆̃ = E∆̃E∆ = E∆ if ∆ ⊆ ∆̃. This can be written in the form E∆ ≤ E∆̃.
We saw that X∆ =

∨
i X∆i (by definition) in the case when ∆ is an open set such

that ∆ =
⋃

i ∆i, ∆i – mutually disjoint intervals. It is easy to see that the same is
valid in the case when ∆i are open sets. If ∆′ ⊆ (−∞, 0] is a closed set, then we
can define

E∆′ := I − E∆, where ∆ = (−∞, 0] \∆′ is an open set in (−∞, 0].
Hence, if X∆+̇X ′

∆ is the decomposition of X corresponding to the open set ∆ (in
(−∞, 0]), then

E∆′x = x for x ∈ X∆′ and E∆′x = 0 for x ∈ X∆.
So, for each open or closed set δ in (−∞, 0] there is the hermitian projector Eδ.

Let ∆i be arbitrary mutually disjoint open sets (in (−∞, 0]) and ∆ =
⋃

i ∆i.
We have already proved that E∆ =

∑
i E∆i in the strong operator topology on X,
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in the case when ∆i are intervals. But, that fact has played no role in the mentioned
proof. Hence, E∆ =

∑
i E∆i

holds in the case when ∆i are arbitrary open sets. If
∆, ∆̃ are open sets in (−∞, 0], then it is easy to see that X∆∩∆̃ = X∆ ∩X∆̃. Thus

E∆∩∆̃ = E∆E∆̃. (3.23)

It is easy to prove that

E∆∪∆̃ = E∆ + E∆̃ − E∆∩∆̃ (3.24)

for all open sets ∆ and ∆̃. Namely we have

X∆∪∆̃ = E∆∪∆̃(X) = (E∆ − E∆∩∆̃)(X)+̇(E∆̃ − E∆∩∆̃)(X)+̇E∆∩∆̃(X),

which implies (3.24).

If ∆, ∆̃ are closed sets in (−∞, 0], then (3.23) and (3.24) hold, too. Indeed, if
∆ = (−∞, 0] \G, ∆̃ = (−∞, 0] \ G̃, where G and G̃ are open sets in (−∞, 0], then

E∆∩∆̃ = I − EG∪G̃ = I − EG − EG̃ + EG∩G̃ = (I − EG)(I − EG̃) = E∆E∆̃.

The relation (3.24) can be proved in a similar way.
Furthermore, by the definition of the operator Ea, a ≥ 0, we easily get AEax =

EaAx, x ∈ D(A), a ≥ 0, thus AE∆i
x = E∆i

Ax, x ∈ D(A), ∆i – an open interval.
From this, and from E∆ =

∑
i E∆i , ∆ =

⋃
i ∆i, ∆i – mutually disjoint open

intervals, and since the operator A is closed, it follows that AE∆x = E∆Ax, x ∈
D(A), ∆ – an open set. It is obvious that the last equality holds in the case when
∆ is a closed set in (−∞, 0], too.

Further, the resolvent R(λ2, A) of A can now be written in the form

R(λ2, A)x =
∫ ∞

0

1
λ2 + u2

dEux

(obtained by (2.8), because Fax =
∫ a

0
Eux du, thus dFax = Eax da). From this, we

obtain

R(λ2, A)(Eb − Ea)x =
∫ b

a

1
λ2 + u2

dEux, for every 0 < a < b.

According to the previous notices: ∆ = (−b2,−a2), E∆ = Eb − Ea, I = (a, b),

R(λ2, A)E∆x =
∫

I

1
λ2 + u2

dEux.

The same holds for any open set ∆ =
⋃

i ∆i, ∆i – open intervals in (−∞, 0], where
the corresponding open set in [0,+∞) is denoted by I. This also holds when ∆ is a
closed set in (−∞, 0], because it is the complement of the open set in (−∞, 0] with
respect to (−∞, 0]. From this relation, it readily follows that the spectrum of the
operator A∆ is a subset of ∆, where A∆ denotes the restriction of the operator A
on the subspace E∆(X).

In the definition of the projector E∆, ∆ =
⋃

i ∆i, and in the proofs of its prop-
erties, the fact that ∆i are open intervals has played no essential role. Starting from
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open or closed sets in (−∞, 0] instead from open intervals, we define the projectors
E∆ for sets ∆ in (−∞, 0] which are unions of a finite or infinite countable number
of open or closed sets in (−∞, 0], and for their complements, too. All properties of
the operator E∆ hold for these sets, as well. By repeating this procedure we can
verify that for each Borel set ∆ in (−∞, 0] there is the projector E∆ with earlier
described properties.

Let us assume that A is a spectral scalar type operator with the spectral family
Eu, u ≥ 0 consisting of hermitian bounded linear projectors. Then, for all x ∈ X,
and for λ ∈ C \ (−∞, 0],

R(λ2, A)x =
∫ ∞

0

1
λ2 + u2

dEux = −
∫ ∞

0

(
1

λ2 + u2

)′
Eux du.

By the definition of operators Fa, a ≥ 0 we get

Fax =
∫ a

0

Eux du, x ∈ X, a ≥ 0,

so, we conclude that the operators Fa, a ≥ 0 are hermitian, and thus by (2.7), all
operators C(t), t ∈ R are hermitian. The Theorem is proved.
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F. Vajzović, Faculty of Natural Sciences and Mathematics, University of Sarajevo, Zmaja od
Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina


