UDK 514.763 оригинални научни рад research paper

SOME CURVATURE CONDITIONS OF THE TYPE 4×2 ON THE SUBMANIFOLDS SATISFYING CHEN'S EQUALITY

Miroslava Petrović-Torgašev and Ana Hinić

Abstract. Submanifolds of the Euclidean spaces satisfying equality in the basic Chen's inequality have, as is known, many interesting properties. In this paper, we discuss the curvature conditions of the form $E \cdot S = 0$ on such submanifolds, where E is any of the standard 4-covariant curvature operators, S is the Ricci curvature operator, and E acts on S as a derivation.

1. Introduction

1. Let M^n be an *n*-dimensional submanifold of a Euclidean space E^m of dimension m = n + p ($p \ge 1, n \ge 2$). Let g be the Riemannian metric induced on M^n from the standard metric on E^m , ∇ the corresponding Levi Civita connection on M^n , and R, S and τ respectively the Riemann-Christoffel curvature tensor, the Ricci tensor and the scalar curvature of M^n . We use the sign convention given by $R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$ and the normalization of the scalar curvature given by $\tau = \sum_{i,j=1}^n K(e_i \wedge e_j)$, where K denotes the sectional curvature and $e_i \wedge e_j$ is the plane section of TM^n spanned by the vectors e_i and e_j for $i \ne j$ of an orthonormal tangent frame field e_1, \ldots, e_n on M^n .

Consider the real function $\inf K$ on M^n defined for every $x \in M$ by

$$(\inf K)(x) := \inf\{ K(\pi) : \pi \text{ is a 2-plane in } T_x(M^n) \}.$$

Since the set of 2-planes at a certain point is compact, this infimum is actually a minimum. B. Y. Chen proved in [5] the following basic inequality between the intrinsic scalar invariants inf K and τ of M^n , and the extrinsic scalar invariant |H|, being the length of the mean curvature vector field H of M^n in E^m .

THEOREM A. ([5]). Let M^n $(n \ge 2)$, be any submanifold of E^m $(m = n + p, p \ge 1)$. Then

$$\inf K \ge \frac{1}{2} \left\{ \tau - \frac{n^2(n-2)}{n-1} |H|^2 \right\}.$$
 (1)

Keywords and phrases: Submanifolds, curvature conditions, basic equality.

143

AMS Subject Classification: Primary 53B25, Secondary 53C40.

This paper is supported by the Ministry of science of the Republic of Serbia, grant No. 144030.

Equality holds in (1) at a point x if and only if with respect to suitable local orthonormal frames $e_1, \ldots, e_n \in T_x M^n$ and $e_{n+1}, \ldots, e_{n+p} \in T_x^{\perp} M^n$, the Weingarten maps A_t with respect to the normal sections $\xi_t = e_{n+t}$ $(t = 1, \ldots, p)$ are given by

$$A_{1} = \begin{pmatrix} a & 0 & 0 & \dots & 0 \\ 0 & b & 0 & \dots & 0 \\ 0 & 0 & \mu & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \mu \end{pmatrix}, \quad A_{t} = \begin{pmatrix} c_{t} & d_{t} & 0 & \dots & 0 \\ d_{t} & -c_{t} & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} \quad (t > 1),$$

where $\mu = a + b$. For any such frame, $\inf K(x)$ is attained by the plane $e_1 \wedge e_2$.

The purpose of the present paper is to study submanifolds M^n of E^m for which the basic inequality (1) at all points is actually an equality. Such submanifolds are called *ideal submanifolds*.

If S is the Ricci operator of a manifold M^n in a Euclidean space, the Ricci curvatures $\operatorname{Ric}_i = S_{ii}$ (i = 1, ..., n) of M^n are given by

$$\operatorname{Ric}_i = \operatorname{Ric}(e_i) = \sum_{j=1}^n K_{ij}$$

where $K_{ij} = K(e_i \wedge e_j)$ (i, j = 1, ..., n) are the corresponding sectional curvatures. If, in particular, M^n is satisfying the basic equality in (1), then we have

$$K_{12} = ab - \sigma K_{1j} = a \mu, \quad K_{2j} = b \mu, \quad K_{ij} = \mu^2$$

for i, j > 2, where $\sigma = \sum_{t=2}^{p} (c_t^2 + d_t^2)$. In this case the Ricci curvatures Ric_i of M^n $(i = 1, \ldots, n)$ are given by

$$\operatorname{Ric}_{1} = (n-2) \, a \, \mu + K_{12}, \quad \operatorname{Ric}_{2} = (n-2) \, b \, \mu + K_{12},$$
$$\operatorname{Ric}_{3} = \dots = \operatorname{Ric}_{n} = (n-2) \, \mu^{2},$$

and we also have $S(e_i, e_j) = 0$ if $i \neq j$. The scalar curvature $\tau = 2ab - 2\sigma + (n-1)(n-2)\mu^2$. In the sequel, we shall also denote $\operatorname{Ric}_1 = \alpha$, $\operatorname{Ric}_2 = \beta$, $\operatorname{Ric}_3 = \gamma$.

2. Next, we recall several curvature operators which we shall use in the sequel. The concircular curvature operator Z(X, Y) is defined for $n \ge 2$ by

$$Z(X,Y)=R(X,Y)-\frac{\tau}{n(n-1)}\,B(X,Y),$$

where $\tau = \tau(x)$ is the scalar curvature of M^n , and the operator $B(X,Y)U = (X \wedge Y)U = g(U,Y)X - g(U,X)Y$ $(X,Y,U \in T_x(M^n))$. Note that, in components, $B_{ijkl} = g_{il}g_{jk} - g_{ik}g_{jl}$.

The projective curvature operator P(X, Y) is defined for $n \ge 2$ by

$$P(X,Y)U = R(X,Y)U - \frac{1}{n-1}B(X,Y)(SU).$$

144

The Weyl's conformal curvature operator C is defined for $n \ge 3$ by

$$C(X,Y) = R(X,Y) - \frac{1}{n-2} \{ SX \wedge Y + X \wedge SY \} + \frac{\tau}{(n-1)(n-2)} B(X,Y)$$

As is well known, every submanifold of dimension n = 3 is conformally flat, that is C = 0 identically holds on M^3 .

The conharmonic curvature operator K(X, Y) is defined for $n \ge 3$ by

$$K(X,Y) = R(X,Y) - \frac{1}{n-2} \{SX \wedge Y + X \wedge SY\}$$

The *Einstein curvature operator* is defined for $n \ge 2$ by $G = S - \frac{\tau}{n}I$, where I is the identity operator on $T_x(M^n)$.

As is well-known, every manifold M^2 is of constant sectional curvature (that is, its curvature tensors Z and P vanish), and a manifold M^n $(n \ge 3)$ is conharmonically flat if and only if it is conformally flat, and its scalar curvature τ identically vanishes.

3. Now, assume that M^n is a submanifold of the Euclidean space E^m $(m = n+p, p \ge 1, n \ge 2)$ satisfying Chen's basic equality. If we denote $R_{ijk} = R(e_i, e_j)e_k$ (i, j, k = 1, ..., n), then a straightforward calculation of the curvature operator R(X, Y)U gives that, in the orthonormal basis $\{e_1, \ldots, e_n\}$ of the tangent space $T_x(M^n)$, we have

$$\begin{cases} R_{121} = R_1 e_2, & R_{122} = -R_1 e_1, \\ R_{1p1} = R_2 e_p & (p \ge 3), & R_{1pp} = -R_2 e_1 & (p \ge 3), \\ R_{2p2} = R_3 e_p & (p \ge 3), & R_{2pp} = -R_3 e_2 & (p \ge 3), \\ R_{pqp} = R_0 e_q & (p, q \ge 3, p \ne q), \end{cases}$$
(2)

where $R_1 = -K_{12} = \sigma - ab = \sum_{t=2}^{p} (c_t^2 + d_t^2) - ab$, $R_2 = -K_{1j} = -a\mu$, $R_3 = -K_{2j} = -b\mu$ and $R_0 = -K_{ij} = -\mu^2$ (i, j > 2). Besides, $R_{ijk} = 0$ if all i, j, k are mutually distinct.

Moreover, if $E = E_4$ is any of the curvature operators R, Z, B, C, K, we get the similar equations for the values $E_{ijk} = E(e_i, e_j)e_k$ (i, j, k = 1, ..., n), with the corresponding functions E_i (i = 0, 1, 2, 3). We only give in short the exact values for the functions E_i (i = 0, 1, 2, 3) in each of these cases.

$$(B): \quad B_{1} = B_{2} = B_{3} = B_{0} = -1 \text{ at any point } x \in M^{n}.$$

$$(Z): \quad \begin{cases} Z_{1} = R_{1} + \frac{\tau}{n(n-1)}, & Z_{2} = -a\mu + \frac{\tau}{n(n-1)}, \\ Z_{3} = -b\mu + \frac{\tau}{n(n-1)}, & Z_{0} = -\mu^{2} + \frac{\tau}{n(n-1)}. \end{cases}$$

$$(K): \quad K_{1} = \frac{n-4}{n-2}R_{1} + \mu^{2}, K_{2} = K_{3} = -\frac{R_{1}}{n-2} + \mu^{2}, K_{0} = \mu^{2}.$$

$$(C): \quad \begin{cases} C_{1} = \frac{n-3}{n-1}R_{1}, C_{2} = C_{3} = -\frac{n-3}{(n-1)(n-2)}R_{1}, \\ C_{0} = \frac{2R_{1}}{(n-1)(n-2)}. \end{cases}$$

We note that each of the functions R_0, B_0, Z_0, K_0, C_0 exists only if $n \ge 4$.

We also note that the corresponding equations for the projective curvature operator P differ of the previous because the corresponding curvature tensor is not antisymmetric in the last two indices. In fact, denoting $P_{ijk} = P(e_i, e_j)e_k$ (i, j, k = 1, ..., n), we find the following equations:

$$\begin{cases}
P_{121} = P_1 e_2, & P_{122} = \widetilde{P}_1 e_1, & P_{1p1} = P_2 e_p \quad (p \ge 3), \\
P_{1pp} = \widetilde{P}_2 e_1 \quad (p \ge 3), & P_{2p2} = P_3 e_p \quad (p \ge 3), \\
P_{2pp} = \widetilde{P}_3 e_2 \quad (p \ge 3), & P_{pqp} = P_0 e_q \quad (p,q \ge 3, p \ne q),
\end{cases}$$
(3)

where

$$\begin{cases} P_1 = \frac{n-2}{n-1} \left(R_1 + a \, \mu \right), & \widetilde{P}_1 = -\frac{n-2}{n-1} \left(R_1 + b \, \mu \right), \\ P_2 = -\frac{R_1 + a \, \mu}{n-1}, & \widetilde{P}_2 = \frac{\mu}{n-1} [a - (n-2)b], \\ P_3 = -\frac{R_1 + b \, \mu}{n-1}, & \widetilde{P}_3 = \frac{\mu}{n-1} \left[b - (n-2)a \right], \\ P_0 = -\frac{\mu^2}{n-1}. \end{cases}$$

Besides, $P_{ijk} = 0$ if all i, j, k are mutually distinct, and P_0 exists only if $n \ge 4$.

Finally, denoting any of the tensors S, G by E, we find that the Ricci operator S and the Einstein tensor G act as follows:

$$Ee_1 = \alpha e_1, \quad Ee_2 = \beta e_2, \quad Ee_p = \gamma e_p \qquad (p \ge 3)$$

where, if E = S: $\alpha = (n-2) a \mu - R_1$, $\beta = (n-2) b \mu - R_1$, $\gamma = (n-2) \mu^2$, and, if E = G: $\alpha_0 = (n-2) a \mu - R_1 - \tau/n$, $\beta_0 = (n-2) b \mu - R_1 - \tau/n$, $\gamma_0 = (n-2) \mu^2 - \tau/n$.

In [15] it was proved that a submanifold M^n $(n \ge 3)$ satisfying Chen's equality is flat if and only if it is totally geodesic. The last condition means that $a = b = \sigma = 0$, thus that $a = b = c_t = d_t = 0$ (t = 2, ..., p). There, it was also proven that M^n is Einstein if and only if n = 2, or it is flat.

In the next simple proposition we collect the conditions for a manifold M^n satisfying Chen's equality to be flat with respect to different curvature operators.

PROPOSITION 1. If $n \ge 2$, then M^n is flat if and only if n = 2 and $\sigma = ab$, or $n \ge 3$ and $\sigma = a = b = 0$.

If $n \ge 2$, then M^n is of constant curvature if and only if n = 2, or it is flat.

If $n \geq 3$, then M^n is conformally flat if and only if n = 3, or $n \geq 4$ and $\sigma = ab$.

If $n \geq 3$, then M^n if conharmonically flat if and only if it is flat, or n = 3 and $\sigma = ab + \mu^2$.

2. Main results

Throughout this section we suppose that M^n is a submanifold in the Euclidean space E^m $(m = n + p, p \ge 1, n \ge 2)$ satisfying the basic Chen's equality, and we investigate on such a submanifold several curvature conditions of the form $E \cdot F_2 = 0$,

146

where E is any of the curvature operators R, Z, P, K, C, F_2 is any of the operators S, G, and the operation $E \cdot F_2$ is defined as

$$(E(X,Y) \cdot F_2)U = E(X,Y)(F_2U) - F_2(E(X,Y)U)$$

for all tangent vectors $X, Y, U \in T_x(M^n)$.

Similar curvature conditions of the form $E_4 \cdot F_2 = 0$, and of the form $E_4 \cdot F_4 = 0$ have been investigated in many papers (see e.g. [1–3],[7–10], [14–15], [18–20], [22–33], etc.).

Since obviously $E \cdot G = E \cdot S$, we shall consider only the case $F_2 = S$, thus we shall discuss exactly the operations $R \cdot S$, $Z \cdot S$, $P \cdot S$, $C \cdot S$ and $K \cdot S$.

In the most simple case n = 2, we get that $S = \frac{\tau}{2}I$ (moreover, Z = P = 0), so that $R \cdot S = Z \cdot S = P \cdot S = 0$. Hence, this case is trivial and we can suppose that $n \ge 3$.

If $n \geq 3$ and E is any of the curvature operators R, Z, K, C, then obviously $E \cdot S = 0$ if and only if $(E \cdot S)_{ijk} = (E(e_i, e_j) \cdot S)e_k = 0$ for all indices i, j, k = 1, ..., n. It is also not difficult to see that the above condition is satisfied if and only if the following three equations hold:

$$(E \cdot S)_{121} = (E \cdot S)_{131} = (E \cdot S)_{232} = 0.$$

Hence, $E \cdot S = 0$ if and only if the next system of equations is satisfied:

$$(\alpha - \beta) E_1 = 0, \quad (\alpha - \gamma) E_2 = 0, \quad (\beta - \gamma) E_3 = 0.$$
 (4)

By an easy discussion of the corresponding system in any of the cases E = R, Z, K, C we get the following theorems.

THEOREM 1. If $n \ge 3$, then $R \cdot S = 0$ if and only if one of the following three cases occurs: $(1^0) \ \mu = 0; (2^0) \ \sigma = a = 0, \ b \ne 0; (3^0) \ \sigma = b = 0, \ a \ne 0.$

Proof. By direct calculations, it is easy to check that $R \cdot S = 0$ in any of the cases $(1^0), (2^0), (3^0)$.

Next, assume that $R \cdot S = 0$ and $\mu \neq 0$. Supposing that $a, b \neq 0$, by equations $(R \cdot S)_{131} = 0$ and $(R \cdot S)_{232} = 0$, we get

$$R_1 = -(n-2) \, a \, \mu = -(n-2) \, b \, \mu,$$

and consequently a = b, $\sigma = -(2n - 5)a^2$. Therefore $\sigma = a = 0$, a contradiction. Hence, ab = 0. If a = 0, then the third equation gives $b\sigma = \mu\sigma = 0$, thus $\sigma = 0$ (because $\mu \neq 0$), so we have the case (2⁰). If b = 0, we similarly have the case (3⁰).

LEMMA 1. If $n \ge 3$ and $Z_1 = 0$, then M^n is a totally geodesic plane.

Proof. Note that equation $Z_1 = 0$ in the developed form reads:

$$(n+1)\sigma = -(n-1)a^2 - (n-1)b^2 - (n-3)ab.$$

Since $n \ge 3$, the previous equality is possible only if $\sigma = a = b = 0$, which means that M^n is totally geodesic *n*-plane in E^m .

THEOREM 2. If $n \ge 3$, then $Z \cdot S = 0$ if and only if one of the following cases occurs: (1⁰) M^n is a totally geodesic plane; (2⁰) $n \ge 4$, a = b and $\sigma = (n^2 - 5n + 5) a^2$.

Proof. If $n \ge 4$, $\sigma = (n^2 - 5n + 5)a^2$, a = b, then $Z_2 = Z_3 = 0$, $\alpha = \beta$, and immediately $Z \cdot S = 0$.

Conversely, assume that $n \geq 3$, $Z \cdot S = 0$, and M^n is not totally geodesic plane. Then by Lemma 1, $Z_1 \neq 0$. By equation $(Z \cdot S)_{121} = 0$, we get $a = \pm b$. Supposing that $\mu = 0$, we have $\tau = -2R_1 = -2(\sigma + a^2)$, $Z_1 = \frac{(n+1)(n-2)}{n(n-1)}R_1$, and by $(Z \cdot S)_{131} = 0$ we get a contradiction $R_1 = \sigma + a^2 = 0$, M^n is a totally geodesic plane. If a = b, then

$$Z_2 = -\frac{2}{n(n-1)} \{ \sigma - (n^2 - 5n + 5) a^2 \},\$$

$$R_1 + (n-2) b \mu = \sigma + (2n-5) a^2 > 0,$$

and by equation $(Z \cdot S)_{131} = 0$, we obtain $Z_2 = 0$, i.e. $\sigma = (n^2 - 5n + 5) a^2$. Since M^n is not totally geodesic, the case n = 3 is excluded, so that $n \ge 4$, and we have the case (2^0) .

LEMMA 2. If $n \ge 3$ and $K_1 = K_2 = 0$, then M^n is conharmonically flat.

Proof. If $K_1 = K_2 = 0$, then easily $R_1 = (n-2)\mu^2$ and $(n-3)\mu^2 = 0$. If $\mu = 0$, then $R_1 = 0$, and we obtain that M^n is totally geodesic plane. If n = 3, then $R_1 = \mu^2$, and we again get that M^n is conharmonically flat.

THEOREM 3. If $n \ge 3$, then $K \cdot S = 0$ if and only if one of the following cases occurs: $(1^0) M^n$ is conharmonically flat; $(2^0) a = b \ne 0$, $\sigma = (4n - 7) a^2$.

Proof. If a = b and $\sigma = (4n - 7)a^2$, then $K_2 = 0$ and $\alpha = \beta$, so that the condition $K \cdot S = 0$ is obviously satisfied.

Conversely, assume that $n \ge 3$ and $K \cdot S = 0$. If $K_2 \ne 0$, then by equations $(K \cdot S)_{131} = 0$ and $(K \cdot S)_{232} = 0$ we obtain

$$R_1 = -(n-2) \, a \, \mu = -(n-2) \, b \, \mu,$$

and hence $a = \pm b$. If a = b, then by $R_1 = -2(n-2)a^2$, we easily get that M^n is totally geodesic, contradicting to $K_2 \neq 0$. If a = -b, $\mu = 0$, then $\sigma = -a^2$, and M^n is totally geodesic, again a contradiction. Hence $K_2 = 0$, i.e. $R_1 = (n-2)\mu^2$. If, in addition, we assume that M^n is not conharmonically flat, then by Lemma 2, $K_1 \neq 0$. By equation $(K \cdot S)_{121} = 0$, we then have $a = \pm b$. If a = b, then

$$K_2 = \frac{(4n-7)a^2 - \sigma}{n-2} = 0,$$

and hence $\sigma = (4n - 7) a^2$, so we have the case (2⁰). If a = -b, $\mu = 0$, then by $K_2 = 0$, we get $R_1 = 0$, $\sigma = -a^2$, $\sigma = a = b = 0$, contradicting to $K_1 \neq 0$.

THEOREM 4. If $n \ge 3$, then $C \cdot S = 0$ if and only if M^n is conformally flat.

Proof. Suppose that $C \cdot S = 0$ and M^n is not conformally flat. Then $n \ge 4$ and $R_1 \ne 0$. By equations $(C \cdot S)_{121} = 0$, $(C \cdot S)_{131} = 0$, we then get $\alpha = \beta = \gamma$, i.e. $a = \pm b$ and $R_1 = -(n-2) b \mu$. If $\mu = 0$, then we get a contradiction $R_1 = 0$. If a = b, then we get $\sigma = -(2n-5) a^2$, and hence $\sigma = a = 0$, thus again a contradiction $R_1 = 0$.

Next, assume that $n \geq 3$ and consider the condition $P \cdot S = 0$. It is also not difficult to see that $(P \cdot S)_{ijk} = 0$ for any choice of indices $i, j, k = 1, \ldots, n$ if and only if the next equations are satisfied: $(P \cdot S)_{121} = (P \cdot S)_{122} = (P \cdot S)_{131} =$ $(P \cdot S)_{133} = (P \cdot S)_{232} = (P \cdot S)_{233} = 0$. Hence, the complete system of equations for the operation $P \cdot S$ reads:

$$\begin{cases} (\alpha - \beta) P_1 = (\alpha - \beta) \widetilde{P}_1 = (\alpha - \gamma) P_2 = 0, \\ (\alpha - \gamma) \widetilde{P}_2 = (\beta - \gamma) P_3 = (\beta - \gamma) = \widetilde{P}_3 = 0. \end{cases}$$
(5)

Therefore, it is not difficult to get the following result.

THEOREM 5. If $n \ge 3$, then $P \cdot S = 0$ if and only if M^n is a totally geodesic plane.

Proof. Assume that $n \ge 3$ and $P \cdot S = 0$. Then, by equations $(P \cdot S)_{121} = 0$, $(P \cdot S)_{122} = 0$, we find that $a = \pm b$. If $\mu = 0$, then by equation $(P \cdot S)_{131} = 0$ we have $R_1 = 0$, and M^n is a totally geodesic plane. If a = b, then by the same equation we have $(\sigma + a^2)\{\sigma + (2n - 5)a^2\} = 0$, thus $\sigma = a = b = 0$, so M^n is again totally geodesic. ■

REFERENCES

- R. L. Bishop, S. I. Goldberg, On conformally flat spaces with commuting curvature and Ricci transformations, Canad. J. Math. 24 (5) (1972), 799–804.
- [2] D. E. Blair, P. Verheyen, L. Verstraelen, Hypersurfaces satisfaisant á $R \cdot C = 0$ ou $C \cdot R = 0$, Comptes Rendus Acad. Bulg. Sci. **37** (11) (1984), 1459–1462.
- [3] N. Bokan, M. Djorić, M. Petrović-Torgašev, L. Verstraelen, On the conharmonic curvature tensor of hypersurfaces in Euclidean spaces, Glasnik Matem. 24 (44) (1989), 89–101.
- [4] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- [5] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Archiv för Mathematik 60 (1993), 568–578.
- [6] M. Dajczer, L. A. Florit, On Chen's basic equality, Illinois Journ. Math. 42 (1998), 97-106.
- [7] J. Deprez, F. Dillen, P. Verheyen, L. Verstraelen, Conditions on the projective curvature tensor of hypersurfaces in Euclidean spaces, Ann. Fac. Sci. Toulouse, V. Sér. Math. 7 (1985), 229–249.
- [8] J. Deprez, M. Petrović-Torgašev, L. Verstraelen, Conditions on the concircular curvature tensor of hypersurfaces in Euclidean spaces, Bull. Inst. Math., Acad. Sin. 14 (1986), 197– 208.
- J. Deprez, M. Petrović-Torgašev, L. Verstraelen, New intrinsic characterizations of conformally flat hypersurfaces and of Einstein hypersurfaces, Rend. Semin. Fac. Sci., Univ. Cagliari 55 (No. 2) (1987), 67–78.
- [10] J. Deprez, P. Verheyen, L. Verstraelen, Characterizations of conformally flat hypersurfaces, Czech. Math. J. 35 (110) (1985), 140–145.

- [11] P. J. De Smet, F. Dillen, L. Verstraelen, L. Vrancken, A pointwise inequality in submanifold theory, Arch. Math. 35 (1999), 115–128.
- [12] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. 44 (fasc.1), ser. A (1992), 1–34.
- [13] F. Dillen, S. Haesen, M. Petrović-Torgašev, L. Verstraelen, An inequality between intrinsic and extrinsic scalar curvature invariants for codimension 2 embeddings, Journal Geom. and Physics 52 (2004), 101–112.
- [14] F. Dillen, M. Petrović-Torgašev, L. Verstraelen, The conharmonic curvature tensor and 4dimensional catenoids, Studia Univ. Babes–Bolyai Math. 33 (2) (1988), 16–23.
- [15] F. Dillen, M. Petrović-Torgašev, L. Verstraelen, Einstein, conformally flat and semi-symmetric submanifolds satisfying Chen's equality, Israel J. Math. 100 (1997), 163–169.
- [16] F. J. E. Dillen, L. C. A. Verstraelen (editors), Handbook of Differential Geometry, Vol. I, Elsevier, Amsterdam, 2000.
- [17] B. Gmira, L. Verstraelen, A curvature inequality for Riemannian submanifolds in a semi-Riemannian space forms, Geometry and Topology of submanifolds IX, World Sci., Singapore, 1999, pp. 148–159.
- [18] Y. Matsuyama, Hypersurfaces with $R \cdot S = 0$ in a Euclidean space, Bull. Fac. Sci. Engrg. Cho Univ. **24** (1981), 13–19.
- [19] Y. Matsuyama, Complete hypersurfaces with $R \cdot S = 0$ in E^{n+1} , Proc. Amer. Math. Soc. 88 (1983), 119–123.
- [20] K. Nomizu, On hypersurfaces satusfying a certain condition on the curvature tensor, Tôhoku Math. J. 20 (1968), 46–59.
- [21] M. Petrović-Torgašev, L. Verstraelen, Hypersurfaces with commuting curvature derivations, Atti Acad. Pelor. dei Pericolanti, Cl. I, Sci. Fis. Mat. 66 (1988), 261–271.
- [22] K. Sekigawa, On 4-dimensional Einstein spaces satisfying $R(X, Y) \cdot R = 0$, Sci. Rep. Nügata Univ. 7 (ser. A) (1969), 29–31.
- [23] K. Sekigawa, On some hypersurfaces satisfying $R(X, Y) \cdot R = 0$, Tensor, New Ser. 25 (1972), 133–136.
- [24] K. Sekigawa, On some hypersurfaces satisfying $R(X, Y) \cdot R_1 = 0$, Hokkaido Math. J. 1 (1972), 102–109.
- [25] K. Sekigawa, On some 3-dimensional complete Riemannian manifolds satisfying $R(X, Y) \cdot R = 0$, Tôhoku Math. J. **27** (ser. A) (1975), 561–568.
- [26] K. Sekigawa, H. Takagi, On conformally flat spaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J. 23 (1971), 1–11.
- [27] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, I. The local version, J. Diff. Geometry **17** (1982), 531–582.
- [28] Z. I. Szabó, Classification and construction of complete hypersurfaces satisfying $R(X, Y) \cdot R = 0$, Acta Sci. Math. 47 (1984), 321–348.
- [29] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, II, Global version, Geom. dedicata **19** (1985), 65–108.
- [30] H. Takagi, An example of Riemannian manifold satisfying $R(X, Y) \cdot R = 0$ but not $\nabla R = 0$, Tôhoku Math. J. **24** (1972), 105–108.
- [31] S. Tanno, Hypersurfaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J. 21 (1969), 297–303.
- [32] S. Tanno, A class of Riemannian manifolds satisfying $R(X, Y) \cdot R = 0$, Nagoya Math. J. **42** (1971), 67–77.
- [33] L. Verstraelen, Comments on pseudo-symmetry in the sense of Ryszard Deszcz, in: Geometry and Topology of Submanifolds, VI, World Sci., Singapore, 1994, pp. 199–209.

(received 17.04.2007, in revised form 25.07.2007)

Dep. of Math., Faculty of Sci., Radoja Domanovića 12, 34000 Kragujevac, Serbia. *E-mails*: mirapt@kg.ac.yu, anahinic@kg.ac.yu