AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES

Xiaolong Qin, Meijuan Shang and Yongfu Su

Abstract

In this paper, we introduce a new iterative scheme to investigate the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem for a relaxed (γ, r)-cocoercive, Lipschitz continuous mapping. Our results improve and extend the corresponding results of many others.

1. Introduction and preliminaries

Variational inequalities introduced by Stampacchia [7] in the early sixties have had a great impact and influence in the development of almost all branches of pure and applied sciences. It is well known that the variational inequalities are equivalent to the fixed point problems. This alternative equivalent formulation has been used to suggest and analyze in variational inequalities. In particular, the solution of the variational inequalities can be computed using the iterative projection methods. It is well known that the convergence of a projection method requires the operator to be strongly monotone and Lipschitz continuous. Gabay [1] has shown that the convergence of a projection method can be proved for cocoercive operators. Note that cocoercivity is a weaker condition than strong monotonicity.

Let H be a real Hilbert space, whose inner product and norm are denoted by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$, respectively. Let C be a nonempty closed convex subset of H and $A: C \rightarrow H$ a nonlinear map. Let P_{C} be the projection of H onto the convex subset C. The classical variational inequality problem is to find $u \in C$ such that

$$
\begin{equation*}
\langle A u, v-u\rangle \geq 0 \tag{1.1}
\end{equation*}
$$

for all $v \in C$. Next, we denote the solution of the variational inequality (1.1) by $V I(C, A)$. We now recall some well-known concepts and results.

[^0]Lemma 1.1. For a given $z \in H, u \in C$ satisfies the inequality

$$
\langle u-z, v-u\rangle \geq 0, \quad \forall v \in C
$$

if and only if $u=P_{C} z$. It is known that projection operator P_{C} is nonexpansive. It is also known that P_{C} satisfies

$$
\begin{equation*}
\left\langle x-y, P_{C} x-P_{C} y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2} \tag{1.2}
\end{equation*}
$$

for $x, y \in H$. Moreover, $P_{C} x$ is characterized by the properties: $P_{C} x \in C$ and $\left\langle x-P_{C} x, P_{C} x-y\right\rangle \geq 0$ for all $y \in C$.

Using Lemma 1.1, one can show that the variational inequality (1.1) is equivalent to a fixed point problem.

LEmmA 1.2. The element $u \in C$ is a solution of the variational inequality (1.1) if and only if $u \in C$ satisfies the relation $u=P_{C}(u-\lambda A u)$, where $\lambda>0$ is a constant.

It is clear from Lemma 1.2 that variational inequalities and the fixed point problems are equivalent. This alternative equivalent formulation has played a significant role in the studies of the variational inequalities and related optimization problems.

Recall that the following definitions:
(1) A mapping A of C into H is called monotone if

$$
\langle A u-A v, u-v\rangle \geq 0
$$

for all $u, v \in C$.
(2) A is called μ-strongly monotone, if each $x, y \in C$, we have

$$
\langle A x-A y, x-y\rangle \geq \mu\|x-y\|^{2}
$$

for a constant $v>0$. This implies that

$$
\|A x-A y\| \geq \mu\|x-y\|
$$

that is, A is μ-expansive and when $\mu=1$, it is expansive.
(3) A is said to be γ-cocoercive $[10,11]$, if for each $x, y \in C$, we have

$$
\langle A x-A y, x-y\rangle \geq \gamma\|A x-A y\|^{2}, \quad \text { for a constant } \gamma>0
$$

Clearly, every γ-cocoercive map A is $1 / \gamma$-Lipschitz continuous.
(4) A is called relaxed γ-cocoercive, if there exists a constant $\gamma>0$ such that

$$
\langle A x-A y, x-y\rangle \geq(-\gamma)\|A x-A y\|^{2}, \quad \forall x, y \in C
$$

(5) A is said to be relaxed (γ, r)-cocoercive, if there exist two constants $\gamma, r>0$ such that

$$
\langle A x-A y, x-y\rangle \geq(-\gamma)\|A x-A y\|^{2}+r\|x-y\|^{2}, \quad \forall x, y \in C
$$

(6) A mapping $S: C \rightarrow C$ is called nonexpansive if $\|S x-S y\| \leq\|x-y\|$ for all $x, y \in C$. Next, we denote by $F(S)$ the set of fixed points of S.
(7) A set-valued mapping $T: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H$, $f \in T x$ and $g \in T y$ imply $\langle x-y, f-g\rangle \geq 0$. A monotone mapping $T: H \rightarrow 2^{H}$ is maximal if the graph of $G(T)$ of T is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal if and only if for $(x, f) \in H \times H,\langle x-y, f-g\rangle \geq 0$ for every $(y, g) \in G(T)$ implies $f \in T x$. Let A be a monotone map of C into H and let $N_{C} v$ be the normal cone to C at $v \in C$, i.e., $N_{C} v=\{w \in H:\langle v-u, w\rangle \geq 0, \forall u \in C\}$ and define

$$
T v= \begin{cases}A v+N_{C} v, & v \in C \\ \emptyset, & v \notin C\end{cases}
$$

Then T is maximal monotone and $0 \in T v$ if and only if $v \in V I(C, A)$; see [6].
For finding a common element of the set of fixed points of nonexpansive mappings and the set of solution of variational inequalities for α-cocoerceive map, Takahashi and Toyoda [9] introduced the following iterative process:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \tag{1.3}
\end{equation*}
$$

for every $n=0,1,2, \ldots$, where A is α-cocoerceive, $x_{0}=x \in C,\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$, and $\left\{\lambda_{n}\right\}$ is a sequence in $(0,2 \alpha)$. They showed that, if $F(S) \cap V I(C, A)$ is nonempty, then the sequence $\left\{x_{n}\right\}$ generated by (1.3) converges weakly to some $z \in F(S) \cap V I(C, A)$. On the other hand, for solving the variational inequality problem in the finite-dimensional Euclidean space \mathbf{R}^{n} under the assumption that a set $C \subset \mathbf{R}^{n}$ is closed and convex, a mapping A of C into \mathbf{R}^{n} is monotone and k-Lipschitz-continuous and $V I(C, A)$ is nonempty, Korpelevich [3] introduced the following so-called extra-gradient method:

$$
\left\{\begin{align*}
x_{0} & =x \in C \tag{1.4}\\
y_{n} & =P_{C}\left(x_{n}-\lambda A x_{n}\right) \\
x_{n+1} & =P_{C}\left(x_{n}-\lambda A y_{n}\right)
\end{align*}\right.
$$

for every $n=0,1,2, \ldots$, where $\lambda \in(0,1 / k)$. He proved that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ generated by this iterative process converge to the same point $z \in V I(C, A)$. Nadezhkina and Takahashi [4], Zeng and Yao [15] introduced some new iterative schemes for finding elements in $F(S) \cap V I(C, A)$ by combining (1.3) and (1.4).

Recently, Iiduka and Takahashi [2] proposed another iterative scheme as following:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \tag{1.5}
\end{equation*}
$$

for every $n=0,1,2, \ldots$, where A is α-cocoerceive, $x_{0}=x \in C,\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$, and $\left\{\lambda_{n}\right\}$ is a sequence in $(0,2 \alpha)$. They proved that the sequence $\left\{x_{n}\right\}$ converges strongly to $z \in F(S) \cap V I(C, A)$.

Very recently, Yao and Yao [13], introduced the following iterative process: $x_{0} \in C$ and

$$
\left\{\begin{aligned}
y_{n} & =P_{C}\left(I-\lambda_{n} A\right) x_{n} \\
x_{n+1} & =\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(I-\lambda_{n} A\right) y_{n}, \quad n \geq 0
\end{aligned}\right.
$$

They also proved the sequence $\left\{x_{n}\right\}$ defined by about iterative process converges strongly to some point $z \in F(S) \cap V I(C, A)$.

In this paper, we introduce a new iterative process for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequalities for relaxed (γ, r)-cocoercive mappings in a real Hilbert space. The results are obtained in this paper improve and extend the recent ones announced by Yao and Yao [13], Zeng and Yao [15], Iiduka and Takahashi [2] and some others.

In order to prove our main results, we need the following lemmas.
Lemma 1.3. (Osilike and Igbokwe [5]). Let $(E,\langle\cdot, \cdot\rangle)$ be an inner product space. Then for all $x, y, z \in E$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \in[0,1]$ with $\alpha_{n}+\beta_{n}+\gamma_{n}=1$, we have

$$
\begin{aligned}
& \left\|\alpha_{n} x+\beta_{n} y+\gamma_{n} z\right\|^{2} \leq \\
& \alpha_{n}\|x\|^{2}+\beta_{n}\|y\|^{2}+\gamma_{n}\|z\|^{2}-\alpha_{n} \gamma_{n}\|x-z\|^{2}-\alpha_{n} \beta_{n}\|x-y\|^{2}-\beta_{n} \gamma_{n}\|y-z\|^{2} .
\end{aligned}
$$

Lemma 1.4 (Suzuki [8]). Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space X and let β_{n} be a sequence in [0,1] with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq$ $\lim \sup _{n \rightarrow \infty} \beta_{n}<1$. Suppose $x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for all integers $n \geq 0$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.
Lemma 1.5 ($\mathrm{Xu}[12]$). Assume that $\left\{\alpha_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
\alpha_{n+1} \leq\left(1-\gamma_{n}\right) \alpha_{n}+\delta_{n},
$$

where γ_{n} is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence such that
(i) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(ii) $\lim \sup _{n \rightarrow \infty} \delta_{n} / \gamma_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

2. Main results

Theorem 2.1. Let H be a real Hilbert space, C be a nonempty closed convex subset of H and $A: C \rightarrow H$ be relaxed (γ, r)-cocoercive and μ-Lipschitz continuous. Let $S: C \rightarrow C$ be a nonexpansive mapping such that $F(S) \cap V I(C, A) \neq \emptyset .\left\{x_{n}\right\}$ is a sequence generated by the following algorithm: $x_{0} \in C$ and

$$
\left\{\begin{align*}
z_{n} & =\omega_{n} x_{n}+\left(1-\omega_{n}\right) P_{C}\left(I-t_{n} A\right) x_{n} \tag{2.1}\\
y_{n} & =\delta_{n} x_{n}+\left(1-\delta_{n}\right) P_{C}\left(I-s_{n} A\right) z_{n} \\
x_{n+1} & =\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(I-r_{n} A\right) y_{n}, \quad n \geq 0
\end{align*}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\}$ and $\left\{\omega_{n}\right\}$ are sequences in $(0,1)$. If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, $\left\{\gamma_{n}\right\},\left\{\delta_{n}\right\},\left\{\omega_{n}\right\},\left\{r_{n}\right\},\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are chosen such that
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$;
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(iii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \sup _{n \rightarrow \infty} \beta_{n}<1$;
(iv) $\lim _{n \rightarrow \infty}\left|r_{n+1}-r_{n}\right|=\lim _{n \rightarrow \infty}\left|s_{n+1}-s_{n}\right|=\lim _{n \rightarrow \infty}\left|t_{n+1}-t_{n}\right|=0$;
(v) $\left\{r_{n}\right\},\left\{s_{n}\right\},\left\{t_{n}\right\} \subset[a, b]$ for some a, b with $0<a<b<\frac{2\left(r-\gamma \mu^{2}\right)}{\mu^{2}}$ and $r>\gamma \mu^{2}$;
(vi) $\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty} \omega_{n}=0$.

Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap V I(C, A)} u$.
Proof. First, we show the mapping $I-s_{n} A, I-r_{n} A$ and $I-t_{n} A$ are nonexpansive, respectively. Indeed, from the relaxed (γ, r)-cocoercive and μ-Lipschitzian definition on T and condition (v), we have

$$
\begin{align*}
\|(I & \left.-s_{n} A\right) x-\left(I-s_{n} A\right) y \|^{2} \\
& =\left\|(x-y)-s_{n}(A x-A y)\right\|^{2} \\
& =\|x-y\|^{2}-2 s_{n}\langle x-y, A x-A y\rangle+s_{n}^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 s_{n}\left[-\gamma\|A x-A y\|^{2}+r\|x-y\|^{2}\right]+s_{n}^{2}\|A x-A y\|^{2} \tag{2.2}\\
& \leq\|x-y\|^{2}+2 s_{n} \mu^{2} \gamma\|x-y\|^{2}-2 s_{n} r\|x-y\|^{2}+\mu^{2} s_{n}^{2}\|x-y\|^{2} \\
& =\left(1+2 s_{n} \mu^{2} \gamma-2 s_{n} r+\mu^{2} s_{n}^{2}\right)\|x-y\|^{2} \\
& \leq\|x-y\|^{2}
\end{align*}
$$

which implies that the mapping $I-s_{n} A$ is nonexpansive, and so are $I-t_{n} A$ and $I-r_{n} A$. Next, we show the sequence $\left\{x_{n}\right\}$ is bounded. Letting $p \in F(S) \cap V I(C, A)$, we have

$$
\begin{aligned}
\left\|z_{n}-p\right\| & =\left\|\omega_{n}\left(x_{n}-p\right)+\left(1-\omega_{n}\right)\left(P_{C}\left(I-t_{n} A\right) x_{n}-p\right)\right\| \\
& \leq \omega_{n}\left\|x_{n}-p\right\|+\left(1-\omega_{n}\right)\left\|x_{n}-p\right\|=\left\|x_{n}-p\right\|
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|y_{n}-p\right\| & =\left\|\delta_{n}\left(x_{n}-p\right)+\left(1-\delta_{n}\right)\left(P_{C}\left(I-s_{n} A\right) z_{n}-p\right)\right\| \\
& \leq \delta_{n}\left\|x_{n}-p\right\|+\left(1-\delta_{n}\right)\left\|z_{n}-p\right\| \\
& \leq \delta_{n}\left\|x_{n}-p\right\|+\left(1-\delta_{n}\right)\left\|x_{n}-p\right\|=\left\|x_{n}-p\right\|
\end{aligned}
$$

which yields that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}(u-p)+\beta_{n}\left(x_{n}-p\right)+\gamma_{n}\left(S P_{C}\left(I-r_{n} A\right) y_{n}-p\right)\right\| \\
& \leq \alpha_{n}\|u-p\|+\beta_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|S P_{C}\left(I-r_{n} A\right) y_{n}-p\right\| \\
& \leq \alpha_{n}\|u-p\|+\beta_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|y_{n}-p\right\| \\
& \leq \alpha_{n}\|u-p\|+\beta_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|x_{n}-p\right\| \\
& =\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\|u-p\| \\
& \leq \max \left\{\left\|x_{n}-p\right\|,\|u-p\|\right\} .
\end{aligned}
$$

By simple inductions, we have

$$
\left.\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|,\|u-p\|\right\}\right\}
$$

which gives that the sequence $\left\{x_{n}\right\}$ is bounded, and so are $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$. Put $\rho_{n}=P_{C}\left(I-r_{n} A\right) y_{n}, \theta_{n}=P_{C}\left(I-s_{n} A\right) z_{n}$ and $\eta_{n}=P_{C}\left(I-t_{n} A\right) x_{n}$. The iterative scheme (2.1) reduces to

$$
\left\{\begin{aligned}
z_{n} & =\omega_{n} x_{n}+\left(1-\omega_{n}\right) \eta_{n} \\
y_{n} & =\delta_{n} x_{n}+\left(1-\delta_{n}\right) \theta_{n} \\
x_{n+1} & =\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S \rho_{n}
\end{aligned}\right.
$$

Next, we compute

$$
\begin{align*}
\left\|\eta_{n}-\eta_{n+1}\right\| & =\left\|P_{C}\left(I-t_{n} A\right) x_{n}-P_{C}\left(I-t_{n+1} A\right) x_{n+1}\right\| \\
& \leq\left\|\left(I-t_{n} A\right) x_{n}-\left(I-t_{n+1} A\right) x_{n+1}\right\| \\
& =\left\|\left(x_{n}-t_{n} A x_{n}\right)-\left(x_{n+1}-t_{n} A x_{n+1}\right)+\left(t_{n+1}-t_{n}\right) A x_{n+1}\right\| \tag{2.3}\\
& \leq\left\|x_{n}-x_{n+1}\right\|+\left|t_{n+1}-t_{n}\right|\left\|A x_{n+1}\right\| \\
\left\|\theta_{n}-\theta_{n+1}\right\| & =\left\|P_{C}\left(I-s_{n} A\right) z_{n}-P_{C}\left(I-s_{n+1} A\right) z_{n+1}\right\| \\
& \leq\left\|\left(I-s_{n} A\right) z_{n}-\left(I-s_{n+1} A\right) z_{n+1}\right\| \tag{2.4}\\
& =\left\|\left(z_{n}-s_{n} A z_{n}\right)-\left(z_{n+1}-s_{n} A z_{n+1}\right)+\left(s_{n+1}-s_{n}\right) A z_{n+1}\right\| \\
& \leq\left\|z_{n}-z_{n+1}\right\|+\left|s_{n+1}-s_{n}\right|\left\|A z_{n+1}\right\|
\end{align*}
$$

and

$$
\begin{align*}
\left\|\rho_{n}-\rho_{n+1}\right\| & =\left\|P_{C}\left(I-r_{n} A\right) y_{n}-P_{C}\left(I-r_{n+1} A\right) y_{n+1}\right\| \\
& \leq\left\|\left(I-r_{n} A\right) y_{n}-\left(I-r_{n+1} A\right) y_{n+1}\right\| \\
& =\left\|\left(y_{n}-r_{n} A y_{n}\right)-\left(y_{n+1}-r_{n} A y_{n+1}\right)+\left(r_{n+1}-r_{n}\right) A y_{n+1}\right\| \tag{2.5}\\
& \leq\left\|y_{n}-y_{n+1}\right\|+\left|r_{n+1}-r_{n}\right|\left\|A y_{n+1}\right\| .
\end{align*}
$$

Observing that

$$
\left\{\begin{aligned}
z_{n} & =\omega_{n} x_{n}+\left(1-\omega_{n}\right) \eta_{n} \\
z_{n+1} & =\omega_{n+1} x_{n+1}+\left(1-\omega_{n+1}\right) \eta_{n+1}
\end{aligned}\right.
$$

we have

$$
z_{n}-z_{n+1}=\omega_{n}\left(x_{n}-x_{n+1}\right)+\left(1-\omega_{n}\right)\left(\eta_{n}-\eta_{n+1}\right)+\left(\eta_{n+1}-x_{n+1}\right)\left(\omega_{n+1}-\omega_{n}\right)
$$

which yields that
$\left\|z_{n}-z_{n+1}\right\| \leq \omega_{n}\left\|x_{n}-x_{n+1}\right\|+\left(1-\omega_{n}\right)\left\|\eta_{n}-\eta_{n+1}\right\|+\left\|\eta_{n+1}-x_{n+1}\right\|\left|\omega_{n+1}-\omega_{n}\right|$.
Substitution of (2.3) into (2.6) yields that

$$
\left\|z_{n}-z_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+M_{1}\left(\left|t_{n+1}-t_{n}\right|+\left|\omega_{n+1}-\omega_{n}\right|\right)
$$

where M_{1} is an appropriate constant such that $M_{1}=\max \left\{\sup _{n \geq 0}\left\|A x_{n}\right\|, \sup _{n \geq 0}\right.$ $\left.\left\|\eta_{n}-x_{n}\right\|\right\}$. Observing that

$$
\left\{\begin{aligned}
y_{n} & =\delta_{n} x_{n}+\left(1-\delta_{n}\right) \theta_{n} \\
y_{n+1} & =\delta_{n+1} x_{n+1}+\left(1-\delta_{n+1}\right) \theta_{n+1}
\end{aligned}\right.
$$

we have

$$
y_{n}-y_{n+1}=\delta_{n}\left(x_{n}-x_{n+1}\right)+\left(1-\delta_{n}\right)\left(\theta_{n}-\theta_{n+1}\right)+\left(\theta_{n+1}-x_{n+1}\right)\left(\delta_{n+1}-\delta_{n}\right)
$$

which yields that,

$$
\begin{align*}
& \left\|y_{n}-y_{n+1}\right\| \leq \\
& \quad \delta_{n}\left\|x_{n}-x_{n+1}\right\|+\left(1-\delta_{n}\right)\left\|\theta_{n}-\theta_{n+1}\right\|+\left\|\theta_{n+1}-x_{n+1}\right\|\left|\delta_{n+1}-\delta_{n}\right| \tag{2.8}
\end{align*}
$$

Substituting (2.4) and (2.7) into (2.8), we get
$\left\|y_{n}-y_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+M_{2}\left(\left|t_{n+1}-t_{n}\right|+\left|\omega_{n+1}-\omega_{n}\right|+\left|s_{n+1}-s_{n}\right|+\left|\delta_{n+1}-\delta_{n}\right|\right)$,
where M_{2} is an appropriate constant such that $M_{2}=\max \left\{M_{1}, \sup _{n \geq 0}\left\|A z_{n}\right\|\right.$, $\left.\sup _{n \geq 0}\left\|\theta_{n}-x_{n}\right\|\right\}$. Substituting (2.9) into (2.5), we obtain

$$
\begin{align*}
& \left\|\rho_{n}-\rho_{n+1}\right\| \leq \\
& M_{3}\left(\left|t_{n+1}-t_{n}\right|+\left|\omega_{n+1}-\omega_{n}\right|+\left|s_{n+1}-s_{n}\right|+\left|\delta_{n+1}-\delta_{n}\right|+\left|r_{n+1}-r_{n}\right|\right)+\left\|x_{n}-x_{n+1}\right\| \tag{2.10}
\end{align*}
$$

where M_{3} is an appropriate constant such that $M_{3}=\max \left\{\sup _{n \geq 0}\left\|A y_{n}\right\|, M_{2}\right\}$. Put $l_{n}=\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}$. That is, $x_{n+1}=\left(1-\beta_{n}\right) l_{n}+\beta_{n} x_{n}$. Now, we compute $l_{n+1}-l_{n}$. Observing that

$$
\begin{align*}
l_{n+1}-l_{n}= & \frac{\alpha_{n+1} u+\gamma_{n+1} S \rho_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} u+\gamma_{n} S \rho_{n}}{1-\beta_{n}} \\
= & \left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right) u+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left(S \rho_{n+1}-S \rho_{n}\right) \tag{2.11}\\
& \quad+\left(\frac{\gamma_{n+1}}{1-\beta_{n+1}}-\frac{\gamma_{n}}{1-\beta_{n}}\right) S \rho_{n}
\end{align*}
$$

we have

$$
\begin{align*}
&\left\|l_{n+1}-l_{n}\right\| \leq \\
&\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\|u\|+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|\rho_{n+1}-\rho_{n}\right\|+\left|\frac{\gamma_{n+1}}{1-\beta_{n+1}}-\frac{\gamma_{n}}{1-\beta_{n}}\right|\left\|S \rho_{n}\right\|, \tag{2.12}
\end{align*}
$$

which combined with (2.10) yields that

$$
\begin{align*}
\left\|l_{n+1}-l_{n}\right\| \leq & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\|u\|+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left[\left\|x_{n}-x_{n+1}\right\|\right. \\
& +M_{3}\left(\left|t_{n+1}-t_{n}\right|+\left|\omega_{n+1}-\omega_{n}\right|+\left|s_{n+1}-s_{n}\right|+\left|\delta_{n+1}-\delta_{n}\right|\right. \\
& \left.\left.+\left|r_{n+1}-r_{n}\right|\right)\right] \left.+\left|\frac{\gamma_{n+1}}{1-\beta_{n+1}}-\frac{\gamma_{n}}{1-\beta_{n}}\right| \right\rvert\, S \rho_{n} \| \\
\leq & \left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\|u\|+\left\|S \rho_{n}\right\|\right) \\
& +\left\|x_{n}-x_{n+1}\right\|+M_{3}\left(\left|t_{n+1}-t_{n}\right|+\left|\omega_{n+1}-\omega_{n}\right|+\left|s_{n+1}-s_{n}\right|\right. \\
& \left.+\left|\delta_{n+1}-\delta_{n}\right|+\left|r_{n+1}-r_{n}\right|\right) . \tag{2.13}
\end{align*}
$$

It follows that

$$
\begin{align*}
\| l_{n+1} & -l_{n}\|-\| x_{n+1}-x_{n} \| \\
\leq & M_{3}\left(\left|t_{n+1}-t_{n}\right|+\left|\omega_{n+1}-\omega_{n}\right|+\left|s_{n+1}-s_{n}\right|+\left|\delta_{n+1}-\delta_{n}\right|+\left|r_{n+1}-r_{n}\right|\right) \\
& +\left(\left\|S \rho_{n}\right\|+\|u\|\right)\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right| . \tag{2.14}
\end{align*}
$$

Observe conditions (ii), (iv) and (vi) and take the limits as $n \rightarrow \infty$ to get

$$
\limsup _{n \rightarrow \infty}\left(\left\|l_{n+1}-l_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0 .
$$

We can obtain $\lim _{n \rightarrow \infty}\left\|l_{n}-x_{n}\right\|=0$ easily by Lemma 1.4. It follows from condition (iii) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|l_{n}-x_{n}\right\|=0 . \tag{2.15}
\end{equation*}
$$

Observing that $x_{n+1}-x_{n}=\alpha_{n}\left(u-x_{n}\right)+\gamma_{n}\left(S \rho_{n}-x_{n}\right)$, we can easily get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S \rho_{n}-x_{n}\right\|=0 \tag{2.16}
\end{equation*}
$$

For $p \in F(S) \cap V I(C, A)$, we have

$$
\begin{align*}
\left\|\eta_{n}-p\right\|^{2} & =\left\|P_{C}\left(I-t_{n} A\right) x_{n}-P_{C}\left(I-t_{n} A\right) p\right\|^{2} \\
& \leq\left\|\left(x_{n}-p\right)-t_{n}\left(A x_{n}-A p\right)\right\|^{2} \\
& =\left\|x_{n}-p\right\|^{2}-2 t_{n}\left\langle x_{n}-p, A x_{n}-A p\right\rangle+t_{n}^{2}\left\|A x_{n}-A p\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}-2 t_{n}\left[-\gamma\left\|A x_{n}-A p\right\|^{2}+r\left\|x_{n}-p\right\|^{2}\right]+t_{n}^{2}\left\|A x_{n}-A p\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}+2 t_{n} \gamma\left\|A x_{n}-A p\right\|^{2}-2 t_{n} r\left\|x_{n}-p\right\|^{2}+t_{n}^{2}\left\|A x_{n}-A p\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}+\left(2 t_{n} \gamma+t_{n}^{2}-\frac{2 t_{n} r}{\mu^{2}}\right)\left\|A x_{n}-A p\right\|^{2} . \tag{2.17}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|\theta_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}+\left(2 s_{n} \gamma+s_{n}^{2}-\frac{2 s_{n} r}{\mu^{2}}\right)\left\|A z_{n}-A p\right\|^{2} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\rho_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}+\left(2 r_{n} \gamma+r_{n}^{2}-\frac{2 r_{n} r}{\mu^{2}}\right)\left\|A y_{n}-A p\right\|^{2} . \tag{2.19}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} & =\left\|\omega_{n}\left(x_{n}-p\right)+\left(1-\omega_{n}\right)\left(\eta_{n}-p\right)\right\|^{2} \\
& \leq \omega_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\omega_{n}\right)\left[\left\|x_{n}-p\right\|^{2}+\left(2 t_{n} \gamma+t_{n}^{2}-\frac{2 t_{n} r}{\mu^{2}}\right)\left\|A x_{n}-A p\right\|^{2}\right] \\
& \leq\left\|x_{n}-p\right\|^{2}+\left(2 t_{n} \gamma+t_{n}^{2}-\frac{2 t_{n} r}{\mu^{2}}\right)\left\|A x_{n}-A p\right\|^{2} \tag{2.20}
\end{align*}
$$

and

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} & =\left\|\delta_{n}\left(x_{n}-p\right)+\left(1-\delta_{n}\right)\left(\theta_{n}-p\right)\right\|^{2} \\
& \leq\left\|x_{n}-p\right\|^{2}+\left(2 s_{n} \gamma+t_{n}^{2}-\frac{2 s_{n} r}{\mu^{2}}\right)\left\|A z_{n}-A p\right\|^{2} . \tag{2.21}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & =\left\|\alpha_{n}(u-p)+\beta_{n}\left(x_{n}-p\right)+\gamma_{n}\left(S \rho_{n}-p\right)\right\|^{2} \\
& \leq \alpha_{n}\|u-p\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|S \rho_{n}-p\right\|^{2} \tag{2.22}\\
& \leq \alpha_{n}\|u-p\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|\rho_{n}-p\right\|^{2} .
\end{align*}
$$

Substituting (2.19) into (2.22) yields that

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} \leq & \alpha_{n}\|u-p\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2} \\
& +\gamma_{n}\left(\left\|x_{n}-p\right\|^{2}+\left(2 r_{n} \gamma+r_{n}^{2}-\frac{2 r_{n} r}{\mu}\right)\left\|A y_{n}-A p\right\|^{2}\right) \\
\leq & \alpha_{n}\|u-p\|^{2}+\left\|x_{n}-p\right\|^{2}+\left(2 r_{n} \gamma+r_{n}^{2}-\frac{2 r_{n} r}{\mu^{2}}\right)\left\|A y_{n}-A p\right\|^{2} \tag{2.23}
\end{align*}
$$

It follows from condition (v) that

$$
\begin{align*}
\left(\frac{2 a r}{\mu^{2}}\right. & \left.-2 b \gamma-b^{2}\right)\left\|A y_{n}-A p\right\|^{2} \\
& \leq \alpha_{n}\|u-p\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2} \tag{2.24}\\
& =\alpha_{n}\|u-p\|^{2}+\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left(\left\|x_{n}-p\right\|-\left\|x_{n+1}-p\right\|\right) \\
& \leq \alpha_{n}\|u-p\|^{2}+\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n}-x_{n+1}\right\|
\end{align*}
$$

Because of (2.15) and $\lim _{n \rightarrow \infty} \alpha_{n}=0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A y_{n}-A p\right\|=0 \tag{2.25}
\end{equation*}
$$

Using (2.22) again, we have

$$
\begin{equation*}
\left\|x_{n+1}-p\right\|^{2} \leq \alpha_{n}\|u-p\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|y_{n}-p\right\|^{2} \tag{2.26}
\end{equation*}
$$

Substituting (2.21) into (2.26) yields that

$$
\begin{equation*}
\left.\left\|x_{n+1}-p\right\|^{2} \leq \alpha_{n}\|u-p\|^{2}+\left\|x_{n}-p\right\|^{2}+\left(2 s_{n} \gamma+t_{n}^{2}-\frac{2 s_{n} r}{\mu^{2}}\right)\left\|A z_{n}-A p\right\|^{2}\right) \tag{2.27}
\end{equation*}
$$

It follows from condition (v) that

$$
\begin{align*}
\left(\frac{2 a r}{\mu}\right. & \left.-2 b \gamma-b^{2}\right)\left\|A z_{n}-A p\right\|^{2} \\
& \leq \alpha_{n}\|u-p\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2} \tag{2.28}\\
& =\alpha_{n}\|u-p\|^{2}+\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left(\left\|x_{n}-p\right\|-\left\|x_{n+1}-p\right\|\right) \\
& \leq \alpha_{n}\|u-p\|^{2}+\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n}-x_{n+1}\right\|
\end{align*}
$$

From (2.15) and $\lim _{n \rightarrow \infty} \alpha_{n}=0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A z_{n}-A p\right\|=0 \tag{2.29}
\end{equation*}
$$

In a similar way, we can prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A y_{n}-A p\right\|=0 \tag{2.30}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\left\|\rho_{n}-p\right\|^{2}= & \left\|P_{C}\left(I-r_{n} A\right) y_{n}-P_{C}\left(I-r_{n} A\right) p\right\|^{2} \\
\leq & \left\langle\left(I-r_{n} A\right) y_{n}-\left(I-r_{n} A\right) p, \rho_{n}-p\right\rangle \\
= & \frac{1}{2}\left\{\left\|\left(I-r_{n} A\right) y_{n}-\left(I-r_{n} A\right) p\right\|^{2}+\left\|\rho_{n}-p\right\|^{2}\right. \\
& \left.-\left\|\left(I-r_{n} A\right) y_{n}-\left(I-r_{n} A\right) p-\left(\rho_{n}-p\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|y_{n}-p\right\|^{2}+\left\|\rho_{n}-p\right\|^{2}-\left\|\left(y_{n}-\rho_{n}\right)-r_{n}\left(A y_{n}-A p\right)\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|x_{n}-p\right\|^{2}+\left\|\rho_{n}-p\right\|^{2}-\left\|y_{n}-\rho_{n}\right\|^{2}-r_{n}^{2}\left\|A y_{n}-A p\right\|^{2}\right. \\
& \left.+2 r_{n}\left\langle y_{n}-\rho_{n}, A y_{n}-A p\right\rangle\right\}
\end{aligned}
$$

which yields that

$$
\begin{equation*}
\left\|\rho_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|y_{n}-\rho_{n}\right\|^{2}+2 r_{n}\left\langle y_{n}-\rho_{n}, A y_{n}-A p\right\rangle \tag{2.31}
\end{equation*}
$$

Similarly, we can prove

$$
\begin{equation*}
\left\|\theta_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|z_{n}-\theta_{n}\right\|^{2}+2 s_{n}\left\langle z_{n}-\theta_{n}, A z_{n}-A p\right\rangle \tag{2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\eta_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-\eta_{n}\right\|^{2}+2 t_{n}\left\langle x_{n}-\eta_{n}, A x_{n}-A p\right\rangle \tag{2.33}
\end{equation*}
$$

Substituting (2.31) into (2.22) yields that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \alpha_{n}\|u-p\|^{2}+\left\|x_{n}-p\right\|^{2}-\gamma_{n}\left\|y_{n}-\rho_{n}\right\|^{2} \\
& \left.+2 \gamma_{n} r_{n}\left\langle y_{n}-\rho_{n}, A y_{n}-A p\right\rangle\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\gamma_{n}\left\|y_{n}-\rho_{n}\right\|^{2} \leq & \alpha_{n}\|u-p\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2} \\
& +2 \gamma_{n} r_{n}\left\langle y_{n}-\rho_{n}, A y_{n}-A p\right\rangle \\
\leq & \alpha_{n}\|u-p\|^{2}+\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n+1}-x_{n}\right\| \\
& +2 \gamma_{n} r_{n}\left\|y_{n}-\rho_{n}\right\|\left\|A y_{n}-A p\right\|
\end{aligned}
$$

Observing that (2.15), (2.25) and $\lim _{n \rightarrow \infty} \alpha_{n}=0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-\rho_{n}\right\|=0 \tag{2.34}
\end{equation*}
$$

Using (2.22) again, we have

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & \leq \alpha_{n}\|u-p\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|\rho_{n}-p\right\|^{2} \\
& \leq \alpha_{n}\|u-p\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|y_{n}-p\right\|^{2} \\
& \leq \alpha_{n}\|u-p\|^{2}+\left(\beta_{n}+\gamma_{n} \delta_{n}\right)\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left(1-\delta_{n}\right)\left\|\theta_{n}-p\right\|^{2} \tag{2.35}
\end{align*}
$$

Substituting (2.32) into (2.35) yields that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \alpha_{n}\|u-p\|^{2}+\left\|x_{n}-p\right\|^{2} \\
& -\gamma_{n}\left(1-\delta_{n}\right)\left(\left\|z_{n}-\theta_{n}\right\|^{2}-2 s_{n}\left\langle z_{n}-\theta_{n}, A z_{n}-A p\right\rangle\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\gamma_{n}\left(1-\delta_{n}\right)\left\|z_{n}-\theta_{n}\right\|^{2} \leq & \alpha_{n}\|u-p\|^{2}+\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n}-x_{n+1}\right\| \\
& +2 \gamma_{n}\left(1-\delta_{n}\right) s_{n}\left\|z_{n}-\theta_{n}\right\|\left\|A z_{n}-A p\right\|
\end{aligned}
$$

From conditions (ii), (v), (2.15) and (2.29), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-\theta_{n}\right\|=0 \tag{2.36}
\end{equation*}
$$

Similarly, we can prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-\eta_{n}\right\|=0 \tag{2.37}
\end{equation*}
$$

On the other hand, we observe

$$
\begin{aligned}
\left\|S \rho_{n}-\rho_{n}\right\| \leq & \left\|S \rho_{n}-x_{n}\right\|+\left\|x_{n}-\eta_{n}\right\|+\left\|\eta_{n}-z_{n}\right\| \\
& +\left\|z_{n}-\theta_{n}\right\|+\left\|\theta_{n}-y_{n}\right\|+\left\|y_{n}-\rho_{n}\right\|
\end{aligned}
$$

It follows from condition (vi), (2.16), (2.34), (2.36) and (2.37) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S \rho_{n}-\rho_{n}\right\|=0 \tag{2.38}
\end{equation*}
$$

Next, we show

$$
\limsup _{n \rightarrow \infty}\left\langle u-q, x_{n}-q\right\rangle \leq 0
$$

where $q=P_{F(S) \cap V I(C, A)} u$. To show it, we choose a subsequence $\left\{\rho_{n_{i}}\right\}$ of $\left\{\rho_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle u-q, S \rho_{n}-q\right\rangle=\lim _{i \rightarrow \infty}\left\langle u-q, S \rho_{n_{i}}-q\right\rangle
$$

As $\left\{\rho_{n_{i}}\right\}$ is bounded, we have that there is a subsequence $\left\{\rho_{n_{i_{j}}}\right\}$ of $\left\{\rho_{n_{i}}\right\}$ converges weakly to p. We may assume that without loss of generality that $\rho_{n_{i}} \rightharpoonup p$. Observing (2.38), we have $S \rho_{n_{j}} \rightharpoonup p$. Hence we have $p \in F(S) \cap V I(C, A)$. Indeed, let us first show that $p \in V I(C, A)$. Put

$$
T w_{1}= \begin{cases}A w_{1}+N_{C} w_{1}, & w_{1} \in C \\ \emptyset, & w_{1} \notin C\end{cases}
$$

Since A is relaxed (γ, r)-cocoercive and condition (v), we have

$$
\langle A x-A y, x-y\rangle \geq(-\gamma)\|A x-A y\|^{2}+r\|x-y\|^{2} \geq\left(r-\gamma \mu^{2}\right)\|x-y\|^{2} \geq 0
$$

which yields that A is monotone. Thus T is maximal monotone. Let $\left(w_{1}, w_{2}\right) \in$ $G(T)$. Since $w_{2}-A w_{1} \in N_{C} w_{1}$ and $\rho_{n} \in C$, we have

$$
\left\langle w_{1}-\rho_{n}, w_{2}-A w_{1}\right\rangle \geq 0
$$

On the other hand, from $\rho_{n}=P_{C}\left(I-r_{n} A\right) y_{n}$, we have

$$
\left\langle w_{1}-\rho_{n}, \rho_{n}-\left(I-r_{n} A\right) y_{n}\right\rangle \geq 0
$$

and hence

$$
\left\langle w_{1}-\rho_{n}, \frac{\rho_{n}-y_{n}}{r_{n}}+A y_{n}\right\rangle \geq 0
$$

It follows that

$$
\begin{aligned}
\left\langle w_{1}-\rho_{n_{i}}, w_{2}\right\rangle \geq & \left\langle w_{1}-\rho_{n_{i}}, A w_{1}\right\rangle \geq\left\langle w_{1}-\rho_{n_{i}}, A w_{1}\right\rangle \\
& -\left\langle w_{1}-\rho_{n_{i}}, \frac{\rho_{n_{i}}-y_{n_{i}}}{r_{n_{i}}}+A y_{n_{i}}\right\rangle \\
\geq & \left\langle w_{1}-\rho_{n_{i}}, A w_{1}-\frac{\rho_{n_{i}}-y_{n_{i}}}{r_{n_{i}}}-A y_{n_{i}}\right\rangle \\
= & \left\langle w_{1}-\rho_{n_{i}}, A w_{1}-A \rho_{n_{i}}\right\rangle+\left\langle w_{1}-\rho_{n_{i}}, A \rho_{n_{i}}-A y_{n_{i}}\right\rangle \\
& -\left\langle w_{1}-\rho_{n_{i}}, \frac{\rho_{n_{i}}-y_{n_{i}}}{r_{n_{i}}}\right\rangle \\
\geq & \left\langle w_{1}-\rho_{n_{i}}, A \rho_{n_{i}}-A y_{n_{i}}\right\rangle-\left\langle w_{1}-\rho_{n_{i}}, \frac{\rho_{n_{i}}-y_{n_{i}}}{r_{n_{i}}}\right\rangle
\end{aligned}
$$

which implies that $\left\langle w_{1}-p, w_{2}\right\rangle \geq 0$ as $i \rightarrow \infty$. We have $p \in T^{-1} 0$ and hence $p \in V I(C, A)$. Next, let us show $p \in F(S)$. Since Hilbert spaces are Opial's spaces, from (2.38), we have

$$
\begin{aligned}
\liminf _{i \rightarrow \infty}\left\|\rho_{n_{i}}-p\right\| & <\liminf _{i \rightarrow \infty}\left\|\rho_{n_{i}}-S p\right\|=\liminf _{i \rightarrow \infty}\left\|\rho_{n_{i}}-S \rho_{n_{i}}+S \rho_{n_{i}}-S p\right\| \\
& \leq \liminf _{i \rightarrow \infty}\left\|S \rho_{n_{i}}-S p\right\| \leq \liminf _{i \rightarrow \infty}\left\|\rho_{n_{i}}-p\right\|
\end{aligned}
$$

which derives a contradiction. Thus, we have $p \in F(S)$. On the other hand, we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle u-q, x_{n}-q\right\rangle & =\limsup _{n \rightarrow \infty}\left\langle u-q, S \rho_{n}-q\right\rangle=\lim _{i \rightarrow \infty}\left\langle u-q, S \rho_{n_{i}}-q\right\rangle \tag{2.39}\\
& =\langle u-q, p-q\rangle \leq 0 .
\end{align*}
$$

It follows that

$$
\begin{aligned}
\left\|x_{n+1}-q\right\|^{2}= & \left\langle\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S \rho_{n}-q, x_{n+1}-q\right\rangle \\
= & \alpha_{n}\left\langle u-q, x_{n+1}-q\right\rangle+\beta_{n}\left\langle x_{n}-q, x_{n+1}-q\right\rangle \\
& +\gamma_{n}\left\langle S \rho_{n}-q, x_{n+1}-q\right\rangle \\
\leq & \alpha_{n}\left\langle u-q, x_{n+1}-q\right\rangle+\frac{1}{2} \beta_{n}\left(\left\|x_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right) \\
& +\frac{1}{2} \gamma_{n}\left(\left\|S \rho_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right) \\
\leq & \alpha_{n}\left\langle u-q, x_{n+1}-q\right\rangle+\frac{1}{2} \beta_{n}\left(\left\|x_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right) \\
& +\frac{1}{2} \gamma_{n}\left(\left\|\rho_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right) \\
\leq & \alpha_{n}\left\langle u-q, x_{n+1}-q\right\rangle+\frac{1}{2} \beta_{n}\left(\left\|x_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right) \\
& +\frac{1}{2} \gamma_{n}\left(\left\|x_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right) \\
\leq & \alpha_{n}\left\langle u-q, x_{n+1}-q\right\rangle+\frac{1}{2}\left(1-\alpha_{n}\right)\left(\left\|x_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right),
\end{aligned}
$$

which yields that

$$
\begin{equation*}
\left\|x_{n+1}-q\right\|^{2} \leq\left(1-\alpha_{n}\right)\left\|x_{n}-q\right\|^{2}+2 \alpha_{n}\left\langle u-q, x_{n+1}-q\right\rangle . \tag{2.40}
\end{equation*}
$$

By Lemma 1.5, we can conclude the desired conclusion easily. This completes the proof.

As corollaries of Theorem 2.1, we have the following results immediately.
Corollary 2.2. Let H be a real Hilbert space, C be a nonempty closed convex subset of H and $A: C \rightarrow H$ be relaxed (γ, r)-cocoercive and μ-Lipschitz continuous. Let $S: C \rightarrow C$ be a nonexpansive mapping such that $F(S) \cap V I(C, A) \neq \emptyset .\left\{x_{n}\right\}$ is a sequence generated by the following algorithm: $x_{0} \in C$ and

$$
\left\{\begin{aligned}
y_{n} & =P_{C}\left(I-s_{n} A\right) x_{n}, \\
x_{n+1} & =\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(I-r_{n} A\right) y_{n}, \quad n \geq 0,
\end{aligned}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three sequences in $(0,1)$. If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{r_{n}\right\}$ and $\left\{s_{n}\right\}$ are chosen such that
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$;
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(iii) $0<\liminf \operatorname{in⿻}_{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$;
(iv) $\lim _{n \rightarrow \infty}\left|r_{n+1}-r_{n}\right|=\lim _{n \rightarrow \infty}\left|s_{n+1}-s_{n}\right|=0$;
(v) $\left\{r_{n}\right\},\left\{s_{n}\right\} \subset[a, b]$ for some a, b with $0<a<b<\frac{2\left(r-\gamma \mu^{2}\right)}{\mu^{2}}$ and $r>\gamma \mu^{2}$.

Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap V I(C, A)} u$.
Corollary 2.3. Let H be a real Hilbert space, C be a nonempty closed convex subset of H and $A: C \rightarrow H$ be relaxed (γ, r)-cocoercive and μ-Lipschitz continuous. Let $S: C \rightarrow C$ be a nonexpansive mapping such that $F(S) \cap V I(C, A) \neq \emptyset .\left\{x_{n}\right\}$ is a sequence generated by the following algorithm:

$$
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S x_{n},
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three sequences in (0,1). If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are chosen such that
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$;
(ii) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(iii) $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.

Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S)} u$.

REFERENCES

[1] D. Gabay, Applications of the Method of Multipliers to Variational Inequalities, Augmented Lagrangian Methods, Edited by M. Fortin and R. Glowinski, North-Holland, Amsterdam, Holland, (1983), 299-331.
[2] H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
[3] G.M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekonomika i Matematicheskie Metody 12 (1976), 747-756.
[4] N. Nadephkina, W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), 191201.
[5] M.O. Osilike, D.I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations, Comput. Math. Appl. 40 (2000), 559-567.
[6] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.
[7] G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, Comptes rendus Acad. Sci., Paris 258 (1964), 4413-4416.
[8] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), 227239.
[9] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
[10] R. U. Verma, Generalized system for relaxed cocoercive variational inequalities and its projection methods, J. Optim. Theory Appl. 121 (1) (2004), 203-210.
[11] R.U. Verma, General convergence analysis for two-step projection methods and application to variational problems, Appl. Math. Lett. 18 (11) (2005), 1286-1292.
[12] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), 240-256.
[13] Y. Yao, J. C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007), 1551-1558.
[14] J. C. Yao, Variational inequalities with generalized monotone operators, Math. Operations Research 19 (1994), 691-705.
[15] L.C. Zeng, J. C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math. 10 (2006), 1293-1303.
(received 13.06.2007)
Xiaolong Qin, 1) Department of Mathematics, Tianjin Polytechnic University, Tioanjin 300160, China;
2) Department of Mathematics and the RINS, Gyeongsang National University, Chinju 660-701, Korea
E-mail: ljjhqxl@yahoo.com.cn
Meijuan Shang, Department of Mathematics, Shijiazhuang University, Shijiazhuang 050035, China
Yongfu Su, Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China

[^0]: AMS Subject Classification: 47H05; 47H09; 47J05; 47J25
 Keywords and phrases: Projection method; relaxed cocoercive mapping; nonexpansive mapping; fixed point.

