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INVERTIBLE COMPOSITION OPERATORS ON BANACH
FUNCTION SPACES

Rajeev Kumar

Abstract. In this paper, we relate composition operators with multiplication operators on
the general Banach function spaces on a σ-finite measure space. We use this relation to study
the invertibility and Fredholmness properties of composition operators on the Banach function
spaces.

1. Introduction

Let Ω = (Ω, Σ, µ) be a σ-finite measure space. By L(µ), we denote the linear
space of all equivalence classes of Σ-measurable functions on Ω, where we identify
any two functions that are equal µ-a.e. on Ω. Let T : Ω → Ω be a non-singular
measurable transformation, that is, T−1(A) ∈ Σ, for each A ∈ Σ and µ(T−1(A)) =
0 for each A ∈ Σ whenever µ(A) = 0. The Radon-Nikodym Theorem ensures the
existence of a non-negative locally integrable function fT on Ω so that the measure
µ ◦ T−1 can be represented as

µ ◦ T−1(A) =
∫

A

fT (x) dµ(x), for each A ∈ Σ.

Then T defines a well-defined composition transformation CT from L(µ) into itself
defined by

CT f(x) = f(T (x)), x ∈ Ω, f ∈ L(µ).

In case CT maps a Banach function space X into itself, then it is called a compo-
sition operator on X induced by T .

The study of composition operators on Banach function spaces has been initi-
ated in [16]. For the study of composition operators on Lp-spaces and Orlicz spaces
(see [7], [18], [25] and the references therein).
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For u ∈ L(µ), we define the multiplication transformation Mu on L(µ) as

Muf = uf, for each f ∈ L(µ).

In case Mu is continuous on X, we call it a multiplication operator on X. Note
that a multiplication operator Mu on a Banach function space X is continuous if
and only if u ∈ L∞(µ), the Banach space of all essentially bounded measurable
functions on Ω.

The study of multiplication operators on the general Banach function spaces
has been initiated in [1] and [11]. In [11], the multiplication operators find their
applications in semigroup theory in solving the abstract Cauchy problem.

A Banach function space X is a Banach space defined as

X = {f ∈ L(µ) : ‖f‖X < ∞},
where the function norm ‖.‖X on X has the following properties: for each f, g, fn ∈
L(µ), n ≥ 1, we have
(i) 0 ≤| g(x) |≤| f(x) | µ-a.e. x ∈ Ω ⇒ ‖g‖X ≤ ‖f‖X ,
(ii) 0 ≤| fn(x) |↗| f(x) | µ-a.e. x ∈ Ω ⇒ ‖fn‖X ↗ ‖f‖X , and
(iii) E ∈ Σ with µ(E) < ∞ implies that χE ∈ X, and

∫

E

|f | dµ ≤ cE‖f‖X ,

for some constant 0 < cE < ∞ depending on E and the norm ‖.‖X but
independent of f .
A function f in a Banach function space X is said to have an absolutely continu-

ous norm if ‖fχEn‖X → 0 for each sequence {En}∞n=1 in Σ satisfying En → ∅µ-a.e.,
that is, χEn → 0 µ-a.e.

Let Xa be the set of all functions in X having absolutely continuous norm. If
X = Xa, we say that X is a Banach function space having absolutely continuous
norm.

Let Xb denotes the closure of the set of all µ-simple functions in X. Note
that Xa ⊆ Xb ⊆ X. Throughout this paper, we assume that X = Xb, that is, the
µ-simple functions are dense in X. In case X has absolutely continuous norm, we
have

Xa = Xb = X

and then its Banach space dual X∗ and its associate space X ′ coincide, where X ′

is also a Banach function space defined as

X ′ = {g ∈ L(µ) : ‖g‖X′ < ∞},
and

‖g‖X′ = sup{
∫

Ω

|f(x)g(x)| dµ(x) : f ∈ X, ‖f‖X ≤ 1}.
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The monotone convergence theorem holds in every Banach function space X
in the form of the weak Fatou property, by axiom (ii). Note that Xa is the largest
subspace of X in which the suitable dominated convergence theorem holds (cf.,
[3, Proposition 3.6]. For details on Banach function spaces, we refer to [3], [19],
[20] and [21].

Note that X = X(N, P (N), µ) indicates a Banach sequence space considered
on N with a weight function µ : N → (0,∞), where P (N) denotes the power set of
N. If µ(n) = 1, for each n ∈ N, we write X = X(N).

The separable Banach function spaces form a proper subclass of the absolutely
continuous ones. The examples of Banach function spaces having absolutely con-
tinuous norm are Lp-spaces, Orlicz spaces with ∆2-conditions [23], Lorentz spaces
[3], the Orlicz-Lorentz spaces as defined in [10], etc.

By 〈f, g〉, we denote the duality pairing between the Banach spaces X and X∗,
that is, 〈f, g〉 = g(f), for each f ∈ X and g ∈ X∗. In case X is a Banach function
space, then for each f ∈ X and g ∈ X ′, we have

〈f, g〉 =
∫

Ω

|f(x)g(x)| dµ(x).

We recall from [16, Theorem 2.4] that CT : X → X and CT : X ′ → X ′ are
bounded composition operators on rearrangement invariant spaces X and X ′ on a
resonant measure space (Ω,Σ, µ) if and only if

µ(T−1(A)) ≤ µ(A), for each A ∈ Σ.

This result forms the base for our assumption that CT maps a Banach function
X = Xb into itself and also maps the corresponding associate space X ′ into itself
to prove our main result which is used to prove many important results in the
following sections.

Note that the adjoint operator of the composition operator CT on a Banach
function space X is C∗T : X∗ → X∗ such that

〈f, C∗T g〉 = 〈CT f, g〉,
for each f ∈ X and g ∈ X∗

In section 2, we study composition operators with closed range. In section 3,
we discuss the invertibility of composition operators on Banach function spaces and
we also give a necessary and sufficient condition for the injectiveness of composition
operators on these spaces. We discuss invertible composition operators induced by
invertible transformations in section 4. In section 5, we characterise Fredholm
composition operators on X and we also give conditions so that the operator C∗T
on X∗ becomes a composition operator on X ′.

2. Composition operators with closed range

In this section, we prove our main result with the help of the following lemma.
Note that an operator between Banach spaces has closed range if and only if its
adjoint does and the range of the adjoint is closed if and only if it is wk∗-closed.
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Lemma 2.1. Suppose u ∈ L(µ) such that Mu : X → X. Then Mu is one-to-one
if and only if u(x) 6= 0, µ-a.e. x ∈ Ω.

Proof. Suppose that u(x) 6= 0, µ-a.e. x ∈ Ω. Let g ∈ ker(Mu). Then
‖Mug‖X = 0 and by definition, for each E ∈ Σ with µ(E) < ∞, we have∫

E

|Mug(x)| dµ(x) ≤ cE‖Mug‖X = 0

which clearly implies that g(x) = 0, µ-a.e. x ∈ Ω, since µ is σ-finite. This proves
that g = 0, that is Mu is one-to-one.

Let A = {x ∈ Ω : u(x) = 0} have a positive measure. Then, there is a
measurable set F ⊆ A with 0 < µ(F ) < ∞ so that χF ∈ X. Clearly, MuχF = 0
which implies that Mu is not injective. This proves the lemma.

Theorem 2.2. (Main result) Let X = X(Ω,Σ, µ) be a Banach function space.
Let T : Ω → Ω be a non-singular measurable transformation such that CT : X →
X, CT : X ′ → X ′ and C∗T : X ′ → X ′ are continuous, ‖fT ‖∞ < ∞, and T (Ω) = Ω.
Then we have
(i) C∗T CT = MfT

on X ′.

(ii) CT C∗T P = MfT ◦T P on X ′, where P : X ′ → range(CT ) ⊆ X ′ is the projection
operator.

(iii) If CT has dense range in X ′, then CT C∗T = MfT ◦T on X ′. Further, this
equality implies that CT has dense range in X.

Proof. (i) For each f ∈ X and g ∈ X ′, we have

〈f, C∗T CT g〉 = 〈CT f, CT g〉 =
∫

Ω

|f(T (x))g(T (x))| dµ(x)

=
∫

T (Ω)

|f(y)g(y)|fT (y) dµ(y) =
∫

Ω

|f(y)(MfT
g)(y)| dµ(y)

= 〈f, MfT g〉
which implies that C∗T CT = MfT

on X ′.

(ii) Let P (g) ∈ range(CT ) ⊆ X ′, so there exists a sequence {gn}n≥1 in X ′ such
that CT gn → Pg in norm, that is, ‖CT gn − Pg‖X′ → 0. Now, we have

CT C∗T Pg = lim
n

CT C∗T (CT gn) = lim
n

CT (MfT
gn) = MfT ◦T lim

n
(CT gn) = MfT ◦T Pg.

Therefore, we have
CT C∗T P = MfT ◦T P on X ′.

(iii) Suppose CT has dense range in X ′, that is, CT C∗T = MfT ◦T , since then
P = I on X ′. Now, CT C∗T = MfT ◦T and since fT ◦T 6= 0 a.e., we see that MfT ◦T is
injective so that CT C∗T is also injective. Also, we see that ker(C∗T ) ⊆ ker(CT C∗T ) =
{0}. Therefore, C∗T is also injective.

Thus, we have
rangeX(CT ) =⊥ (ker(C∗T )) = X.

Hence CT has dense range in X.
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Corollary 2.3. In case C∗T : X → X, then the assertions of the above theo-
rem hold true on X.

Corollary 2.4. If X is a Banach function space such that X = Y ′, for some
Banach function space Y . Let T be a non-singular measurable transformation such
that CT : X → X, C∗T : X → X, then the assertions of the above theorem hold true
on X.

The next theorem characterises composition operators with closed range.

Theorem 2.5. Let X be a Banach function space with the associate space X ′

and let T be a non-singular measurable transformation such that CT : X ′ → X ′,
C∗T : X ′ → X ′ and CT and C∗T CT have closed range together in X ′. Then CT has
closed range in X ′ ⊆ X∗ if and only if fT is bounded away from 0 on its support.

Proof. By Theorem 2.2, we have C∗T CT = MfT
on X ′ and so CT has closed

range in X ′ if and only if MfT
has so in X ′ if and only if fT is bounded away from

0 a.e. on its support, by [11, Theorem 2.3].

Theorem 2.6. Let T : Ω → Ω be a non-singular measurable transformation
satisfying the hypothesis of Theorem 2.5 with Ω = (N, µ). If a = inf µ(n) > 0 and
b = sup µ(n) < ∞, then CT has closed range in X ′.

Proof. Follows from the above theorem since in this case the Radon-Nikodym
function fT is bounded away from 0.

Corollary 2.7. If a > 0, b < ∞ and T is a non-singular transformation on
N satisfying the hypothesis of Theorem 2.5 with Ω = (N, µ), then CT has closed
range in X = X(N, µ).

Definition 1. A Banach function space X(N, µ) is said to admit composi-
tion operators with non-closed range if there exists a measurable transformation
T : N → N such that range(CT ) is not closed in X(N, µ).

Theorem 2.8. If a > 0 and T is a non-singular transformation on N satisfy-
ing the hypothesis of Theorem 2.5 with Ω = (N, µ), then X ′(N, µ) admits compo-
sition operators with non-closed range if and only if b = ∞.

Proof. Suppose that b < ∞. Then by Theorem 2.6, for every non-singular
transformation T such that CT ∈ B(X ′(N, µ)), we see that CT has closed range
which proves that b = ∞.

Conversely, let b = ∞. Then for each n ∈ N, there exists some m ∈ N such
that µ(n)/µ(m) < 1/n. Define a measurable transformation T as T (n) = m. Then,
we can choose m such that T is one-to-one and T induces a composition operator
on X ′(N, µ). Since fT either takes the value µ(n)/µ(m) or 0, for each n ∈ N, so
that fT is not bounded below on its support(fT ). Hence CT does not have closed
range in X ′(N, µ).



102 Rajeev Kumar

Theorem 2.9. Let b < ∞ and T be a non-singular transformation on N sat-
isfying the hypothesis of Theorem 2.5 with Ω = (N, µ). Then B(X ′(N, µ)) admits
composition operators with closed range if and only if a = 0.

Proof. If a > 0, then again by Theorem 2.6, we see that CT has closed range
in X ′ so that a = 0.

Conversely, if a = 0, choose a subsequence {µ(nm)}m≥1 of the sequence
{µ(n)}n≥1 such that

∑
m≥1 µ(nm) < ∞ and choose another subsequence

{µ(nmi)}i≥1 in {µ(nm)}m≥1 such that

µ(nmi)
µ(ni)

→ 0.

Define T as

T (n) =





ni if n = mi,

1 if n = nj , but n 6= nmi

n if n 6= nj .

Then T induces a composition operator which does not have closed range. This
proves the theorem.

3. Invertible composition operators

The next theorem characterizes one-to-one composition operators. For each
f ∈ L(µ), we define the essential range of f as

ess ran f = {λ ∈ C : µ(f−1(F )) 6= 0, for each neighbourhood F of λ}.

Definition 2. A measurable transformation T : Ω → Ω is said to be one-to-
one (or left invertible) if there exists a measurable transformation S : Ω → Ω such
that

(S ◦ T )(x) = x µ-a.e. x ∈ Ω.

T is said to be onto (or right invertible) if there exists a measurable transformation
w : Ω → Ω such that

(T ◦ w)(x) = x µ-a.e. x ∈ Ω.

T is said to be invertible if there exists a measurable transformation S : Ω → Ω
such that

(T ◦ S)(x) = (S ◦ T )(x) = x µ-a.e. x ∈ Ω.

Theorem 3.1. Let X be a Banach function space. Let T be a non-singular
measurable transformation such that CT : X → X. Then the following are equiva-
lent.
(i) CT is one-to-one on X.
(ii) ess ran f = ess ran CT f, for each f ∈ X.
(iii) µ ¿ µ ◦ T−1.
(iv) fT 6= 0 a.e.
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Proof. The proof of the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) is on similar lines
as given in [25, Theorem 2.2.2] for Lp-spaces.

(iv) ⇒ (i) Since the simple functions are dense in X, and the simple functions
are nothing but the linear combinations of characteristic functions, so it suffices to
prove the result for characteristic functions.

Let E ∈ Σ be such that CT χE = 0 ⇒ χT−1(E) = 0 a.e. so that µ(T−1(E) ) = 0.
Then fT (x) = 0 on E. Therefore, µ(E) = 0 so that χE = 0, then using the
continuity of CT we see that CT is one-to-one. This proves our result.

Corollary 3.2. Let T : Ω → Ω be a non-singular measurable transformation
satisfying the hypothesis of Theorem 2.2 on a Banach function space X, then the
following are equivalent.
(i) CT is one-to-one on X ′.
(ii) ess ran f = ess ran CT f , for each f ∈ X ′.
(iii) µ ¿ µ ◦ T−1.
(iv) fT 6= 0 a.e.

Proof. We prove only (iv) ⇒ (i), since rest of the implications follow from
the above theorem. By Theorem 2.2, we have C∗T CT = MfT

on X ′. Now if
fT 6= 0, then by Lemma 2.1, we see that MfT is one-to-one on X ′ which implies
that kerC∗T CT = {0}, and kerCT ⊆ ker(C∗T CT ). Hence CT is one-to-one on X ′.

Corollary 3.3. If T is a non-singular measurable transformation on Ω =
(N, P (N), µ), then CT is one-to-one on X = X(N) if and only if T is onto.

Corollary 3.4. Let T be a non-singular measurable transformation on Ω
such that ess ran f = ess ran CT f , for each f ∈ X. Then CT f is a characteristic
function if and only if f is so.

Theorem 3.5. Let T be a non-singular measurable transformation on Ω such
that CT : X → X is continuous. Let T be right invertible (onto) such that the right
inverse of T is non-singular. Then CT is one-to-one on X.

Proof. In view of Theorem 2.5, it suffices to prove that µ ¿ µ ◦ T−1. If T is
onto, there is a measurable transformation w on Ω such that T ◦ w(x) = x, µ-a.e.
x ∈ Ω. Let E ∈ Σ. Then

(T ◦ w)−1(E) = w−1(T−1(E)) = E.

Suppose µ(T−1(E)) = 0, since w is non-singular, we have

µ(w−1(T−1(E))) = 0 ⇒ µ(E) = 0.

This proves that CT is injective on X.
Remark 1. The converse of the above theorem need not be true. For example,

let Ω = R, Σ = Borel σ-algebra on R with Lebesgue measure µ. Let T (x) = x2,
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for each x ∈ R, then T is not onto. But CT is injective on any Banach function
space X = X(R), since µ ¿ µ ◦ T−1 ¿ µ.

The next theorem characterizes the surjective composition operators. First we
prove the next lemma.

Lemma 3.6. Let T be a non-singular measurable transformation on Ω such
that CT : X → X is continuous. Then

range (CT ) = X(Ω, T−1(Σ), µ).

Proof. Proof is on the similar lines as in [25, Theorem 2.2.6].

Theorem 3.7. Let X = X(Ω, Σ, µ) be a Banach function space with the
associate space X ′ and let T be a non-singular measurable transformation on Ω
satisfying the hypothesis of Theorem 2.5. Then CT is onto on X ′ if and only if
there is some c ∈ R such that fT ≥ c > 0 on support(fT ) and T−1(Σ) = Σ, where
T−1(Σ) = {T−1(E) : E ∈ Σ}.

Proof. Suppose T−1(Σ) = Σ. Then by the above lemma, range(CT ) is dense
in X. If fT ≥ c > 0 on support(fT ), by Theorem 2.5, CT has closed range in X ′,
which implies that CT is onto on X ′.

Conversely, suppose that CT is onto on X ′. Then CT has closed range and
so by Theorem 2.5, fT is bounded away from 0 on support(fT ) ⊆ Ω. The family
T−1(Σ) is always a subfamily of Σ. Let E ∈ Σ and µ(E) < ∞, since CT is onto,
there is some g ∈ X ′ such that CT g = χE . Let F = {x ∈ Ω : g(x) = 1}. Then

CT χF = χE ⇒ T−1(F ) = E ⇒ E ∈ T−1(Σ).

Therefore T−1(Σ) = Σ. This proves the result.

Theorem 3.8. Let X be a Banach function space with the associate space X ′.
Let T be a non-singular measurable transformation on Ω such that CT : X ′ → X ′

is continuous. Then CT has dense range in X ′ if and only if T−1(Σ) = (Σ).

Proof. Let T−1(Σ) = (Σ), then Lemma 3.6 implies that CT has dense range
in X ′.

Conversely, by Theorem 2.5, if CT has dense range in X ′, then fT is bounded
way from 0. Also, CT (X ′) = X ′ ⇒ X ′(Ω, T−1(Σ), µ) = X ′(Ω, Σ, µ) ⇒ T−1(Σ) =
Σ. This proves the result.

Corollary 3.9. Under the same hypothesis as in above theorem, if T is
one-to-one, then range(CT ) = X ′.

Remark 2. The converse of the above theorem is not true in general. For
example, let Ω = {a, b, c, d}, Σ = {∅, Ω, {a, b}, {c, d}} and define T : Ω → Ω as

T (a) = a = T (b) and T (c) = c = T (d).

Then, T−1(Σ) = Σ. Thus CT has dense range in X(= l2(N), say) since T−1(Σ) = Σ
but T is not one-to-one. Note that here µ ¿ µ ◦ T−1 ¿ µ = counting measure.
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Theorem 3.10. Let X = X(N, µ) be a Banach function space and let T be a
non-singular measurable transformation on Ω such that CT : X → X is continuous.
Then CT has dense range in X ′ if and only if T is one-to-one.

Proof. The sufficiency follows from Corollary 3.9. To prove the necessary
part, suppose T is not one-to-one. Then there exists a set N1 containing p (p ≥ 1)
elements n1, n2, . . . , np such that T (ni) = m for 1 ≤ i ≤ p. We claim that {ni} /∈
T−1(Σ). If {ni} ∈ T−1(Σ), then

{ni} = T−1({n′i}) for some {n′i} ∈ Σ.

Since T ({ni}) = {m}, it follows that {n′i} = {m}. Hence T−1({n′i}) = T−1({m})
or in other words

{ni} = {n1, n2, . . . , np},
which is a contradiction. Thus T−1(Σ) 6= Σ. Hence CT dose not have dense range.
This completes the proof of the theorem.

Corollary 3.11. Let X = X(N, µ) be a Banach function space. If a > 0
and b < ∞ and T is a non-singular measurable transformation on N such that CT

is continuous on X. Then CT is surjective on X ′ if and only if T is one-to-one.

The next theorem characterizes invertible composition operators on the asso-
ciate space of a Banach function space X.

Theorem 3.12. Let X be a Banach function space with the associate space X ′

and T is a non-singular measurable transformation on Ω such that CT is continuous
on X and X ′ and T (Ω) = Ω. Then CT is invertible on X ′ if and only if fT ≥ c > 0
a.e. on Ω and T−1(Σ) = Σ.

Proof. Using Theorem 2.2 and Theorem 3.7, we get the result.
Remark 3. If Σ = {∅, Ω}, then every composition operator on X ′ is invertible,

for some Banach function space X such that CT : X ′ → X ′.

Theorem 3.13. Let X be a Banach function space with the associate space X ′

and T be a non-singular measurable transformation on Ω such that CT is continuous
on X ′ and T (Ω) = Ω. Then CT is an injection on X ′ if and only if fT 6= 0 a.e.
and T−1(Σ) = Σ.

Proof. Using Theorem 2.2 and Theorem 3.8, we get the result.

Corollary 3.14. Let X = X(N, µ) be a Banach function space and T is a
non-singular measurable transformation on N such that CT is continuous on X ′.
Then CT is an injection on X ′ with dense range if and only if T is invertible.

Corollary 3.15. Let X = X(N, µ) be a Banach function space and T is a
non-singular measurable transformation on N such that CT is continuous on X ′.
If a > 0 and b < ∞, then CT is an invertible composition operator on X ′ if and
only if T is so.
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Remark 4. From the above results, we conclude that there are invertible
composition operators induced by non-invertible transformations T on Ω.

The next theorem generalizes the result for Orlicz spaces given in [18, Propo-
sition 3.3] on a σ-finite Borel measure space.

Definition 3. A measurable transformation T : Ω → Ω is said to be essentially
surjective if µ(Ω \ T (Ω)) = 0.

Theorem 3.16. Let X be a Banach function space. Let T be a non-singular
measurable transformation on Ω such CT is continuous on X. Then CT is one-to-
one if and only if T is essentially surjective.

Proof. Suppose that CT is injective, that is, ker(CT ) = {0}. Let
Ω◦ = {x ∈ Ω : fT (x) = 0} and X(Ω◦) = {f ∈ X : f(x) = 0 a.e. x ∈ Ω \ Ω◦}

and support(f) = {f ∈ Ω : f(x) 6= 0}, for each f ∈ X. Then, we have
X(Ω◦) = {f ∈ X : support(f) ⊆ Ω◦ a.e.} = {f ∈ X : fT |support(f)= 0}.

We claim that X(Ω◦) = {0}. Let f ∈ X(Ω◦) ⊆ X(Ω) ⇒ ‖f‖X < ∞. Then, using
the axiom (iii) in the definition of Banach function spaces, we see that∫

Ω

|(CT f)(x)| dµ(x) =
∫

T (Ω)

|f(y)|fT (y) dµ(y)

≤
∫

Ω

|f(y)|fT (y) dµ(y)

=
∫

Ω\Ω◦
|f(y)|fT (y) dµ(y) +

∫

Ω◦
|f(y)|fT (y) dµ(y)

=
∫

Ω\Ω◦
|f(y)|fT (y) dµ(y) = 0,

which implies that
CT f(x) = 0 a.e. x ∈ Ω ⇒ f ∈ ker (CT ).

Therefore X(Ω◦) ⊆ ker (CT ) = {0}. This shows that X(Ω◦) = {0}. Thus µ(Ω◦) =
0. To complete the proof, it suffices to show that Ω \ Ω◦ = T (Ω). Now Ω \ Ω◦ =
support(fT ) ⊆ T (Ω), since E ⊆ Ω \ T (Ω). Therefore, we see that

0 = µ(T−1(E)) =
∫

E

fT (x) dµ(x)

so that fT |E= 0 ⇒ E ⊆ Ω◦. Thus Ω \ T (Ω) ⊆ Ω◦. Therefore, we have
µ(Ω◦) = 0 ⇒ µ(Ω \ T (Ω)) = 0.

This proves that T is essentially surjective.
Conversely, assume that T is essentially surjective so that Ω = T (Ω) ∪ B

whenever µ(B) = 0. Then, clearly, we have
ker(CT ) = {f ∈ X : CT f = 0} = {f ∈ X : f |T (Ω)= 0} = {0}.

Corollary 3.17. If (Ω, Σ, µ) is a non-atomic measure space, then the nullity
of CT on X is either 0 or ∞.

Proof. Follows from X(Ω◦) ⊆ ker(CT ) and Ω◦ = {x ∈ Ω : fT (x) = 0}.
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4. Invertible composition operators induced by
invertible transformations

The underlying σ-algebra of measurable sets plays an important role in the
invertibility of CT .

Definition 4. A topological space (Y, τ) is said to be an absolute Borel space
if it is homeomorphic to a Borel subset of a Hilbert cube (see [22, p. 52] for the
definition of a Hilbert cube). If the measure µ is σ-finite on the Borel subsets of an
absolute Borel space (Y, τ), then (Y, τ, µ) is called an absolute measure space.

Definition 5. Let (Ω1,Σ1, µ1) and (Ω2, Σ2, µ2) be two measure spaces. Then
a transformation h : Ω1 → Ω2 is said to be a homomorphism if it satisfies the
following properties:

h(A ∪B) = h(A) ∪ h(B), h(A ∩B) = h(A) ∩ h(B), and h(Ω1 \A) = Ω2 \ h(A).

Also, if h(
⋃

i≥1 Ai) =
⋃

i≥1 h(Ai), we say that h is a σ-homomorphism. If h is a
one-to-one homomorphism, then h is called an automorphism.

Now we need a lemma to prove the main result of this section.

Lemma 4.1. If T is a non-singular measurable transformation on Ω such that
CT is an invertible composition operator on a Banach function space X = Xb, then
C−1

T takes characteristic functions into characteristic functions.

Proof. Let E ∈ Σ be such that χE ∈ X. Then, since CT is onto, there exists a
function g ∈ X such that CT g = χE . Since CT is one-to-one, by Corollary 2.5, we
have g = χF for some F ∈ Σ. Then, we have

C−1
T χE = C−1

T CT χF = χF .

This proves our assertion.

Theorem 4.2. Let Ω be an absolute measure space and CT is bounded on a
Banach function space X = Xb. Then CT is an invertible composition operator on
X if and only if T is so with non-singular inverse and T−1 induces a composition
operator.

Proof. Proof is on similar lines as for L2-spaces, see [25, p. 31].

Corollary 4.3. If CT is an invertible composition operator on a Banach
function space X, then C−1

T = CT−1 .

Remark 5. The above theorem is valid for each Banach function space X
where every automorphism, or σ-homomorphism of σ-algebra of underlying measure
space (Ω, Σ, µ) is induced by a unique point mapping. For examples of such measure
space, we refer to [4, p. 123].
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5. Fredholm composition operators

The study of Fredholm composition operators has been initiated by Cima,
Thomson and Wogen on H2(D)-spaces in [5], they have proved that a composition
operator on H2(D) is Fredholm if and only if T is a conformal automorphism of
the unit disc D = {z ∈ C : |z| = 1} in the complex plane C. This study has been
initiated on L2(µ)-spaces in [14] and [26]. In this section, we generalize this result
to the general Banach function spaces.

Definition 6. An operator A ∈ B(Y, Z), the space of all bounded linear
operators from Y into Z, where Y and Z are Banach spaces, is said to be a Fredholm
operator if range(A) is closed in Z, dim(ker(A)) < ∞ and codim(A) < ∞.

Definition 7. A standard Borel space Ω is a Borel subset of a complete
metric space (S, d), where d is metric on a set S. The class Σ will consist of all sets
of the form Ω ∩ E, where E is a Borel subset of S.

We recall the next result from [28, p. 6] here.

Proposition 5.1. Let Ω1 and Ω2 be two standard Borel spaces and T a Borel
map of Ω1 into Ω2. Let λ be a finite measure on Ω1 and q be the measure E 7→
λ(T−1(E)) on Ω2. Then the range T (Ω1) of T is q-measurable and its complement
has q-measure 0. Moreover, there exist Borel sets A and Z such that
(i) A ⊆ Ω1, Z ⊆ T (Ω1),
(ii) q(Ω2 \ Z) = 0,
(iii) A is a section for T over Z, that is, T is one-to-one on A and maps A onto Z.

Theorem 5.2. Let X = X(Ω, Σ, µ) be a Banach function space with the
associate space X ′. Let T : Ω → Ω be a non-singular measurable transformation
such that CT is continuous on X. If CT is invertible, then CT is a Fredholm
composition operator.

Conversely, if (Ω, Σ, µ) is a σ-finite non-atomic standard Borel measure space,
then CT is a Fredholm composition operator on X ′.

Proof. If CT is invertible, then clearly CT is a Fredholm operator on X.
Conversely, using Corollary 3.9 and Proposition 5.1, the rest of the proof is on

similar lines as in [14, Theorem 1].

Theorem 5.3. Let T be a non-singular measurable transformation such that
CT is continuous on a Banach function space X = X(N, µ), then CT is a Fredholm
operator on X if and only if range(CT ) contains all but finitely many elements of
N and restriction of T to the complement of some finite set is one-to-one.

Proof. Using Theorem 2.2, proof is on similar lines as in [14, Theorem 2].
Remark 3. The adjoint of the unilateral shift on l2(N) is an example of a

Fredholm composition operator.
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The next theorem shows when does the adjoint of a composition operator
become a composition operator.

Theorem 5.4. Let (Ω,Σ, µ) be an absolute measure space and T : Ω → Ω be
a non-singular measurable transformation satisfying the hypothesis of Theorem 2.2
such that CT is a composition operator on X and X ′. Then the following statements
are equivalent.
(i) CT C∗T = I on X ′ and CT is invertible on X ′.
(ii) fT (x) = 1 µ-a.e. and T is one-to-one.
(iii) fT (x) = 1 µ-a.e. and CT is invertible on X ′.
(iv) C∗T is a composition operator on X ′.

Proof. (i) ⇒ (ii). By (i), we have

CT C∗T = MfT
= I on X ′.

Since CT is invertible, we see that

C∗T = C−1
T fT = C−1

T on X ′. (5.1)

This implies that fT ◦ T−1(x) = T−1(x) µ-a.e. x ∈ Ω and so fT (x) = 1 µ-a.e.
x ∈ Ω, using Theorem 4.2.

(i) ⇒ (iv). Using (5.1), we have C∗T = C−1
T on X ′. Also by Corollary 4.3, we

have C∗T = CT−1 on X ′. This proves that C∗T is a composition operator on X ′.
(iv) ⇒ (i). Suppose that C∗T is a composition operator on X ′. Then there

exists a non-singular measurable transformation S such that C∗T = CS . Since
C∗T CT = MfT , we get

CSCT = CT◦S = MfT .

Let Ω =
⋃∞

n=1 En, where µ(En) < ∞ for every n and En ⊆ Em if m > n. Let
fn = χEn . Then CT◦Sfn = fT fn, for all n. Equivalently χ(T◦S)−1(En) = fT χEn

for all n. Since Ω =
⋃∞

n=1(T ◦ S)−1(En), we conclude that fT = 1 a.e. In view of
the Theorem 3.12, it is enough to show that T−1(Σ) = Σ to complete the proof.
Obviously T−1(Σ) ⊆ Σ. For reverse inclusion, let E ∈ Σ such that µ(E) < ∞.
Then, if χE is in the range of CT , we have χE = CT h for some h ∈ X. Since
CT is one-to-one, by Corollary 3.4, we have h = χF , for some F ∈ Σ. Hence
χE = CT χF = χT−1(F ), which gives E = T−1(F ). This shows that E ∈ T−1(Σ).
In case χE does not belong to the range of CT , we can write

χE = f + g, for some f ∈ X −Ran(CT ) and g ∈ Ran(CT ).

Let g = CT g1 for some g1 ∈ X. Then, since C∗T is a composition operator, we have

C∗T χE = C∗T f + C∗T g = C∗T g = C∗T CT g1 = MfT g1 = g1

is a characteristic function. Thus g is a characteristic function. Let g = χG. Then
f = χE − χG = χE\G − χG\E . Since

〈f, g〉 = 〈χE\G − χG\E , χG〉 = −〈χG\E , χG〉 = 0,
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so it follows that G ⊆ E. Let F1 = T−1(F2) for some F2 ∈ Σ, that is, χF1 ∈
Ran(CT ), such that E \G ⊆ F1. Thus

µ((E \G) ∩ F1) = 〈f, χF1〉 = 0.

This implies that E ⊆ G. Thus we have χE = χG = g so that E ∈ T−1(Σ). Now,
if E ∈ Σ is of infinite measure, then we can write E =

⋃∞
i=1 Ei where {Ei} is a

disjoint sequence of measurable sets of finite measure. For each Ei, there exists a
set Fi such that Ei = T−1(Fi). Therefore

E =
∞⋃

i=1

Ei =
∞⋃

i=1

T−1(Fi) = T−1(
∞⋃

i=1

Fi) = T−1(F ),

where F =
⋃∞

i=1 Fi. Thus T−1(Σ) = Σ. This completes the proof.
(ii) ⇒ (i). Clearly, by Theorem 2.2 and by (ii), we have CT C∗T = I on X ′.

By the equivalence of (i) and (iv), we see that C∗T is a composition operator.
Therefore, there is a measurable transformation S on Ω such that C∗T = CS is a
composition operator on X ′. Thus, we see that CT C∗T = I on X ′ which implies
that T ◦ S(x) = x µ-a.e. x ∈ Ω.

Also, since T is one-to-one, we get a measurable transformation U on Ω such
that

(U ◦ T )(x) = x µ-a.e. x ∈ Ω.

Thus, we conclude that T is an invertible transformation on Ω. By Theorem 4.2,
we see that CT is invertible on X ′.

The equivalence of (i) and (iii) is obvious.
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Mathematički Vesnik (to appear).

[16] Rajeev Kumar and Romesh Kumar, Composition operators on Banach function spaces,
Proc. Amer. Math. Soc. 133, 7 (2005) 2109–2118.

[17] Rajeev Kumar and Romesh Kumar, On finite dimensional algebras generated by composition
operators on Orlicz sequence spaces with weight, Houston Jr. Math. (to appear).

[18] R. Kumar, Composition operators on Orlicz spaces, Integral Equations and Operator Theory
29 (1997), 17–22.

[19] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Sequence Spaces, vol. 92,
Springer Verlag, Berlin-New York 1977.

[20] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Function Spaces, vol. 97,
Springer Verlag, Berlin-New York 1979.

[21] L. Maligranda, Orlicz spaces and interpolation, Seminars in Math. 5, Univ. Estadual de
Campinas, Campinas SP, Brazil, 1989.

[22] M. E. Munroe. Introduction to Measure and Integration, Addison-Wesley Publ. Co., Cam-
bridge 42, 1953.

[23] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.

[24] R. K. Singh and A. Kumar, Characterisation of invertible, unitary and normal composition
operators, Bull. Austral. Math. Soc. 19 (1978), 81–95.

[25] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North Holland
Math. Studies 179, Amsterdam 1993.

[26] R. K. Singh and T. Veluchamy, Non-atomic measure spaces and Fredholm composition op-
erators, Acta Sci. Math. 51 (1987), 461–465.

[27] H. Takagi and K. Yokouchi, Fredholm composition operators, Integral Equations and Oper-
ator Theory, 16 (1993), 267–276.

[28] V. S. Varadarajan, Geometry of Quantum Theory, vol.II, University Series in Higher Math-
ematics, Van Nostrand Reinhold, New York, 1970.

(received 02.06.2006, in revised form 29.09.2007)

Rajeev Kumar, 73, Vidhata Nagar, Near Bathindi Morh, Jammu–180 006, INDIA.

E-mail : raj1k2@yahoo.co.in


