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ON SEQUENCE-COVERING msss-MAPS

Zhaowen Li, Qingguo Li and Xiangnan Zhou

Abstract. This paper gives characterizations of metric spaces under some sequence-covering
msss-maps by means of certain kind of σ-locally countable networks.

1. Introduction and definitions

A study of some images of metric spaces under certain maps is an impor-
tant task on general topology. The paper [1] introduced the concept of msss-
maps, and established the relationships between spaces with σ-locally countable
k-networks (bases) and metric spaces by means of msss-maps. In this paper, we
study some spaces with σ-locally countable networks, and give characterizations of
some sequence-covering msss-images of metric spaces.

In this paper all spaces are regular and T1, all maps are continuous and onto.
N denotes the set of all natural numbers, ω denotes N ∪ {0}. For two family A
and B of subsets of a space X, Denote A ∧ B = {A ∩ B : A ∈ A and B ∈ B}. For
the usual product space

∏
i∈N Xi, pi denotes the projection from

∏
i∈N Xi onto Xi

For a space X and each xn ∈ X, (xn) denotes a point of the usual product space
Xω whose n-th coordinate is xn.

Definition 1.1. [10] Let X be a space, and P ⊂ X. Then,
(1) A sequence {xn} in X is eventually in P if {xn} converges to x, and there

exists m ∈ N such that {x} ∪ {xn : n ≥ m} ⊂ P ;
(2) P is a sequential neighborhood of x in X if whenever a sequence {xn} in

X converges to x, then {xn} is eventually in P ;
(3) P is sequentially open in X if P is a sequential neighborhood at each of

its points;
(4) X is a sequential space if any sequentially open subset of X is open in X.
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Definition 1.2. Let P =
⋃{Px : x ∈ X} be a family of subsets of a space X

satisfying for each x ∈ X,
(1) Px is a network of x in X. i.e., x ∈ ∩Px and for x ∈ U with U open in X,

P ⊂ U for some P ∈ Px,
(2) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.
P is a weak-base for X [8] if G ⊂ X such that for each x ∈ G, there exists

P ∈ Px satisfying P ⊂ G, then G is open in X. P is an sn-network (i.e., sequential
neighborhood network) for X if each element of Px is a sequential neighborhood of
x in X. P is an so-network (i.e., sequential open network) for X if each element
of Px is sequentially open in X. The above Px respectively is a weak-base, an
sn-network and an so-network of x in X.

Definition 1.3. [4] For a space X, let P be a family of subsets of X, there
exists Px ⊂ Pω holding the following property: if (Pn) ∈ Px, then {Pn : n ∈ N} is
a decrease network of x in X. Denote P ≈ ⋃{Px : x ∈ X}.

(1) P is an s-network (i.e., sequential network) for X if, whenever P ⊂ X, and
for x ∈ P and each (Pn) ∈ Px, Pm ⊂ P for some m ∈ M , then P is sequentially
open in X;

(2) P is a sequential quasi-bases for X if, whenever P ⊂ X, and for x ∈ P and
each (Pn) ∈ Px, Pm ⊂ P for some m ∈ M , then P is open in X;

(3) P is a Fréchet quasi-bases for X if, whenever P ⊂ X, and for x ∈ P and
each (Pn) ∈ Px, Pm ⊂ P for some m ∈ M , then P is a neighborhood of x in X.

Definition 1.4. Let P be a family of subsets of a space X.
(1) P is a cs-network [9] for X if whenever {xn} is a sequence converging to

a point x ∈ U with U open in X, then there are P ∈ P and m ∈ N such that
{xn : n ≥ m} ∪ {x} ⊂ P ⊂ U ;

(2) P is a cs∗-network for X if whenever {xn} is a sequence converging to a
point x ∈ U with U open in X, then there are a subsequence {xni} and P ∈ P
such that {xni : i ∈ N} ∪ {x} ⊂ P ⊂ U .

Definition 1.5. Let f : X → Y be a map.
(1) f is a msss-map [1] (i.e., metrizably stratified strong s-map) if X is a

subspace of the product space
∏

i∈N Xi of a family {Xi : i ∈ N} of metric spaces
and for each y ∈ Y , there is a sequence {Vi} of open neighborhoods of y such that
each pif

−1(Vi) is separable in Xi;
(2) f is a 1-sequence-covering map [2] if for each y ∈ Y , there exists x ∈

f−1(y) satisfying the following condition (∗): whenever yn → y, then there exists
xn ∈ f−1(yn) such that xn → x;

(3) f is a 2-sequence-covering map [2] if for each y ∈ Y and each x ∈ f−1(y)
satisfying the above condition (∗);

(4) f is a sequence-covering map [13] (resp. compact-covering map) if each
convergent sequence (including its limit point) of Y (resp. each compact subset of
Y ) is the image of some compact subset of X;
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(5) f is a strong sequence-covering map [5] if each convergent sequence (in-
cluding its limit point) in Y is the image of some convergent sequence (including
its limit point) in X;

(6) f is a strong compact-covering map [5] if it is both strong sequence-covering
and compact-covering;

(7) f is a sequentially quotient map [7] if whenever R ⊂ Y and f−1(R) is
sequentially open in X, then R is sequentially open in Y .

2. On 1-sequence-covering msss-images

Theorem 2.1. A space X is a 1-sequence-covering msss-image of a metric
space if and only if X has a σ-locally countable sn-network.

Proof. Sufficiency. Suppose P is a σ-locally countable sn-network for X. Let
P =

⋃{Pi : i ∈ N}, where each Pi = {Pα : α ∈ Ai} is locally countable in X. We
can assume that Pi is closed under finite intersections and X ∈ Pi ⊂ Pi+1. For
each i ∈ N , endow Ai with discrete topology; then Ai is a metric space. Put

M =

{
α = (αi) ∈

∏

i∈N

Ai : {Pαi
: i ∈ N} is a network of some point xα in X

}
,

and endow M with the subspace topology induced from the product topology of
a family {Ai : i ∈ N} of metric spaces, then M is a metric space. Since X is
Hausdorff, xα is unique in X for each α ∈ M . We define f : M → X by f(α) = xα

for each α ∈ M . Since P is a σ-locally countable sn-network for X, f is onto. For
each α = (αi) ∈ M , f(α) = xα. Suppose V is an open neighborhood of xα in X,
there exists n ∈ N such that xα ∈ Pαn ⊂ V , set W = {c ∈ M : the n-the coordinate
of c is αn}, then W is an open neighborhood of α in M , and f(W ) ⊂ Pαn ⊂ V .
Hence f is continuous. We will show that f is a 1-sequence-covering msss-map.

(i) f is an msss-map.
For each x ∈ X and each i ∈ N , there exists an open neighborhood Vi of x in

X such that {αi ∈ Ai : Pα ∩ Vi 6= ∅} is countable. Put

Bi = {αi ∈ Ai : Pα ∩ Vi 6= ∅},
then pif

−1(Vi) ⊂ Bi. Thus pif
−1(Vi) is separable in Ai. Hence f is a msss-map.

(ii) f is a 1-sequence-covering map.
For each x ∈ X, by the definition of P, there exists (αi) ∈

∏
i∈N Ai such that

{Pαi : i ∈ N} ⊂ P is an sn-network of x in X. Denote β = (αi), then β ∈ f−1(x).
For each n ∈ N , let Rn = {(γi) ∈ M : if i ≤ n, then γi = αi}. Then {Rn : n ∈ N}
is a decreasing neighborhood base of β in M . For each n ∈ N , it is easy to check
that f(Rn) =

⋂
i≤n Pαi . Now suppose xj → x in X. For each n ∈ N , since f(Bn)

is a sequential neighborhood of x in X, there exists i(n) ∈ N such that if i ≥ i(n),
then xi ∈ f(Rn). Thus f−1(xi) ∩Rn 6= φ. We may assume 1 < i(n) < i(n + 1).
For each j ∈ N , let

βj ∈
{

f−1(xj), if j < i(1),
f−1(xj) ∩Rn, if i(n) ≤ j < i(n + 1), n ∈ N.
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Then it is easy to show that sequence {βj} converges to β in M . Hence f is a
1-sequence-covering map.

Necessity. Suppose f : M → X is a 1-sequence-covering msss-map, where M
is a metric space. Since f is a msss-map, then there exists a base B for M such
that P∗ = {f(B) : B ∈ B} is a σ-locally countable network for X by Lemma 1.2
of [1]. For each x ∈ X, β ∈ f−1(x) satisfies the condition (∗) of Definition 1.5 (2).
Put

Px = {f(B) : βx ∈ B ∈ B}, P =
⋃
{Px : x ∈ X}.

It is easy to show that each Px is an sn-network of x in X, and P is an sn-network
for X. Obviously, P ⊂ P∗. Hence X has a σ-locally countable sn-network.

Corollary 2.2. A space X is a 1-sequence-covering and quotient msss-image
of a metric space if and only if X has a σ-locally countable weak-base.

Proof. Sufficiency. Suppose X has a σ-locally countable weak-base, then X is
a sequential space with a σ-locally countable sn-network by [3, Proposition 1.6.15,
Corollary 1.6.18]. Thus X is a 1-sequence-covering msss-image of a metric space
by Theorem 2.1. This 1-sequence-covering msss-map is quotient by Lemma 2.1 of
[14].

Necessity. Suppose X is a 1-sequence-covering and quotient msss-image of a
metric space. Then X is a sequential space with a σ-locally countable sn-network
P. It is easy to prove that P is a σ-locally countable weak-base for X.

3. On 2-sequence-covering msss-images

The following Theorem 3.1 can be proved by Lemma 3.1 of [2] according to
the proof of Theorem 2.1.

Theorem 3.1. A space X is a 2-sequence-covering msss-image of a metric
space if X has a σ-locally countable so-network.

Corollary 3.2. The following are equivalent for a space X:

(1) X has a σ-locally countable base;

(2) X is a 2-sequence-covering and quotient msss-image of a metric space;

(3) X is an open msss-image of a space having a σ-locally countable base;

(4) X is a countably-bi-quotient msss-image of a space having a σ-locally countable
base.

Proof. (1) =⇒ (2) follows from Theorem 3.1 of [1] and Corollary 3.2 of [2].

(2) =⇒ (1). By Theorem 3.1, X is a sequential space with a σ-locally countable
so-network P. It is easy to show that P is a σ-locally countable base for X.

(1) =⇒ (3) follows from Theorem 3.1 of [1].

(3) =⇒ (4) is obvious.
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(4) =⇒ (1). Suppose X is the image of M under a countably-bi-quotient msss-
map f , where M is a space with a σ-locally countable base. Because f is a msss-
map, then there exists a base B for M such that P = {f(B) : B ∈ B} is a σ-locally
countable network for X by Lemma 1.2 of [1]. Thus P is a σ-locally countable
k-network for X by Lemma 2.5 of [1]. By Proposition 2.3.1 of [3], countably-bi-
quotient maps preserve strong Fréchet property, thus X is a strong Fréchet space
with a σ-locally countable k-network. Hence X has a σ-locally countable base by
Theorem 3.9 of [6] and Proposition 3.2 of [13].

Corollary 3.3. A space with a σ-locally countable base is preserved by a
countably-bi-quotient msss-map.

4. On sequence-covering msss-images

Theorem 4.1. The following are equivalent for a space X:
(1) X is a sequence-covering msss-image of a metric space;
(2) X is a sequentially quotient msss-image of a metric space;
(3) X has a σ-locally countable s-network.

Proof. (1) =⇒ (2) follows from Proposition 2.1.17 of [3].
(2) =⇒ (3). Suppose f : M → X is a sequentially quotient msss-map, where

M is a metric space. Since f is a msss-map, there exists a base B for M such that
P = {f(B) : B ∈ B} is a σ-locally countable network for X by Lemma 1.2 of [1].
Because s-networks are preserved by sequentially quotient maps by Lemma 3.1 of
[4], X has a σ-locally countable s-network P.

(3) =⇒ (1). Suppose P is a σ-locally countable s-network for X. then P
is a σ-locally countable cs∗-network for X by Theorem 2.4 of [4]. Hence X is a
sequence-covering msss-image of a metric space by Theorem 1 of [11].

The following corollaries can be proved by Theorem 4.1, Corollary 2.3 of [4],
Lemma 3.1 of [4] and Proposition 2.1.16 of [3].

Corollary 4.2. A space X has a σ-locally countable sequential quasi-base if
and only if X is a quotient msss-image of a metric space.

Corollary 4.3. A space X has a σ-locally countable Fréchet quasi-base if
and only if X is a pseudo-open msss-image of a metric space.

5. On strong sequence-covering msss-images

Theorem 5.1. The following are equivalent for a space X:
(1) X is a strong sequence-covering msss-image of a metric space;
(2) X is a strong compact-covering msss-image of a metric space;
(3) X has a σ-locally-countable cs-network.

Proof. (1) =⇒ (3) follows from Lemma 1.2 of [1] and the fact: cs-networks are
preserved by strong sequence-covering maps.
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(3) =⇒ (2). Suppose P is a σ-locally-countable cs-network for X. Denote
P =

⋃{Pi : i ∈ N}, where each Pi = {Pα : α ∈ Ai} is locally-countable in X. We
can assume that each Pi is closed under finite intersections and X ∈ Pi ⊂ Pi+1. By
the proof of Theorem 2.1, there exist a metric space M and a msss-map f : M → X.
We will prove that f is a strong compact-covering map. For each sequence {xn}
converging to x0, we can assume that all x′ns are distinct, and that xn 6= x0 for
each n ∈ N . Let K = {xm : m ∈ ω}. Suppose V is an open neighborhood of K in
X. A subfamily A of P is said to have the following property, which is denoted by
F (K,V ), if:

(a) A is finite,
(b) for each P ∈ A, φ 6= P ∩K ⊂ P ⊂ V ,
(c) for each z ∈ K, there exists a unique Pz ∈ A such that z ∈ Pz,
(d) if x0 ∈ P ∈ A, then K \ P is finite.
For each i ∈ N , put

Pi(K) = {A ⊂ Pi : A has the property F (K, X)};
then |Pi(K)| < ℵ0. Denote Pi(K) by {Pij : j ∈ N} (when Pi(K) = {Pi1, · · · ,Pis},
denote Pij = Pis if j > s). For each n ∈ N , put

P ′n =
∧

i,j≤n

Pij ,

then P ′n ⊂ Pn and P ′n also has the property F (K, X).
For each i ∈ N and each m ∈ ω, there exists αim ∈ Ai such that xm ∈ Pαim ∈

P ′i. Let bm = (αim) ∈ ∏
i∈N Ai. It is easy to prove that {Pαim : i ∈ N} is a network

of xm in X. Then bm ∈ M and f(bm) = xm for each m ∈ ω. For each i ∈ N , there
exists n(i) ∈ N such that αin = αi0 when n ≥ n(i). Hence the sequence {αin}
converges αi0 in Ai. Thus, there is a sequence {bn} converging to b0 in X. This
shows that f is sequence-covering.

Since X has a σ-locally-countable cs-network, each compact subset L of X
has a countable cs-network. So L is metrizable. We can prove that f is compact-
covering by the proof of Theorem 2 in [5].

(2) =⇒ (1) is obvious.

Corollary 5.2. The following are equivalent for a space X:
(1) X is a strong sequence-covering and quotient msss-image of a metric space;
(2) X is a strong compact-covering and msss-image of a metric space;
(3) X is a k-space with a σ-locally-countable cs-network.
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