ASCENT AND DESCENT OF WEIGHTED COMPOSITION OPERATORS ON L^p -SPACES

Rajeev Kumar

Abstract. In this paper, we study weighted composition operators on L^p -spaces with finite ascent and descent. We also characterize the injective weighted composition operators.

1. Introduction

Let $\Omega = (\Omega, \Sigma, \mu)$ be a σ -finite measure space. Let $L(\mu)$ denotes the linear space of all equivalence classes of Σ -measurable functions on Ω , where we identify any two functions that are equal μ -a.e. on Ω . Let ν be another measure on the measurable space (Ω, Σ) such that $\nu(A) = 0$ for each $A \in \Sigma$ whenever $\mu(A) = 0$. Then we say that the measure ν is absolutely continuous with respect to the measure μ and we write $\nu \ll \mu$. By Radon-Nikodym Theorem, there exists a non-negative locally integrable function f_{ν} on Ω so that the measure ν can be represented as

$$\nu(A) = \int_A f_{\nu}(x) d\mu(x), \quad \text{for each} \quad A \in \Sigma.$$

The function f_{ν} is called the Radon Nikodym derivative of the measure ν with respect to the measure μ .

Let $T: \Omega \to \Omega$ be a non-singular measurable transformation, that is, $\mu \circ T^{-1} \ll \mu$. Let $u: \Omega \to \mathbf{C}$ be an essentially bounded measurable function. We assume that the support u is the domain of T. Then the linear transformation $W = W_{u,T}: L(\mu) \to L(\mu)$ is defined as

$$Wf = W_{u,T}f = u.f \circ T$$
, for each $f \in L(\mu)$,

In case W maps $L^{p}(\mu)$ into itself, for $p \in [1, \infty)$, we call $W = W_{u,T}$ a weighted composition operator on $L^{p}(\mu)$ induced by the pair (u, T).

Note that the pair (u, T) induces a weighted composition operator while T may fail to induce a composition operator on $L^p(\mu)$. For example if u(y) = 0, for

47

AMS Subject Classification: 47B33, 46E30, 47B07, 46B70.

 $Keywords\ and\ phrases:$ Ascent, descent, measurable transformation, weighted composition operators.

R. Kumar

each $y \in \Omega$, then $W_{u,T}$ induces a weighted composition operator whether T induces the corresponding composition operator or not.

Now, we define a measure $\mu_{u,T}^1$ on Σ as

$$\mu_{u,T}^1 = \int_{T^{-1}(A)} |u(x)|^q \, d\mu(x), \quad \text{for each} \quad A \in \Sigma.$$

Clearly $\mu_{u,T}^1 \ll \mu \circ T^{-1} \ll \mu$. Let $f_{u,T}^1$ denotes the Radon-Nikodym derivative of $\mu_{u,T}^1$ with respect to μ and let $h_1 = (f_{u,T}^1)^{\frac{1}{p}} \colon \Omega \to \mathbf{C}$.

Note that W is a continuous weighted composition operator on $L^{p}(\mu)$, for $p \in [1, \infty)$ if and only if $h_{1} \in L^{\infty}(\mu)$. For details on the study of weighted composition operators on L^{p} -spaces, see [5, p. 51]. The study of weighted composition operators between two L^{p} -spaces has been initiated in [3]. The interesting study of composition operators on Banach function spaces with finite ascent and finite descent has been initiated in [2].

We also define a measure $\mu_{u,T}^2$ on Σ as

$$\mu_{u,T}^{2} = \int_{T^{-1}(A)} |u(x)|^{q} d\mu_{u,T}^{1}(x), \text{ for each } A \in \Sigma.$$

Clearly $\mu_{u,T}^2 \ll \mu_{u,T}^1 \circ T^{-1} \ll \mu$. Let $f_{u,T}^2$ denotes the Radon-Nikodym derivative of $\mu_{u,T}^2$ with respect to μ and let $h_2 = (f_{u,T}^2)^{\frac{1}{p}} \colon \Omega \to \mathbf{C}$.

DEFINITION 1. For a bounded operator $A: F \to F$ on a Banach space F, the ascent $\alpha(A)$ of A is the least non-negative integer such that $\ker(A^k) = \ker(A^{k+1})$ and the descent d(A) of A is the least non-negative integer such that $\overline{\operatorname{Ran}(A^k)} = \overline{\operatorname{Ran}(A^{k+1})}$.

Note that $\ker(A^k) \subseteq \ker(A^{k+1})$ and $\operatorname{Ran}(A^{k+1}) \subseteq \operatorname{Ran}(A^k)$, for each $k \ge 0$. In case $\alpha(A) < \infty$ and $d(A) < \infty$, then $d = \alpha(A) = d(A)$ on $L^p(\mu)$ -spaces, for $p \in [1, \infty)$.

We also note that if $d = \alpha(A) = d(A) < \infty$, then $V = \ker(A^d)$ and $W = \operatorname{Ran}(A^d)$, is the only reducing pair for the operator A such that A is nilpotent on V and invertible on W, see [1, p. 81]. In particular, we take $A = W = W_{u,T}$, a weighted composition operator induced by the pair (u, T).

DEFINITION 2. A standard Borel space Ω is a Borel subset of a complete metric space (S, d), where d is a metric on a set S. The class Σ will consist of all sets of the form $\Omega \cap E$, where E is a Borel subset of S.

In this paper, we give a necessary and sufficient condition for weighted composition operators with ascent 1 and descent 1. We also give a necessary and sufficient condition for the injective weighted composition operators. Ascent and descent of weighted composition operators on L^p -spaces

2. Main results

In this section, we prove our main result with the help of the following lemma.

LEMMA 2.1. Let $W = W_{u,T}$ be a continuous weighted composition operator on $L^p(\mu)$, for $p \in [1, \infty)$. Then, we have $\ker(W) = L^p(\Omega_\circ)$, where $\Omega_\circ = \{x \in \Omega : f_{u,T}^1(x) = 0\}$ and

$$L^{p}(\Omega_{\circ}) = \{ f \in X : f(x) = 0 \text{ a.e. } x \in \Omega \setminus \Omega_{\circ} \}.$$

Proof. For $f \in L^p(\mu)$, the support of f is $\operatorname{supp}(f) = \{x \in \Omega : f(x) \neq 0\}$. Clearly, we have

$$L^{p}(\Omega_{\circ}) = \{ f \in L^{p}(\mu) : \operatorname{supp}(f) \subseteq \Omega_{\circ} \text{ a.e.} \} = \{ f \in L^{p}(\mu) : f^{1}_{u,T}|_{\operatorname{supp}(f)} = 0 \}.$$

For $f \in L^p(\Omega_\circ)$, we have

$$\begin{split} \|Wf\|_{p}^{p} &= \int_{\Omega} |Wf(x)|^{p} \, d\mu(x) = \int_{\Omega} |f(x)|^{p} f_{u,T}^{1}(x) \, d\mu(x) \\ &= \int_{\Omega \setminus \Omega_{\circ}} |f(y)|^{p} f_{u,T}^{1}(x) \, d\mu(y) + \int_{\Omega_{\circ}} |f(y)|^{p} f_{u,T}^{1}(x) \, d\mu(y) = 0. \end{split}$$

Thus $f \in \ker(W)$ so that $L^p(\Omega_{\circ}) \subseteq \ker(W)$.

Conversely, let $f \in \ker(W)$. Then $u f \circ T = 0$ a.e.. We have

$$0 = \int_{\Omega} |u(x)|^p |f(T(x))|^p \, d\mu(x) = \int_{\Omega} |f(x)|^p f_{u,T}^1(x) \, d\mu(x)$$

which implies that $f_{u,T}^1|_{\text{supp}(f)} = 0$ a.e., so that $f \in L^p(\Omega_\circ)$. This proves the reverse inclusion.

The next result characterizes the injective weighted composition operators. For this we need the following definition.

DEFINITION 3. A measurable transformation $T: \Omega \to \Omega$ is said to be essentially surjective if $\mu(\Omega \setminus T(\Omega)) = 0$.

THEOREM 2.2. Let $W = W_{u,T}$ be a continuous weighted composition operator on $L^p(\mu)$, for $1 \leq p < \infty$. Then W is injective if and only if T is essentially surjective.

Proof. If W is injective, then using Lemma 2.1, we see that $L^p(\Omega_o) = \{0\}$. Thus $f_{u,T}^1(x) \neq 0$ a.e.. This implies that $\mu(\Omega_o) = 0$. Therefore T is essentially surjective.

Now we show that $\Omega \setminus \Omega_{\circ} = T(\Omega)$. Clearly, $\Omega \setminus \Omega_{\circ} = \operatorname{supp}(f_{u,T}^1) \supseteq T(\Omega)$. Also, for each $E \in \Sigma$ such that $E \subseteq \Omega \setminus T(\Omega)$, we have

$$0 = \mu_{u,T}^{1}(E) = \int_{E} f_{u,T}^{1}(x) \, d\mu(x),$$

R. Kumar

which implies that $f_{u,T}^1|_E = 0 \Rightarrow E \subseteq \Omega_\circ$. This shows that $\Omega \setminus T(\Omega) \subseteq \Omega_\circ \Rightarrow \Omega \setminus \Omega_\circ \subseteq T(\Omega)$. This proves that $T(\Omega) = \Omega \setminus \Omega_\circ$.

Note that we have used the fact that $\mu_{u,T}^1 \ll \mu \circ T^{-1}$.

COROLLARY 2.3. If (Ω, Σ, μ) is a non-atomic measure space, then the nullity of W is either zero or infinite.

REMARK. The above results in this section has been proved for composition operators on Orlicz spaces in [4].

The next theorem characterises weighted composition operators with ascent 1.

THEOREM 2.4. Let $W = W_{u,T}$ be a continuous weighted composition operator on $L^p(\mu)$. Then W has ascent 1 if and only if the measures $\mu^1_{u,T}$ and $\mu^2_{u,T}$ are equivalent.

Proof. Since W is bounded, we have $\mu_{u,T}^2 \ll \mu_{u,T}^1 \circ T^{-1} \ll \mu$. Then, we have

$$\mu_{u,T}^2 = \int_E f_{u,T}^2(x) \, d\mu(x) = \int_E |u(x)|^p \, d\mu_{u,T}^1(x), \text{ for each } E \in \Sigma.$$

Now, suppose $\mu_{u,T}^1 \ll \mu_{u,T}^2 \ll \mu_{u,T}^1$. Then, we see that

$$\Omega_{\circ} = \{ x \in \Omega : f_{u,T}^1(x) = 0 \} = \{ x \in \Omega : f_{u,T}^2(x) = 0 \}.$$

Then, by using Lemma 2.1, we have

$$\ker(W) = \ker M_{f_{u,T}^1} = L^p(\Omega_{\circ}) = \ker M_{f_{u,T}^2} = \ker(W^2)$$

This shows that W is a weighted composition operator with ascent 1.

Conversely, suppose $\ker(W) = \ker(W^2)$. Since $\ker(W) = L^p(\Omega_\circ)$, where $\Omega_\circ = \{x \in \Omega : f_{u,T}^1(x) = 0\}$ and $\ker(W^2) = L^p(\Omega'_\circ)$, where $\Omega'_\circ = \{x \in \Omega : f_{u,T}^2 = 0\}$. We conclude that $\Omega_\circ = \Omega'_\circ$. Since $\mu^1_{u,T} = \int_E f_{u,T}^1(x) \, d\mu(x)$ and $\mu^2_{u,T} = \int_E f_{u,T}^2(x) \, d\mu(x)$ for each $E \in \Sigma$. Thus, we have $\mu^1_{u,T} \ll \mu^2_{u,T} \ll \mu^1_{u,T}$. This proves the theorem.

THEOREM 2.5. Let (Ω, Σ, μ) be a σ -finite standard Borel space and W is a bounded operator on $L^p(\mu)$, for $p \in [1, \infty)$. Then the operator W has ascent 1 if and only if $T[\Omega_1] \supseteq \Omega_1$, where $\Omega_1 = \Omega \setminus \Omega_\circ$ and $\Omega_\circ = \{x \in \Omega : f_{u,T}^1(x) = 0\}$.

Proof. Suppose $T[\Omega_1] \supseteq \Omega_1$. By Lemma 2.1, we have $\ker(W) = L^p(\Omega_o)$. Then $L^p(\Omega) = L^p(\Omega_o) \oplus L^p(\Omega_1)$. Thus each $f \in \ker(W^2)$ can be written as $f = f_1 + g_1$, where $f_1 \in \ker(W)$ and $g_1 \in L^p(\Omega_1)$. Since

$$0 = W^2 f = W^2 (f_1 + g_1) = W^2 g_1 = u \cdot u \circ T \cdot g_1 \circ T^2$$

and $T[\Omega_1] \supseteq \Omega_1$, we see that $g_1 = 0$ a.e. on Ω_1 . Then $f = f_1$. Thus $\ker(W^2) \subseteq \ker(W)$. Therefore, we have $\ker(W) = \ker(W^2)$. This implies that W has ascent 1.

Conversely, suppose that $T[\Omega_1] \not\supseteq \Omega_1$. Suppose $E \in \Sigma$ with $E \subseteq \Omega_1 \setminus T[\Omega_1]$ of non zero finite measure such that $W^2 \chi_E = 0$. Since $E \subseteq \Omega_1$, we have $W \chi_E \neq 0$, which contradicts the fact that W has ascent 1.

50

COROLLARY 2.6. Let W be as above. Then W is of ascent 1 if and only if $(T \circ T)[\mathbf{N}] = T(\mathbf{N})$, where $T[\mathbf{N}]$ is the range of \mathbf{N} .

The following theorem characterises composition operators with descent 1.

THEOREM 2.7. Let $W = W_{u,T}$ be a continuous weighted composition operator on $L^p(\mu)$, for $1 \le p < \infty$. Then W has descent 1 if and only if the measures $\mu^1_{u,T}$ and $\mu^2_{u,T}$ are equivalent.

Proof. Using Theorem 2.4 and the arguments following the definition 1, the proof is through. \blacksquare

REMARK. For the examples of composition operators on L^p spaces with finite ascent and finite descent, see [2].

REFERENCES

- Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics 50, American Mathematical Society, 2002.
- [2] Rajeev Kumar, Ascent and descent of composition operators on Banach function spaces, preprint.
- [3] Rajeev Kumar, Weighted composition operators between two L^p -spaces, preprint.
- [4] R. Kumar, Composition operators on Orlicz spaces, Integral Equations and Operator Theory 29 (1997), 17–22.
- [5] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North Holland Math. Studies 179, Amsterdam 1993.
- [6] H. Takagi, Compact weighted composition operators on L^p, Proc. Amer. Math. Soc. 116, 2 (1992), 505–511.
- [7] V. S. Varadarajan, Geometry of quantum theory, vol. II, University Series in Higher Mathematics, Van Nostrand Reinhold, New York, 1970.

(received 29.03.2007)

73, Vidhata Nagar, Near Bathindi Morh, Jammu-180 006, INDIA. *E-mail*: raj1k2@yahoo.co.in, rajeev32002@yahoo.co.in