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ON A TYPE OF COMPACTNESS VIA GRILLS

B. Roy† and M. N. Mukherjee

Abstract. In this paper, we introduce and study the idea of a new type of compactness,
defined in terms of a grill G in a topological space X. Calling it G-compactness, we investigate
its relation with compactness, among other things. Analogues of Alexender’s subbase theorem
and Tychonoff product theorem are also obtained for G-compactness. Finally, we exhibit a new
method, in terms of the deliberations here, for construction of the well known one-point compact-
ification of a T2, locally compact and noncompact topological space.

1. Introduction

Choquet [1] in 1947 initiated the brilliant notion of a grill which subsequently
turned out to be a very convenient tool for various topological investigations. It is
also seen from the literature that in many situations, grills are more effective than
certain similar concepts like nets and filters. According to Choquet [1], a grill G on
a topological space X is a non-null collection of nonempty subsets of X satisfying
two conditions: (i) A ∈ G and A ⊆ B ⊆ X ⇒ B ∈ G, and (ii) (A,B ⊆ X) and
A ∪B ∈ G ⇒ A ∈ G or B ∈ G.

In [2] we introduced a new topology on a topological space X, constructed by
use of a grill on X, and is described as follows.

Let G be a grill on a topological space (X, τ). Consider the operator Φ :
P(X) → P(X) (here and henceforth also, P(X) stands for the power set of X),
given by Φ(A) = {x ∈ X : U∩A ∈ G for all open neighbourhoods U of x}. Then the
map Ψ : P(X) → P(X), where Ψ(A) = A ∪ Φ(A) for A ∈ P(X), is a Kuratowski
closure operator and hence induces a topology τG on X, strictly finer than τ , in
general. An open base B for the topology τG on X is given by B = {U \A : U ∈ τ
and A /∈ G}.

In our earlier paper [2] we studied at length the above topology τG for its
different aspects and also its behaviours vis-a-vis the original topology τ on the
underlying space. In the present article, we wish to introduce a kind of compactness
property, termed as G-compactness, on a topological space (X, τ), defined in terms
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of a grill G on X. In [6] Rancin defined I-compactness in a topological space X
corresponding to an ideal I on the underlying set X. The concept of G-compactness,
as considered here, is a version of I-compactness by use of the notion of grills.

In Section 2, we shall endeavour to establish the relationships of G-compactness
of X first with the compactness of (X, τ) and of (X, τG), and then with an important
weaker form of compactness, viz. (quasi) H-closedness. It will be shown that a
parallel version of Alexender’s subbase theorem holds for G-compactness, and a
sort of Tychonoff product theorem concerning G-compactness can also be obtained.
The proofs of these two theorems are patterned after the corresponding results in
[6] concerning I-compactness.

In Section 3, we shall exhibit an interesting application of our study of τG-
compactness by achieving the well known result on the one-point compactification of
a locally compact, non-compact T2 space, by way of a new method of construction.

Throughout the paper, by a space X we shall mean a topological space (X, τ),
and τ -intA and τ -clA (or simply intA and clA) will stand for the interior and closure
respectively of a subset A of a space (X, τ). The system of all open neghbourhoods
of a point x of a space (X, τ) will be denoted by τ(x).

2. G-compactness

Definition 2.1. Let G be a grill on a topological space (X, τ). A cover
{Uα : α ∈ Λ} of X is said to be a G-cover if there exists a finite subset Λ0 of Λ such
that X \⋃

α∈Λ0
Uα 6∈ G. A cover which is not a G-cover of X will be called Ḡ-cover

of X.
Definition 2.2. Let G be a grill on a topological space (X, τ). Then (X, τ)

is said to be compact with respect to the grill G or simply G-compact if every open
cover of X is a G-cover.

Remark 2.3. (a) Every compact space (X, τ) is clearly G-compact for any
grill G on X.

(b) If we take G = P(X) \ {∅}, then G-compactness of a space (X, τ) reduces
to the compactness of (X, τ).

(c) If for any grill G on a space (X, τ), the space (X, τG) is G-compact, then
(X, τ) is compact (as τ ⊆ τG) and hence is G-compact (by (a) above).

Example 2.4. Let X be an uncountable set with co-countable topology τ
defined on X. Then (X, τ) is not compact. Let p ∈ X. Consider Gp = {A ⊆ X :
p ∈ A}. Then Gp is a grill on X. It is easy to check that (X, τ) is Gp-compact.

Example 2.5. Let τ denote the cofinite topology on an uncountable set X and
G be the grill of all uncountable subsets of X. We claim that τG = the co-countable
topology σ on X. In fact, V ∈ σ ⇒ X \V = A /∈ G ⇒ V = X \A, where X ∈ τ and
A /∈ G ⇒ V ∈ τG . Again V ∈ τG with V = U \A, where U ∈ τ and A /∈ G ⇒ X\U is
finite and A is countable. Thus X\V = X\(U \A) = X\(U∩(X\A)) = (X\U)∪A
which is countable. Hence V ∈ σ. We note here that (X, τ) is compact but (X, τG)
is not compact. Also, it is easy to see that (X, τG) is G-compact.
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Theorem 2.6. Let G be a grill on a topological space (X, τ). Then (X, τ) is
G-compact iff (X, τG) is G-compact.

Proof. As τ ⊆ τG , it follows that (X, τ) is G-compact if (X, τG) is G-compact.
Conversely, let (X, τ) be G-compact and {Uα : α ∈ Λ} be a basic τG-open

cover of X. Then for each α ∈ Λ, Uα = Vα \ Aα where Vα ∈ τ and Aα /∈ G. Then
{Vα : α ∈ Λ} is a τ -open cover of X. Hence by G-compactness of (X, τ), there
exists a finite subset Λ0 of Λ such that X \⋃

α∈Λ0
Vα 6∈ G. Now, X \⋃

α∈Λ0
Uα =

X\⋃α∈Λ0
(Vα\Aα) ⊆ (X\⋃α∈Λ0

Vα)∪(
⋃

α∈Λ0
Aα) 6∈ G (as Aα /∈ G, for all α ∈ Λ0).

Thus (X, τG) is G-compact.
Remark 2.7. In view of Remark 2.3, Examples 2.4 and 2.5, and Theorem 2.6

we have:
For a topological space (X, τ) and a grill G on X, the following implication-

diagram holds, where no other implication than those displayed, is true in general.

(X, τ) is compact ⇐ (X, τG) is compact
⇓ ⇓

(X, τ) is G-compact ⇔ (X, τG) is G-compact

Having obtained some correlations among the concepts of compactness and
G-compactness of the spaces (X, τ) and (X, τG), we now recall the following well
known weaker form of compactness.

Definition 2.8. [4] A topological space (X, τ) is said to be quasi H-closed
(QHC, in short) if for every open cover U of X, there is a finite sub-collection U0

of U such that X =
⋃{clU : U ∈ U0}. A Hausdorff quasi H-closed space is called

an H-closed space.
In the next two Theorems we try to associate the notion of quasi H-closedness

with that of G-compactness.

Theorem 2.9. Let G be a grill on a topological space (X, τ) such that τ \{∅} ⊆
G. If (X, τ) is G-compact then (X, τ) is QHC.

Proof. Let {Uα : α ∈ Λ} be an open cover of (X, τ). Then by G-compactness
of X, there exists a finite subset Λ0 of Λ such that (X \ ⋃

α∈Λ0
Uα) /∈ G. Then

int(X \ ⋃
α∈Λ0

Uα) = ∅. For otherwise, int(X \ ⋃
α∈Λ0

Uα) ∈ τ \ {∅} and hence
(X \⋃

α∈Λ0
Uα) ∈ G, a contradiction. Hence X =

⋃
α∈Λ0

clUα and X is QHC.

Theorem 2.10. Let (X, τ) be a QHC space. Then (X, τ) is Gδ-compact, where
Gδ = {A ⊆ X : intcl A 6= ∅} (that Gδ is a grill on X is clear).

Proof. Let {Uα : α ∈ Λ} be an open cover of X. Then by quasi H-closedness of
(X, τ), there is a finite subset Λ0 of Λ such that X \⋃α∈Λ0

clUα = ∅. We claim that
(X \⋃

α∈Λ0
Uα) /∈ Gδ. In fact, (X \⋃

α∈Λ0
Uα) ∈ Gδ ⇒ intcl(X \⋃

α∈Λ0
Uα) 6= ∅

⇒ X \⋃
α∈Λ0

clUα 6= ∅, a contradiction. Hence (X, τ) is Gδ-compact.
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It is known [5] that a Hausdorff topological space is compact iff it is H-closed
and regular. Our aim now is to obtain an analogue of this result with compactness
replaced by G-compactness. This requires a suitable definition of a sort of regularity
condition in terms of grills. We see that the idea of G-regularity introduced in [3]
serves our purpose. We recall the definition of G-regularity below.

Definition 2.11. Let (X, τ) be a topological space and G be a grill on X.
Then the space X is said to be G-regular if for any closed set F in X with x /∈ F ,
there exist disjoint open sets U and V such that x ∈ U and F \ V /∈ G.

Theorem 2.12. Let G be a grill on a Hausdorff space (X, τ). If (X, τ) is
G-compact then it is G-regular.

Proof. Let F be a closed subset of X and x /∈ X. By Hausdorffness of X,
for each y ∈ F there exist disjoint open sets Uy and Vy such that x ∈ Uy and
y ∈ Vy. Now, {Vy : y ∈ F} ∪ {X \ F} is an open cover of X. Thus by G-
compactness of X, there exist finitely many points y1, y2, . . . , yn in F such that
X \ [(

⋃n
1=1 Vyi

) ∪ (X \ F )] /∈ G. Let G = X \ ⋃n
i=1clVyi

and H =
⋃n

i=1 Vyi
Then

G and H are two disjoint nonempty open sets in X such that x ∈ G, F \ H =
F ∩ [X \⋃n

i=1 Vyi ] = X \ [(
⋃n

i=1 Vyi) ∪ (X \ F )] /∈ G. Thus (X, τ) is G-regular.

It now follows from Theorems 2.9 and 2.12 that

Corollary 2.13. Let G be a grill on a Hausdorff space (X, τ) such that
τ \ {∅} ⊆ G. If (X, τ) is G-compact then it is H-closed and G-regular.

Theorem 2.14. Let (X, τ) be an H-closed space and G be a grill on X. If
(X, τ) is G-regular then (X, τ) is G-compact.

Proof. Let U be an open cover of X. Then for each x ∈ X, there is some
Ux ∈ U such that x ∈ Ux. Thus x 6∈ (X \ Ux) where (X \ Ux) is a closed set.
By G-regularity of X, there exist two disjoint open sets Gx and Hx such that
(X \ Ux) \Hx /∈ G and x ∈ Gx. Let Ax = (X \ Ux) \Hx. Now, clGx ∩Hx = ∅⇒
clGx ⊆ X \Hx ⊆ (X \Hx) ∪ Ux = [X \ (Hx ∪ Ux)] ∪ Ux = Ax ∪ Ux.

Again, {Gx : x ∈ X} being an open cover of the H-closed space X, there
are finitely many points x1, x2, . . . , xn in X such that X =

⋃n
i=1clGxi . Then

X =
⋃n

i=1clGxi ⊆
⋃n

i=1(Axi ∪ Uxi) ⇒ X \⋃n
i=1 Uxi ⊆

⋃n
i=1 Axi /∈ G (as Axi /∈ G

for i = 1, 2, . . . , n). Thus (X, τ) is G-compact.

In view of Corollary 2.13 and the above theorem, we are led to our desired
result:

Corollary 2.15. Let G be a grill on a Hausdorff space (X, τ) such that
τ \ {∅} ⊆ G. Then (X, τ) is G-compact iff (X, τ) is H-closed and G-regular.

Our aim now is to find an analogue of Alexander’s subbase theorem for G-
compactness, which will help us to derive the result that the cartesian product of
G-compact spaces is G-compact.
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Theorem 2.16. Let U be an open subbase for a topological space (X, τ). If X
has an open Ḡ-cover then there is a Ḡ-cover of X, which consists of elements of U .

Proof. Let C be the collection of all open Ḡ-covers of X. Then by hypothesis,
C is nonempty. Let {Pα} be a linearly ordered subset of C. Then

⋃
α Pα is a

covering of X. We claim that it is a Ḡ-covering. For, if not, then there exist
G1, G2, . . . , Gn ∈ ⋃Pα such that X \ ⋃n

i=1 Gi /∈ G. Now, there exists a Pβ ∈ C
such that G1, G2, . . . , Gn ∈ Pβ . Thus Pβ /∈ C, a contradiction. Consequently by
Zorn’s Lemma, C contains a maximal element P. Thus if H is open and H /∈ G, then
there exist finitely many G1, G2, . . . , Gn ∈ P such that X \ (H ∪G1∪G2∪· · ·∪Gn)
/∈ G.

We now show that the family of open sets which do not belong to P form a filter.
For this, let H1,H2 ∈ τ and H1,H2 /∈ P. Then X \ (H1 ∪G1 ∪G2 ∪ · · · ∪Gn) = A1

/∈ G and X \ (H2 ∪ V1 ∪ V2 ∪ · · · ∪ Vm) = A2 /∈ G, for some finite subcollections
{G1, G2, . . . , Gn} and {V1, V2, . . . , Vm} of P. Consider B = X \ [(H1 ∩H2)∪ (G1 ∪
G2 ∪ · · · ∪ Gn) ∪ (V1 ∪ V2 ∪ · · · ∪ Vm)]. Then B ⊆ A1 ∪ A2. Since A1 ∪ A2 /∈ G,
we have B /∈ G. Thus (H1 ∩H2) ∈ τ \ P . Next, let H /∈ P and H ⊆ G, where G
and H are open sets. Then X \ (H ∪ G1 ∪ G2 ∪ · · · ∪ Gn) /∈ G for finitely many
G1, G2, . . . , Gn ∈ P. Thus X \ (G ∪G1 ∪G2 ∪ · · · ∪Gn) /∈ G and hence G ∈ τ \ P.

To complete the proof it is sufficient to show that U ∩ P is a Ḡ-cover of X.
Let x ∈ X. Since P is an open cover of X, there exists a G ∈ P such that
x ∈ G. Since U is a subbase for (X, τ), there exist H1,H2, . . . , Hn ∈ U such that
x ∈ H1∩H2∩· · ·∩Hn ⊆ G. Then there exists an Hi (for some i = 1, 2, . . . , n) such
that Hi ∈ P. For otherwise, if Hi /∈ P for all i = 1, 2, . . . , n, then

⋃n
i=1 Hi /∈ P (as

the family of all open sets not in P, is a filter). Thus G /∈ P, a contradiction. It
then finally follows that x ∈ Hi ∈ U ∩ P and consequently, U ∩ P is a Ḡ-cover of
X. This completes the proof.

Corollary 2.17. Let G be a grill on a topological space (X, τ). Then X is
G-compact iff there exists a subbase S of τ such that every cover of X by members
of S is a G-cover.

Theorem 2.18. Let {Xα : α ∈ Λ} be a family of topological spaces, and Gα

be a grill on Xα for each α ∈ Λ. Let G be any grill on the cartesian product space
X =

∏
α∈Λ Xα such that π−1

α (Gα) ⊇ G for each α ∈ Λ, where πα : X → Xα is,
as usual, the αth projection map. If Xα is Gα-compact for each α ∈ Λ, then X is
G-compact.

Proof. Let U be a subbasic open cover of X. In view of Theorem 2.16 it is
sufficient to find a finite subset {U1, U2, . . . , Un} of U such that X \⋃n

i=1 Ui /∈ G.
Let α0 ∈ Λ and Uα0 denote the family of all those subsets V of Xα0 such that
π−1

α0
(V ) ∈ U . We claim that for at least one α ∈ Λ, Uα is a covering of Xα. If not,

then by choosing a point xα from Xα (for each α ∈ Λ), which is not covered by Uα,
we would find a point in X not covered by U , which contradicts the fact that U is
a cover of X. Thus there exists a β0 ∈ Λ such that Uβ0 is a cover of Xβ0 . Then we
can find finitely many Uβ0

1 , Uβ0
2 , . . . , Uβ0

n ∈ Uβ0 such that (Xβ0 \
⋃n

i=1 Uβ0
i ) /∈ Gβ0 .
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By considering Ui = π−1
β0

(Uβ0
i ) ∈ U , we see that (X \ ⋃n

i=1 Ui) /∈ G. Thus X is
G-compact.

3. One-point compactification via grills

As proposed in the introduction, the intent of this section is to exhibit a
new method of construction of a one-point compactification of a locally compact
Hausdorff space. To that end, we first give the general construction of a one-point
extension of a topological space.

Theorem 3.1. Let (X, τ) be a topological space and G be a grill on X. Let p
be an object, not in X, and put X∗ = X ∪{p}. Then the map f : P(X∗) → P(X∗),
defined by

f(A) =





clA, if clA /∈ G, for A ⊆ X,

clA ∪ {p}, if clA ∈ G, for A ⊆ X,

cl(A \ {p}) ∪ {p}, if p ∈ A

is a Kuratowski closure operator, inducing a topology τ∗ on X∗ such that
(a) every τ -open set in X is τ∗-open
(b) if U(⊆ X∗) is τ∗-open then U ∩X is τ -open.

Proof. We first take up the verification, although straightforward to show that
f indeed satisfies the Kuratowski closure axioms. Clearly f(∅) = ∅ (as ∅ /∈ G),
and A ⊆ f(A), for any A ⊆ X∗.

We now verify that for any A, B ⊆ X∗, f(A ∪B) = f(A) ∪ f(B).
Case-1. A,B ⊆ X.
If cl(A ∪B) /∈ G, then f(A ∪B) =cl(A ∪B) = clA ∪ clB = f(A) ∪ f(B).
If cl(A∪B) ∈ G, then clA ∈ G or clB ∈ G, and hence f(A∪B) = cl(A∪B)∪{p}

= clA ∪ clB ∪ {p} = f(A) ∪ f(B).
Case-2. A ⊆ X and p ∈ B.
If clA /∈ G, then f(A ∪B) = cl((A ∪B) \ {p}) ∪ {p} = cl(A ∪ (B \ {p})) ∪ {p}

= clA∪ cl(B \ {p}) ∪ {p} = f(A) ∪ f(B).
If clA ∈ G, then f(A∪B) = cl((A∪B)\{p})∪{p} = clA∪{p}∪ cl(B\{p})∪{p}

= f(A) ∪ f(B).
Case-3. p ∈ A and p ∈ B.
Here f(A ∪ B) = cl((A ∪ B) \ {p}) ∪ {p} = cl(A \ {p})∪ cl(B \ {p}) ∪ {p} =

f(A) ∪ f(B).
We next show that f(f(A)) = f(A), for any A ⊆ X∗.
Case-(i): A ⊆ X.
In case clA /∈ G, we have f(f(A)) = f(clA) = clA = f(A), while if clA ∈ G,

we get f(f(A)) = f(clA ∪ {p}) = f(clA)∪f({p}) = clA ∪ {p} = f(A).
Case-(ii): p ∈ A.
If cl(A\{p}) /∈ G, then f(f(A)) = f [cl(A\{p})∪{p}] = f [cl(A\{p})]∪f({p})
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= cl(A \ {p}) ∪ {p} = f(A).
If cl(A\{p}) ∈ G, then f(f(A)) = f [cl(A\{p})∪{p}] = f [cl(A\{p})]∪f({p})

= cl(A \ {p}) ∪ {p} = f(A).

It follows that f is a Kuratowski closure operator on X∗ which gives rise to a
topology τ∗ on X∗ such that f(A) = τ∗-clA, for any A ⊆ X∗.

(a) Let U(⊆ X) be τ -open. Then f(X∗ \ U) = cl[(X∗ \ U) ∪ {p}] ∪ {p} =
cl(X \ U) ∪ {p} = (X \ U) ∪ {p} = X∗ \ U , so that U is τ∗-open.

(b) Since U(⊆ X∗) is τ∗-open, we have f(X∗ \ U) = X∗ \ U . . . (i). Now,
p /∈ U ⇒ cl[(X∗ \U)∪ {p}]∪ {p} = X∗ \U (by (i)) ⇒ cl(X \U)∪ {p} = X∗ \U ⇒
cl(X \ U) = (X \ U) ⇒ (X \ U) is τ -closed ⇒ U(= U ∩X) is τ -open.

Again, p ∈ U ⇒ cl(X∗ \ U) = X∗ \ U (using (i) and since p /∈ (X∗ \ U)) ⇒
cl[(X ∪{p})∩ (X∗ \U)] = (X \{p})∩ (X∗ \U) ⇒ cl[X ∩ (X \U)] = X ∩ (X \U) ⇒
cl(X \ (U ∩X)) = X \ U ∩X ⇒ U ∩X is τ -open.

The next two theorems will carry us almost towards our goal for achieving the
desired construction of the one-point compactification.

Theorem 3.2. Let G be a grill on a T1 space (X, τ) such that for every
x ∈ X, {x} /∈ G. Adjoin to X a new object p /∈ X. Then there exists a topology on
X∗ = X ∪ {p} satisfying the the following properties:

(a) X∗ is T1.
(b) X is dense in X∗.

Proof. Let us consider the space (X∗, τ∗) as constructed in Theorem 3.1. Now
for any x ∈ X, f(x) = x as cl({x}) = {x} /∈ G, and f(p) = cl({p}\{p})∪{p} = {p}.
This proves (a). Again, since clX = X ∈ G, f(X) = clX ∪ {p} = X ∪ {p} = X∗,
proving (b).

Theorem 3.3. Let G be a grill on a Hausdorff space (X, τ) such that for every
x ∈ X, {x} /∈ G. If for every point x ∈ X there is an open neighbourhood U of
x such that clU /∈ G, then one can construct a one-point extension X∗ = X ∪ {p}
(where p /∈ X) satisfying the following properties:

(i) X∗ is Hausdorff.
(ii) X is dense in X∗.

Proof. We consider again the one-point extension space (X∗, τ∗) of Theorem
3.1. We first note that as clX ∈ G, τ∗-cl X = X∗ (as in the proof of Theorem
3.2(b)) and (ii) follows.

To prove (i), let x, y be two distinct points of X. By Hausdorffness of (X, τ), x
and y are strongly separated by sets U, V which are open in X and hence are open
in X∗ (by Theorem 3.1(a)). Now by hypothesis, for any x ∈ X there is a τ -open
neighbourhood U of x such that clU /∈ G. Let N = X∗ \U . Since clU /∈ G, we have
f(U) = U . Thus N is an open neighbourhood of p in X∗. Consequently, U and
N are the required disjoint τ∗-open neighbourhoods of x and p respectively in X∗.
Hence X∗ is Hausdorff, proving (i).
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As the final step, we now achieve the sought-after one-point compactification
of a noncompact space.

Theorem 3.4. Let (X, τ) be a non-compact, locally compact, Hausdorff space.
By adjoining a new point p (/∈ X) to X, one can construct an extension space
X∗ = X ∪ {p} having the following properties:

(a) X∗ is Hausdorff.
(b) X is dense in X∗.
(c) X∗ is compact.

Proof. Let G be the family of subsets of X whose closures in X are not compact
in X. It is easy to verify that G is a grill on X such that for each x ∈ X, {x} /∈ G.
For each x ∈ X, by local compactness of X, there is an open neighbourhood U of x
such that clU is compact, i.e., clU /∈ G. Then G satisfies the conditions of Theorem
3.3. Hence (a) and (b) follow immediately from Theorem 3.3.

To prove (c) Let U = {Uα : α ∈ Λ} be any cover of X∗ by open sets of X∗.
Then for some α0 ∈ Λ, p ∈ Uα0 . Then f(X∗\Uα0) = (X∗\Uα0) and p /∈ X∗\Uα0 ⇒
cl(X∗ \ Uα0) /∈ G (see Theorem 3.1) ⇒ X∗ \ Uα0 /∈ G ⇒ cl(X∗ \ Uα0) is compact
in X. Since {Uα ∩ X : α ∈ Λ} is an open cover of X (refer to Theorem 3.1(b)),
cl(X∗ \Uα0) ⊆

⋃n
i=1(Uαi

)∩X, for finitely many sets Uα1 , Uα2 , . . . , Uαn
of U . Then

X∗ = (
⋃n

i=1 Uαi) ∪ Uα0 , and hence X∗ is compact.
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