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METRIZABLE GROUPS AND STRICT o-BOUNDEDNESS
Liljana Babinkostova

Abstract. We show that for metrizable topological groups being a strictly o-bounded group
is equivalent to being a Hurewicz group. In [5] Hernandez, Robbie and Tkachenko ask if there are
strictly o-bounded groups G and H for which G x H is not strictly o-bounded. We show that for
metrizable strictly o-bounded groups the answer is no. In the same paper the authors also ask if
the product of an o-bounded group with a strictly o-bounded group is again an o-bounded group.
We show that if the strictly o-bounded group is metrizable, then the answer is yes.

1. Definitions and notation

Let H and G be topological spaces with G a subspace of H. We shall use the
notations:

e Op: The collection of open covers of H.

o Opg: The collection of covers of G by sets open in H.
An open cover U of a topological space H is said to be

e an w-cover if H is not a member of U, but for each finite subset F' of H there is
a U € U such that FF C U [3]. The symbol w denotes the collection of w-covers
of H.

e groupable if there is a partition U = J,,cn Un, Where each U,, is finite, and for
each x € H the set {n: x ¢ UU,} is finite [9]. The symbol O denotes the
collection of groupable open covers of the space.

e ~-cover if it is infinite, and each infinite subset of it is still an open cover of
the space. The symbol v denotes the collection of y-covers of the space.

e large if each element of the space is contained in infinitely many elements of
the cover. The symbol A denotes the collection of large covers of the space.
Now let (G, ) be a topological group with identity element e. We will assume

that G is not compact. For a neighborhood U of e, and for a finite subset F' of G the
set F'xU is a neighborhood of the finite set F. Thus, the set {F'«U : F C G finite}
is an w-cover of G, which is denoted by the symbol Q(U). The set

Qnpa = {Q(U) : U a neighborhood of e}
is the set of all such w-covers of G.
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The set O(U) = {x U : x € G} is an open cover of G. The symbol
Onpa = {O(U) : U a neighborhood of e}

denotes the collection of all such open covers of G. Now we describe the selection
principles relevant to this topic. Let S be an infinite set, and let A and B be
collections of families of subsets of S.

The symbol S;(A,B) denotes the statement that there is for each sequence
(On, : n € N) of elements of A a sequence (T, : n € N) such that for each n
T, € Oy, and {T,, : n € N} € B. The earliest example of this sort of selection
principle was introduced in [14] by Rothberger, and is S1(O, ©O) in our notation.

The symbol Sy;, (A, B) is defined as follows: For each sequence (O, : n € N)
from A there is a sequence (7T}, : n € N) of finite sets such that for each n T,, C O,,,
and |J,cn Tn € B. The earliest example of this selection principle was introduced
by Hurewicz in [7], and in our notation is S¢;, (O, O). Because of its equivalence in
metric spaces with a basis property of Menger, S, (O, O) is also called the Menger
property. In [7] Hurewicz introduced also a second selection principle, now called
the Hurewicz property, and characterized in [9] as the statement Sy;,, (A, O9).

Each selection principle has a corresponding game. The game that we will use
in this paper is the game corresponding to S (A, B). The game is denoted G; (A, B)
and is played as follows: In the n-th inning ONE chooses an O,, € A, and TWO
responds with a T;, € O,. They play an inning for each natural number n. A play

Ol7T1a"' 7OTL7TTL7"'
is won by TWO if {T,, : n € N} is in B. Otherwise, ONE wins.

2. Hurewicz-bounded groups

The notion of Hurewicz-bounded group was introduced by Ko¢inac in 1998 in
one of his unpublished notes. A topological group (G, *) is said to be a Hurewicz-
bounded group if it satisfies the selection principle S1(Qypa(G), OF). Let (G, *) be
a subgroup of the group (H,x). Then G is Hurewicz-bounded H if the selection
principle S1(Qnpa(H), OY) holds.

THEOREM 1. For a subgroup (G, *) of an infinite topological group (H,x) the
following are equivalent:

1. S1(Qupa(H), O%F ).
2. S1(Qupa(H),Tug).

Proof. We need to prove only that 1 = 2. For each n let U, be an element
of Qupa(H), and choose for each n an open neighborhood U, of e such that U,, =
Q(Uy). For each n put V,, = N;<,U;. For each n put V, = Q(V,). Apply
S1(Qnba, O9%) to (V,, : n € N). For each n choose W,, € V,, such that {W,, : n € N}
is a groupable open cover of G. Choose a sequence m; < mo < -+ < My, < -+
such that for each x € G, for all but finitely many n, z € | W;. For

mngj<mn+1
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each n also choose a finite set F,, C H with W,, = F}, * V,,. Now define, for each k,
the finite set G by

k= Umn<iSmn+1 F, ifm, <k<mpy

For each n put A,, = G, *U,, an element of Q(U,,). We claim that {A4,, : n € N} is
a y-cover of G. For consider g € G. Choose M € N so that for all n > M we have
g e Umn<i§mn+1 W;. But for m,, < i < myy1 we have W; = F;xV; C Ap = G+ Uy,
for m, < k < mpy1. Thus, for all k& > my; we have g € Ai. It follows that
{A) : k € N} is a y-cover of G. m

THEOREM 2. Let (G, *) be a subgroup of the topological group (H,*). Then
the following are equivalent:

1. S1(Quna(H), OY ).
2. S1(Qupa(G), OF).

Proof. The implication (2) = (1) is evidently true. We must show that
(1) = (2). Thus, let (2(U,) : n € N) be a sequence in ,p4(G). Since each
U, is a neighborhood (in G) of the group identity we may choose for each n a
neighborhood T}, in H of the identity, such that U, = T,, N G. Next, choose for
each n a neighborhood S, in H of the identity, such that S, ! S, C T,,.

Apply (2) to the sequence (2(S,) : n € N) we get for each n a finite set
F,, C H such that for each element x of G there is an N such that for all n > N
we have x € F, ¥ S,,. For each n, and for each f € F;,, choose a gy € G as follows:

{ eGNfx*S,, if nonempty
9

= e, the group identity, otherwise

Then put G, = {gy : f € F,,}, a finite subset of G. For each n we have G, xU,, €
QU,) € Qupa(G). We must show that for each x € G there is an N such that for
eachn> N,z e G, *xU,.

Let x € G be given. Choose N so that for all n > N we have x € F,, *S,.
Fix n > N and choose f, € F,, so that x € f, *.S,,. Then evidently G N f, * S,
is nonempty, and so g¢, € G is defined as an element of this intersection. Since
gf. € fu* Sp, we have f, € gr, * S;', and so x € gf, * S;' * S, C gy, * T),. Now
gjfml xx € GNT, = Uy, and so we have z € gy, * U, C G, x U,. This completes
the proof. m

This result implies the following:

COROLLARY 3. If (H,*) has property S1(Quva(H),T'x), then for each infinite
subgroup G of H, S1(Qnpa(G),T'c) holds.
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3. A characterization of strict o-boundedness for metrizable groups

According to Hausdorff [4, 25] a metric space (X, d) is totally bounded if there
is for each § > 0 a partition of X into finitely many sets, each of diameter less than
0. The metric space is o-totally bounded if it is a union of countably many sets,
each totally bounded.

Measure-like properties of metrizable spaces can be equivalent to selection
properties. Similarly, for metrizable groups measure-like properties with respect to
left-invariant metrics can be equivalent to selection properties. Let A be a collection
of sets, each a set of subsets of H. As in [1] we say: Metric space (H,d) has A-
measure zero if for each sequence (e, : n € N) of positive real numbers, there is a
sequence (F, : n € N) where:

1. For each n, F,, is a finite set of subsets of H,
2. Each element of F,, has diameter less than ¢,,, and
3. Upen Fn € A

The following theorem of Kakutani will be used below:

THEOREM 4. [6] Let (Uy : k < 00) be a sequence of subsets of the topological
group (H,*) where {Uy : k < oo} is a neighborhood basis of the identity element
e and each Uy is symmetrict, and for each k also U2, C Ug. Then there is a
left-invariant metric d on H such that

1. d is uniformly continuous in the left uniform structure on H x H.
2. Ify '« € Uy then d(z,y) < (3)" 2.
8. If d(z,y) < (3)* then y=' x z € Uy.

The equivalence of the first two statements of the following theorem apparently
has been independently obtained also by H. Michalewski [13].

THEOREM 5. For a subgroup (G, *) of a metrizable group (H,x*) the following
are equivalent:

1. TWO has a winning strategy in the game G1(Qupa(H), Onc).

2. (G, %) is o-totally bounded in all left-invariant metrics generating the topology
of H.

3. Sl(and(H),FHg) holds.

4. H has the O} -measure zero property in all left invariant metrics on H.

Proof. 1 = 2: Since (H, *)is a metrizable group, it is first countable. Let d be
a left-invariant metric of H and let (U, : n € N) be a neighborhood basis of the
identity element e of H such that for each n, U,, D U,4+1 and diamq(U,,) < 2% Let
o be TWO’s winning strategy. Define:

Uy is symmetric if Uy, = U;l
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Then, for nq,--- ,np < 0o given, define
Gnl,“' Mk ﬂ U<Q(U7L1 )7 e ’Q(Unk)’ Q(Un))
neN

First, we show that

¢ec |J 6 (1)

TE<YN

For suppose on the contrary that (1) is false. Choose an z € G\ U, c<un G7-
Since z is not in Gy, choose ny so that « ¢ o(Q(U,,)). Since z is not in G,,,, choose
ny so that z ¢ o(Q(Up, ), 2(U,,), and so on. In this way we obtain a o-play

QUn,), 0 (UUn,)), Q(Un,), 0 (Q2Un, ), UUny)), - -+

which is lost by TWO, since x is never covered by TWO. This contradicts the fact
that o is a winning strategy for TWO.

Next, we observe that each G, is totally bounded. Fix 7 = (nq---,ng).
Let an € > 0 be given. Choose n so large that 2% < €. Now G, is a subset of
o(QUn,), - ,QUn,),2(Uy)), which is of the form F x U, for some finite subset
F of G. But then {f U, : f € F} is a finite family of sets, each of diameter less

than Zi < €, and covers G.

This completes the proof that G is o-totally bounded.

2 = 1: Fix a left-invariant metric d of H and assume that G is o-totally
bounded. Write G = UneN G, where each G, is totally bounded. We define a
winning strategy o for TWO as follows:

When player ONE plays Q(Uy), put €, = diam(Uy), and 6; = . Since G is
totally bounded, choose a finite family F of open sets, each of diameter less than
01, so that G; C |JF. For each F € F, choose a point xp € F. Then F Cxp x U
(by diameter considerations), and so, setting S1 = {zr : F € F}, TWO responds
with U(Q(Ul)) = Sl * U1 € Q(Ul)

Suppose it is the n-th inning, and ONE has played Q(U;),--- ,Q(U,) so far.
Put €, = min{diam(Uj) : j < n}, and put 6, = . Since Gy U ---U Gy, is totally
bounded, choose a finite set F of open subsets of (G, each of diameter less than
0n, such that Gy U--- UG, € UF. For each F' € F choose an zp € F and put
Sp = {zp : F € F}. Then by diameter considerations, | JF C S, * U,. Now TWO
plays o(Q(U1), -+ ,QU,)) = S, x U, € Q(U,).

It is evident that o is a winning strategy for TWO.

2 = 3: The winning strategy o described for TWO above has the effect of
choosing for a sequence (Q(U,,) : n € N) a corresponding sequence (T;, : n € N)
such that for each n we have T,, € Q(U,), and G1 U ---UG,, C T,. This witnesses
Sl (and(H)7 I‘lHG)

3 = 2: Since H is metrizable it is first countable and has a left-invariant
metric. Choose a left invariant metric d for H and a sequence (U, : n € N) of
neighborhoods of the identity e, which forms a neighborhood basis at e, and such
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that lim,, o diamq(U,) = 0. Apply S1(Quba(H),Tre) to the sequence (2(U,) :
n € N): For each n we find a T}, = S,, x U,, € Q(U,,) where S, is a finite subset of
G, such that {T,, : n € N} is a y-cover of G. For each n € N define G,, = Ng>nTk.
Then G C UnEN G,. Each G, is totally bounded: For let an n be given and let
€ > 0 be given. Choose an N > n so large that diam(Un) < €. Then Ty is a union
of finitely many sets of the form x x Uy, and G,, C Ty.

3 = 4: Let d be a left-invariant metric on H and let (e, : n € N) be a
sequence of positive real numbers. Choose for each n a neighborhood U, of the
identity element e of H such that diamq(U,) < €,. Then apply S1(Qupa(H), O%)
to the sequence (g (Uy) : n € N). For each n we find F,, of H such that each
element of G is in all but finitely many of the F, * U,’s. Since d is left-invariant,
each element of V,, = {z * U, : « € F,} has diameter less than €,.

4 = 3: Let (U, : n € N) be a sequence of neighborhoods of e, the identity
element of H. Choose for each n a symmetric neighborhood V;, such that V2., C
V., C U,. By Kakutani’s theorem choose a left-invariant metric d as in Theorem
5 corresponding to the sequence(V,, : n € N). For each n put ¢, = QL We may
assume that G is not totally bounded in d. Choose § > 0 witnessing this. Choose
N large enough such that ey > §, and apply 4 to (e, : n > N). For each n > N
choose a finite set H,, of subsets of H such that each set in H,, has d-diameter less
that e. For each S € H,, choose Tx € Oy (V,,) with S € T,. Choose W, € Og(U,,)
with S C W;. For each n, put G = {Ws : S € H,}, and put G,, = UG, € QU,).
Then, {G,, :n > N} is a~y cover of G. m

Problem 4.1 of [5] asks if there are strictly o-bounded groups G and H for
which G x H is not strictly o-bounded. We show that for metrizable strictly o-
bounded groups the answer is no. Problem 4.2 asks if the product of an o-bounded
group with a strictly o-bounded group is again an o-bounded group. We show that
if the strictly o-bounded group is metrizable, then the answer is yes. Both of these
answers are results of the following theorem.

THEOREM 6. Let (G,*) be a group satisfying S1(Qnba,I'). Let A be one of
0, O, T. If (H,*) is a group with property S1(Qnba, A), then (G x H,x) also has
this property.

Proof. Consider a sequence (2(U,) : n € N) in Q,q(G x H). For each n
choose neighborhoods V,, of e and W,, of ey such that V,, x W,, C U,,. Consider
the sequences ((V,,) : n € N) and (2(W,,) : n € N). For each n choose a finite
set G, C G and a finite set H,, C H such that (G, * V,, : n € N) is in I', and
(H, *W, : n € N)is in A. For each n put F,, = G, X H,. We claim that
(F,, * Uy : n € N) has the required properties:

1. A = O: By the Remark following Theorem 1 of [2], we may assume that
there is for each y € H infinitely many n so that y € H,, x W,,. Consider any
(z,y) € G x H. Fix an N so that for all n > N we have z € G,, * V,,. Then
choose an n > N so that also y € H,, * W,,. Then (z,y) € F,, * Uy.
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2. A = Q: Observe that for each finite subset K of G there is an N such that for
allm > N, K C G, *V,. Since for each finite subset L of H there are infinitely
many n with L C H,, « W,,, apply the argument from before.

3. A=T: The argument is similar for this case. m

COROLLARY 7. If (Gj,%;), j < n are metrizable strictly o-bounded groups,
then so is their product.

Proof. By Theorem 5, metrizable strictly o-bounded groups are characterized
by S1(Quba, ). Apply Theorem 6. m

COROLLARY 8. If (G,*) is an o-bounded group and (H,x) is a metrizable
strictly o-bounded group, then G x H is an o-bounded group.

Proof. Apply Theorems 5 and 6. m

We characterize for metrizable groups when TWO has a winning strategy in
the game G1(Oppa(H), Ona):

THEOREM 9. Let (H,*) be a metrizable group with a subgroup (G,*). The
following are equivalent:

1. TWO has a winning strategy in G1(Onpa(H),One).

2. G is a countable set.

Proof. We only need to prove 1 = 2: Let ¢ be a winning strategy for TWO.
Since (H,#) is metrizable, let d be a left-invariant metric for it, and let (U, :
n € N) be a neighborhood basis for e in H such that lim,_, diamq(U,) = 0.
Define Gy = (,en 0(O(Uy)). For (ng,---,ni) a given finite sequence, define
Gy ) = Npen 0(OUn, ), -+, O(Uny, ), O(Uy)). We claim that

¢c |J 6. (2)

TESYN

For suppose on the contrary z is not in |J c<opnGr. Choose an ny with = ¢
o(O(U,,)), and then choose ny so that z ¢ o(O(U,,),OU,,)), and so on.
In this way we obtain a sequence ni, no, -+, ng, -+ so that for each k, = ¢
o(OUpn,), -+ ,0(Uy,)). But then we obtain a o-play lost by TWO, a contra-
diction.

Next, we observe that each GG, has at most one element: This is because d is
left-invariant, so that diam(o(O(Uy,), -+, OUn,), O(Uy)) = diam(U,,), and since
these U,,’s form a neighborhood base for e, the diameter of Hy, ... ,, is 0. m
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