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NOTES ON ALMOST OPEN MAPPINGS

Xun Ge

Abstract. In this paper, we give some characterizations of almost open mappings defined
on first countable spaces, which corrects some errors for almost open mappings.

1. Introduction

Recently, some weak forms of open mappings have attracted considerable at-
tention, and many interesting results have been obtained [5, 6, 7, 13]. In [5], Y.
Ge gave the following results without proofs (see [5, Proposition 2.14], [5, Theorem
2.15] and [5, Corollary 2.16]).

Proposition 1.1. Let f : X −→ Y be an almost sn-open mapping. If one of
the following two conditions is satisfied, then f is almost open.

(1) Y is a sequential space.
(2) X is a sequential space and f is a quotient mapping.
Proposition 1.2. Let f : X −→ Y be a mapping. If X is first countable

(especially, if X is metric), then the following are equivalent.
(1) f is an almost open mapping.
(2) f is an almost weak-open mapping.
(3) f is an almost sn-open, quotient mapping.
(4) f is a 1-sequence-covering, quotient mapping.
Proposition 1.3. The following are equivalent for a space X.
(1) X is an almost open, P -image of a metric space.
(2) X is an almost weak-open, P -image of a metric space.
(3) X is an almost sn-open, quotient, P -image of a metric space.
(4) X is a 1-sequence-covering, quotient, P -image of a metric space.
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Unfortunately, the above propositions are not true. In this paper, we correct
these propositions.

Throughout this paper, all spaces are assumed to be regular T1 and all map-
pings are continuous and onto. N denotes the set of all natural numbers. {xn}
denotes a sequence, where the n-th term is xn. Let X be a space and P ⊂ X. A
sequence {xn} converging to x in X is eventually in P if {xn : n > k}⋃{x} ⊂ P for
some k ∈ N; it is frequently in P if {xnk

} is eventually in P for some subsequence
{xnk

} of {xn}. Let P be a family of subsets of X. Then
⋃P and

⋂P denote the
union

⋃{P : P ∈ P} and the intersection
⋂{P : P ∈ P} respectively. For terms

which are not defined here, we refer to [3].

2. The main results

Definition 2.1. Let X be a space.
(1) Let x ∈ P ⊂ X. P is called a sequential neighborhood of x in X if whenever

{xn} is a sequence converging to the point x, then {xn} is eventually in P .
(2) Let P ⊂ X. P is called a sequentially open subset in X if P is a sequential

neighborhood of x in X for each x ∈ P .
(3) X is called a sequential space if each sequentially open subset in X is open.
(4) X is called a Fréchet space if for each P ⊂ X and for each x ∈ P , there

exists a sequence {xn} in P converging to the point x.

Remark 2.2. (1) P is a sequential neighborhood of x if and only if each
sequence {xn} converging to x is frequently in P .

(2) The intersection of finitely many sequential neighborhoods of x is a sequen-
tial neighborhood of x.

(3) It is well known that first countable =⇒ Fréchet =⇒ sequential.

Definition 2.3. Let P =
⋃{Px : x ∈ X} be a cover of a space X such that

for each x ∈ X, the following conditions (a) and (b) are satisfied.
(a) Px is a network at x in X, i.e., x ∈ ⋂Px and for each neighborhood U of

x in X, P ⊂ U for some P ∈ Px.
(b) If U, V ∈ Px, then W ⊂ U

⋂
V for some W ∈ Px.

(1) P is called a weak base [2] of X if whenever G ⊂ X, G is open in X if
and only if for each x ∈ G there exists P ∈ Px with P ⊂ G, where Px is called a
wn-network (i.e., weak neighborhood network) at x in X.

(2) P is called an sn-network [4] of X if each element of Px is a sequential
neighborhood of x in X for each x ∈ X, where Px is called an sn-network at x
in X.

Remark 2.4. [11] For a space, weak base =⇒ sn-network. An sn-network for
a sequential space is a weak base.

Definition 2.5. Let f : X −→ Y be a mapping.
(1) f is called an almost-open mapping [9] if for each y ∈ Y there exists

x ∈ f−1(y) such that f(U) is a neighborhood of y for each neighborhood U of x.
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(2) f is called an almost weak-open mapping [5] if there exists a weak base
P = {Py : y ∈ Y } of Y satisfying the condition: for each y ∈ Y , there exists
x ∈ f−1(y) such that whenever U is a neighborhood of x, P ⊂ f(U) for some
P ∈ Py.

(3) f is called an almost sn-open mapping [5] if there exists an sn-network
P = {Py : y ∈ Y } of Y satisfying the condition: for each y ∈ Y , there exists
x ∈ f−1(y) such that whenever U is a neighborhood of x, P ⊂ f(U) for some
P ∈ Py.

(4) f is called pseudo-open [2] if for each y ∈ Y and each neighborhood U of
f−1(y) in X, f(U) is a neighborhood of y in Y .

(5) f is called a quotient mapping [3] if U is open in Y if and only if f−1(U)
is open in X.

(6) f is called a 1-sequence-covering mapping [11] if for each y ∈ Y there
exists x ∈ f−1(y), such that whenever {yn} is a sequence converging to y in Y ,
there exists a sequence {xn} converging to x in X with each xn ∈ f−1(yn).

(7) f is called a sequence-covering mapping [11] if whenever {yn} is a con-
vergent sequence in Y , there exists a convergent sequence {xn} in X with each
xn ∈ f−1(yn).

(8) f is called a compact mapping [11] if f−1(y) is a compact subset of X for
each y ∈ Y .

Remark 2.6. The following implications hold (see [5, Remark 2.7], [13, Propo-
sition 3.2], [9, Remark 1.2.2]).
almost-open =⇒ almost weak-open =⇒ almost sn-open ⇐= 1-sequence-covering

⇓ ⇓
pseudo-open =⇒ quotient

Remark 2.7. (1) Quotient mappings preserve sequential spaces [9, Lemma
1.4.3(2)].

(2) Pseudo-open mappings preserve Fréchet spaces [9, Lemma 1.4.3(3)].
(3) Every sequence-covering, compact mapping from a metric space is 1-

sequence-covering [11, Theorem 4.4].

Lemma 2.8. [5, Proposition 2.13] Let f : X −→ Y be a mapping. Then the
following hold.

(1) If f is 1-sequence-covering, then f is almost sn-open.
(2) If f is almost sn-open and X is first countable, then f is 1-sequence-

covering.

By Remark 2.4 and Remark 2.7, we have the following lemma.

Lemma 2.9. Let f : X −→ Y be an almost sn-open mapping. If one of the
following two conditions is satisfied, then f is almost weak-open.

(1) Y is a sequential space.
(2) X is a sequential space and f is a quotient mapping.
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Corollary 2.10. Let f : X −→ Y be a mapping. If X is a sequential space,
then the following are equivalent.

(1) f is an almost weak-open mapping.

(2) f is an almost sn-open, quotient mapping.

Remark 2.11. “X is a sequential space” in Corollary 2.10 cannot be omitted.
In fact, S. Lin gave a 1-sequence-covering, quotient mapping f : X −→ Y such that
f is not almost weak-open [10, Example 1]. By Lemma 2.8, f is almost sn-open,
quotient.

The following theorem is obtained from Lemma 2.8 and Corollary 2.10.

Theorem 2.12. Let f : X −→ Y be a mapping. If X is first countable (espe-
cially, if X is metric), then the following are equivalent.

(1) f is an almost weak-open mapping.

(2) f is an almost sn-open, quotient mapping.

(3) f is a 1-sequence-covering, quotient mapping.

Corollary 2.13. The following are equivalent for a space X, where P denotes
some mapping property.

(1) X is an almost weak-open, P -image of a metric space.

(2) X is an almost sn-open, quotient, P -image of a metric space.

(3) X is a 1-sequence-covering, quotient, P -image of a metric space.

Lemma 2.14. Let X be a Fréchet space and x ∈ X. If P is a sequential
neighborhood of x in X, then x ∈ P ◦, where P ◦ is the interior of P .

Proof. Let P be a sequential neighborhood of x in X. If x /∈ P ◦, then
x ∈ X −P ◦ = X − P . There is a sequence {xn} in X −P converging to x because
X is Fréchet. This contradicts that P is a sequential neighborhood of x in X. So
x ∈ P ◦.

Proposition 2.15. Let f : X −→ Y be an almost sn-open mapping. If one
of the following two conditions is satisfied, then f is almost open.

(1) Y is Fréchet.

(2) f is pseudo-open and X is Fréchet.

Proof. Pseudo-open mappings preserve Fréchet spaces from Remark 2.7(2), so
condition (2) implies condition (1). Thus we only need to prove that f is almost-
open if condition (1) is satisfied.

Let Y be Fréchet. Since f is almost sn-open there is an sn-network P = {Py :
y ∈ Y } of Y such that for each y ∈ Y , there is x ∈ f−1(y) satisfying the condition
in Definition 2.5(6). Whenever U is a neighborhood of x in X, then P ⊂ f(U) for
some P ∈ Py. Note that P is a sequential neighborhood of y in Y . So f(U) is
a sequential neighborhood of y in Y . By Lemma 2.14, y ∈ (f(U))◦, so f(U) is a
neighborhood of y in Y . This proves that f is almost-open.
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Corollary 2.16. Let f : X −→ Y be a mapping. If X is a Fréchet space,
then the following are equivalent.

(1) f is an almost open mapping.
(2) f is an almost sn-open, pseudo-open mapping.

The following theorem is obtained from Theorem 2.12 and Corollary 2.16.

Theorem 2.17. Let f : X −→ Y be a mapping. If X is first countable, then
the following are equivalent.

(1) f is an almost-open mapping.
(2) f is an almost weak-open, pseudo-open mapping.
(3) f is an almost sn-open, pseudo-open mapping.
(4) f is a 1-sequence-covering, pseudo-open mapping.

Proposition 2.18. The following are equivalent for a space X, where P
denotes some mapping property.

(1) X is an almost open, P -image of a metric space.
(2) X is an almost weak-open, pseudo-open, P -image of a metric space.
(3) X is an almost sn-open, pseudo-open, P -image of a metric space.
(4) X is a 1-sequence-covering, pseudo-open, P -image of a metric space.

3. The Arens space S2

In this section, we investigate the Arens space S2.

Definition 3.1. Let L0 = {an : n ∈ N} be a sequence converging to ∞,
where ∞ /∈ L0. For each n ∈ N, let Ln be a sequence converging to bn, where
bn /∈ Ln. Put T0 = L0

⋃{∞} and Tn = Ln

⋃{bn} for each n ∈ N. Let M be the
topological sum of {Tn : n ≥ 0}. Let S2 be the quotient space obtained from the
topological sum M by identifying an with bn for each n ∈ N. Then S2 is called the
Arens space [1, 8, 12]. Let q : M −→ S2 be the natural mapping.

It is clear that M is a metric space. The following proposition comes from [12,
Proposition 1.6(2)].

Proposition 3.2. S2 is a sequential space. But S2 is not Fréchet.

Proposition 3.3. q is 1-sequence-covering, quotient.

Proof. q is quotient because every natural mapping from a space on its quotient
space is quotient. It is clear that q is a compact mapping. By Remark 2.7(3), we
only need to prove that q is sequence-covering. Let {yn} be a sequence converging
to y in S2. Without loss of generality, we can assume that {yn} is a nontrivial
sequence. Thus y = q(∞) or y = q(am) = q(bm) for some m ∈ N.

Case 1: y = q(∞) ∈ S2. Since {yn} is a nontrivial sequence, there exists
k ∈ N such that yn ∈ q(L0) for all n > k. For each n ≤ k, choose xn ∈ q−1(yn); for
each n > k, choose xn ∈ q−1(yn)

⋂
L0. It is easy to check that {xn} is a sequence

converging to ∞ in M .
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Case 2: y = q(am) = q(bm) for some m ∈ N. Since {yn} is a nontrivial
sequence, there exists k ∈ N such that yn ∈ q(Lm) for all n > k. For each n ≤ k,
choose xn ∈ q−1(yn); for each n > k, choose xn ∈ q−1(yn)

⋂
Lm. It is easy to check

that {xn} is a sequence converging to bm in M .

Corollary 3.4. (1) q is almost weak-open, and so q is almost sn-open.
(3) q is not pseudo-open, and so q is not almost open.

Proof. (1) By Proposition 3.3, q is 1-sequence-covering, quotient. Note that
M is first countable. So q is almost weak-open from Theorem 2.12.

(3) By Proposition 3.2, S2 is not a Fréchet space. Note that M is Fréchet. So
q is not pseudo-open from Remark 2.7(2).

Remark 3.5. By Proposition 3.2, Proposition 3.3 and Corollary 3.4, we have
the following facts, which show that Proposition 1.1, Proposition 1.2 and Proposi-
tion 1.3 are not true.

(1) “f is almost weak-open” in Lemma 2.9 cannot be replaced by “f is almost
open”.

(2) “Pseudo-open” in Theorem 2.17(2)(resp. Corollary 2.18(2)) cannot be omit-
ted.

(3) “Pseudo-open” in Theorem 2.17(3)(4) (resp. Corollary 2.18(3)(4)) cannot
be relaxed to “quotient”.
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