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λ-FRACTIONAL PROPERTIES OF GENERALIZED
JANOWSKI FUNCTIONS IN THE UNIT DISC

Mert Çag̃lar, Yaşar Polatog̃lu, Emel Yavuz

Abstract. For analytic function f(z) = z + a2z2 + · · · in the open unit disc D, a new
fractional operator Dλf(z) is defined. Applying this fractional operator Dλf(z) and the principle
of subordination, we give new proofs for some classical results concerning the class S∗λ(A, B, α) of
functions f(z).

1. Introduction

Let Ω be the family of functions w(z) regular in the open unit disc D = {z ∈
C | |z| < 1} and satisfying the conditions w(0) = 0, |w(z)| < 1 for all z ∈ D.

Let g(z) = z + b2z
2 + · · · and h(z) = z + c2z

2 + · · · be analytic functions in
D. We say that g(z) is subordinate to h(z), written as g ≺ h, if

g(z) = h(w(z)), w(z) ∈ Ω, and for all z ∈ D.

In particular if h(z) is univalent in D, then g ≺ h if and only if g(0) = h(0),
g(D) ⊂ h(D) ([1], [3]).

For arbitrary fixed numbers A,B, α, −1 ≤ B < A ≤ 1, 0 ≤ α < 1, let
P(A,B, α) denote the family of functions p(z) = 1 + p1z + p2z

2 + · · · regular in D
and such that p(z) ∈ P(A,B, α) if and only if

p(z) ≺ 1 + [(1− α)A + αB]z
1 + Bz

⇐⇒ p(z) =
1 + [(1− α)A + αB]w(z)

1 + Bw(z)

for some function w(z) and all z ∈ D.
Using the fractional calculus, we define the fractional operator Dλf(z) by

Dλf(z) = Γ(2− λ)zλDλ
z f(z),

where Dλ
z f(z) is the fractional derivative of order λ which will be defined below.
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Furthermore, let S∗λ(A,B, α) denote the family of functions f(z) = z + a2z
2 +

· · · regular in D and such that f(z) is in S∗λ(A,B, α) if and only if

z
(Dλf(z))′

Dλf(z)
= p(z)

for some p(z) in P(A,B, α) and for all z ∈ D.
The fractional integral of order λ is defined for a function f(z) ∈ S∗λ(A,B, α),

by

D−λ
z f(z) =

1
Γ(λ)

∫ z

0

f(ζ)
(z − ζ)1−λ

dζ (λ > 0),

where the function f(z) is analytic in a simply connected region of the complex
plane containing the origin and the multiplicity of (z−ζ)λ−1 is removed by requiring
log(z − ζ) to be real when (z − ζ) > 0 ([4], [5]).

The fractional derivative of order λ is defined for a function f(z) ∈ S∗λ(A,B, α),
by

Dλ
z f(z) =

1
Γ(1− λ)

d

dz

∫ z

0

f(ζ)
(z − ζ)λ

dζ (0 ≤ λ < 1),

where the function f(z) is analytic in a simply connected region of the complex
plane containing the origin and the multiplicity of (z − ζ)−λ is removed as in the
definition of the fractional integral ([4], [5]).

Under the hypotheses of the fractional derivative of order λ, the fractional
derivative of order (n + λ) is defined for a function f(z), by

Dn+λ
z f(z) =

dn

dzn
Dλ

z f(z) (0 ≤ λ < 1, n ∈ N0 = N ∪ {0}).
By means of the definitions above, we see that

D−λ
z zk =

Γ(k + 1)
Γ(k + 1 + λ)

zk+λ (λ > 0),

Dλ
z zk =

Γ(k + 1)
Γ(k + 1− λ)

zk−λ (0 ≤ λ < 1)
(1.1)

and

Dn+λ
z zk =

Γ(k + 1)
Γ(k + 1− n− λ)

zk−n−λ (0 ≤ λ < 1, n ∈ N0).

Therefore, we conclude that, for any real λ

Dλ
z zk =

Γ(k + 1)
Γ(k + 1− λ)

zk−λ. (1.2)

The following lemma, due to Jack [2], plays an important rôle in our proofs.
Lemma 1.1 Let w(z) be a non-constant function analytic in D(r) = {z |

|z| < r} with w(0) = 0. If

|w(z1)| = Max {|w(z)| | |z| ≤ |z1|} (z1 ∈ D(r)),

then there exists a real number k (k ≥ 1), such that z1w
′(z1) = kw(z1).
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2. Main Results

Lemma 2.1. Let f(z) = z + a2z
2 + · · · be analytic in the open unit disc D.

Then the λ-fractional operator Dλf(z) satisfies the following equalities

(i) Dλf(z) = Γ(2− λ)zλDλ
z f(z) = z +

∞∑
n=2

an
Γ(2− λ)Γ(n + 1)

Γ(n + 1− λ)
zn;

(ii) for λ = 1, Df(z) = limλ→1 Dλf(z) = zf ′(z);
(iii) for λ < 1, δ < 1, Dλ(Dδf(z)) = Dδ(Dλf(z))

= z +
∞∑

n=2
an

Γ(2− λ)Γ(2− δ)(Γ(n + 1))2

Γ(n + 1− λ)Γ(n + 1− δ)
zn;

(iv) D(Dλf(z)) = z +
∞∑

n=2
nan

Γ(2− λ)Γ(n + 1)
Γ(n + 1− λ)

zn = z(Dλf(z))′

= Γ(2− λ)zλ(λDλ
z f(z) + zDλ+1

z f(z));

(v)
D(Dλf(z))

Dλf(z)
− 1 =





z
f ′(z)
f(z)

− 1, for λ = 0,

z
f ′′(z)
f ′(z)

, for λ = 1.

Proof. Making use of the fractional derivative rules (1.1) and (1.2), we obtain

Dλ
z f(z) =

Γ(2)
Γ(2− λ)

z1−λ + a2
Γ(3)

Γ(3− λ)
z2−λ + · · ·+ an

Γ(n + 1)
Γ(n + 1− λ)

zn−λ + · · ·

wherefrom

Dλf(z) = Γ(2− λ)zλDλ
z f(z) = z +

∞∑
n=2

an
Γ(2− λ)Γ(n + 1)

Γ(n + 1− λ)
zn. (2.1)

Other equalities follow directly from (2.1).

Lemma 2.2. Let f(z) = z + a2z
2 + · · · and g(z) = z + b2z

2 + · · · be analytic
functions in the open unit disc D. Then the solution of the fractional differential
equation

Dλ
z f(z) =

1
Γ(2− λ)

z−λg(z)

is

f(z) = z +
∞∑

n=2
bn

Γ(n + 1− λ)
Γ(2− λ)Γ(n + 1)

zn.

Proof. Using the definition of fractional integral, fractional derivative and
fractional calculus of order (n + λ), we get

Dλ
z f(z) =

Γ(2)
Γ(2− λ)

z1−λ + a2
Γ(3)

Γ(3− λ)
z2−λ + · · ·+ an

Γ(n + 1)
Γ(n + 1− λ)

zn−λ + · · ·

=
1

Γ(2− λ)
z−λg(z)

=
1

Γ(2− λ)
z1−λ + b2

1
Γ(2− λ)

z2−λ + · · ·+ bn
1

Γ(2− λ)
zn−λ + · · · .
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Therefore, we have

Γ(2)
Γ(2− λ)

z1−λ + a2
Γ(3)

Γ(3− λ)
z2−λ + · · ·+ an

Γ(n + 1)
Γ(n + 1− λ)

zn−λ + · · ·

=
1

Γ(2− λ)
z1−λ + b2

1
Γ(2− λ)

z2−λ + · · ·+ bn
1

Γ(2− λ)
zn−λ + · · · . (2.2)

Comparing the coefficient of zn−λ in both sides of (2.2) we obtain

an =
Γ(n + 1− λ)

Γ(2− λ)Γ(n + 1)
bn.

Theorem 2.3. Let f(z) = z + a2z
2 + · · · be analytic in the open unit disc D.

If f(z) satisfies

(
D(Dλf(z))

Dλf(z)
− 1

)
≺





(1− α)(A−B)z
1 + Bz

= F1(z), B 6= 0,

(1− α)Az = F2(z), B = 0,
(2.3)

then f(z) ∈ S∗λ(A,B, α) and this result is sharp as the function

Dλf(z) =





z(1 + Bz)
(1−α)(A−B)

B , B 6= 0,

ze(1−α)Az, B = 0.

Proof. We define the function w(z) by

Dλf(z)
z

=





(1 + Bw(z))
(1−α)(A−B)

B , B 6= 0,

e(1−α)Aw(z), B = 0,
(2.4)

where (1+Bw(z))
(1−α)(A−B)

B and e(1−α)Aw(z) have the value 1 at the origin (we con-
sider the corresponding Riemann branch). Then w(z) is analytic in D and w(0) = 0.
If we take the logarithmic derivative of the equality (2.4), simple calculations yield

(
z
(Dλf(z))′

Dλf(z)
− 1

)
=





(1− α)(A−B)zw′(z)
1 + Bw(z)

, B 6= 0,

(1− α)Azw′(z), B = 0.

Now, it is easy to realize that the subordination (2.3) is equivalent to |w(z)| < 1 for
all z ∈ D. Indeed, assume the contrary; then, there exists z1 ∈ D such that |w(z1)|
attains its maximum value on the circle |z| = r at the point z1, that is |w(z1)| = 1.
Then, by I.S. Jack’s lemma, z1w

′(z1) = kw(z1) for some real k ≥ 1. For such z1 we
have

(
z1

(Dλf(z1))′

Dλf(z1)
− 1

)
=





(1− α)(A−B)kw(z1)
1 + Bw(z1)

= F1(w(z1)) /∈ F1(D), B 6= 0,

(1− α)Akw(z1) = F2(w(z1)) /∈ F2(D), B = 0,
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because |w(z)| = 1 and k ≥ 1. But this contradicts (2.3), so assumption is wrong,
i.e., |w(z)| < 1 for every z ∈ D.

The sharpness of the result follows from the fact that

Dλf(z) =





z(1 + Bz)
(1−α)(A−B)

B , B 6= 0,

ze(1−α)Az, B = 0,
=⇒

(
z
(Dλf(z))′

Dλf(z)
− 1

)
=





(1− α)(A−B)z
1 + Bz

, B 6= 0,

(1− α)Az, B = 0.

Corollary 2.4. If f(z) ∈ S∗λ(A,B, α), then

∣∣∣∣∣∣∣

(
Γ(2− λ)Dλ

z f(z)
z1−λ

) B
(1−α)(A−B)

− 1

∣∣∣∣∣∣∣
< 1, B 6= 0, (2.5)

∣∣∣∣∣∣∣
log

(
Γ(2− λ)Dλ

z f(z)
z1−λ

) 1
(1−α)A

∣∣∣∣∣∣∣
< 1, B = 0. (2.6)

Proof. This corollary is a simple consequence of Theorem 2.3.

Remark 2.5. We note that the inequalities (2.5) and (2.6) are the λ-fractional
Marx-Strohhacker inequalities. Indeed, for A = 1, B = −1, α = 0, we have∣∣∣∣
(

Γ(2−λ)Dλ
z f(z)

z1−λ

)− 1
2 − 1

∣∣∣∣ < 1, which yields

a)
∣∣∣∣
√

z

f(z)
− 1

∣∣∣∣ < 1 for λ = 0: this is the Marx-Strohhacker inequality for starlike

functions [1];

b)

∣∣∣∣∣
1√
f ′(z)

− 1

∣∣∣∣∣ < 1 for λ = 1: this is the Marx-Strohhacker inequality for convex

functions [1].

Moreover, assigning special values to A, B α and λ, we obtain Marx-Stroh-
hacker inequalities for the all the subclasses S∗λ(A,B, α) of analytic functions in the
unit disc where 0 ≤ λ < 1, 0 ≤ α < 1, −1 ≤ B < A ≤ 1.
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Theorem 2.6. If f(z) ∈ S∗λ(A,B, α), then

1
Γ(2− λ)

r1−λ(1−Br)
(1−α)(A−B)

B ≤ |Dλ
z f(z)|

≤ 1
Γ(2− λ)

r1−λ(1 + Br)
(1−α)(A−B)

B , B 6= 0,

1
Γ(2− λ)

r1−λe−(1−α)Ar ≤ |Dλ
z f(z)|

≤ 1
Γ(2− λ)

r1−λe(1−α)Ar, B = 0. (2.7)

These bounds are sharp, because the extremal function is the solution of the λ-
fractional differential equation

Dλ
z f(z) =





1
Γ(2−λ)z

1−λ(1 + Bz)
(1−α)(A−B)

B , B 6= 0,

1
Γ(2−λ)z

1−λe(1−α)Az, B = 0.

Proof. The set of the values
(
z (Dλf(z))′

Dλf(z)

)
is the closed disc centered at

{
C(r) = 1−B[(1−α)A+αB]r2

1−Br2 , B 6= 0,

C(r) = (1, 0), B = 0,

with radius {
ρ(r) = (1−α)(A−B)r

1−B2r2 , B 6= 0,

ρ(r) = (1− α)|A|r, B = 0.

By using the definition of the class S∗λ(A,B, α) and the definition of the subordi-
nation we can write

∣∣∣∣z
(Dλf(z))′

Dλf(z)
− 1−B[(1− α)A + αB]r2

1−Br2

∣∣∣∣ ≤
(1− α)(A−B)r

1−B2r2
. (2.8)

After simple calculations from (2.8) we get

1− (1− α)(A−B)r −B[(1− α)A + αB]r2

1−B2r2
≤ Re

(
z
(Dλf(z))′

Dλf(z)

)

≤ 1 + (1− α)(A−B)r −B[(1− α)A + αB]r2

1−B2r2
, B 6= 0, (2.9)

1− (1− α)|A|r ≤ Re
(

z
(Dλf(z))′

Dλf(z)

)
≤ 1 + (1− α)|A|r, B = 0.

On the other hand we have

Re
(

z
(Dλf(z))′

Dλf(z)

)
= r

∂

∂r
log |Dλf(z)|, |z| = r. (2.10)
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If we substitute (2.9) into (2.10) we get




1
r
− (1− α)(A−B)

1−Br
≤ ∂

∂r
log |Dλf(z)| ≤ 1

r
+

(1− α)(A−B)
1 + Br

, B 6= 0,

1
r
− (1− α)|A| ≤ ∂

∂r
log |Dλf(z)| ≤ 1

r
+ (1− α)|A|, B = 0.

(2.11)
Integrating both sides (2.11) and substituting Dλf(z) = Γ(2−λ)zλDλ

z f(z) into the
result of integration we obtain (2.7).

Remark 2.7. Similarly, if we give special values to A, B, α and λ we obtain
the distortions of the subclasses S∗λ(A,B, α).
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