ON PSEUDO-BCI IDEALS OF PSEUDO-BCI ALGEBRAS

Young Bae Jun, Hee Sik Kim and J. Neggers

Abstract

The notions of pseudo-atoms, pseudo- $B C I$ ideals and pseudo- $B C I$ homomorphisms in pseudo- $B C I$ algebras are introduced. Characterizations of a pseudo- $B C I$ ideal are displayed, and conditions for a subset to be a pseudo- $B C I$ ideal are given. The concept of a \diamond medial pseudo- $B C I$ algebra is also introduced, and its characterization is provided. We show that every pseudo- $B C I$ homomorphic image and preimage of a pseudo- $B C I$ ideal is also a pseudo- $B C I$ ideal.

1. Introduction

G. Georgescu and A. Iorgulescu [1] introduced the notion of a pseudo- $B C K$ algebra as an extended notion of $B C K$-algebras. In [2], Y. B. Jun, one of the present authors, gave a characterization of pseudo- $B C K$ algebra, and provided conditions for a pseudo- $B C K$ algebra to be \wedge-semi-lattice ordered (resp. \cap-semilattice ordered). Y. B. Jun et al. [4] introduced the notion of (positive implicative) pseudo-ideals in a pseudo- $B C K$ algebra, and then they investigated some of their properties. In [2], W. A. Dudek and Y. B. Jun introduced the notion of pseudo- $B C I$ algebras as an extension of $B C I$-algebras, and investigated some properties. In this paper, we introduce the concepts of pseudo-atoms, pseudo- $B C I$ ideals and pseudo$B C I$ homomorphisms in pseudo- $B C I$ algebras. We display characterizations of a pseudo- $B C I$ ideal, and provide conditions for a subset to be a pseudo- $B C I$ ideal. We also introduced the notion of a \diamond-medial pseudo- $B C I$ algebra, and give its characterization. We prove that every pseudo- $B C I$ homomorphic image and preimage of a pseudo- $B C I$ ideal is also a pseudo- $B C I$ ideal.

2. Preliminaries

Recall that a $B C I$-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms: for every $x, y, z \in X$,

[^0]- $((x * y) *(x * z)) *(z * y)=0$,
- $(x *(x * y)) * y=0$,
- $x * x=0$,
- $x * y=0$ and $y * x=0$ imply $x=y$.

For any $B C I$-algebra X, the relation \leq defined by $x \leq y$ if and only if $x * y=0$ is a partial order on X. A nonempty subset I of a $B C I$-algebra X is called a $B C I$ ideal of X if it satisfies

- $0 \in I$,
- $\forall x, y \in X, x * y \in I, y \in I \Rightarrow x \in I$.

3. Properties of Pseudo-BCI algebras

Definition 3.1. A pseudo- $B C I$ algebra is a structure $\mathfrak{X}=(X, \preceq, *, \diamond, 0)$, where " \preceq " is a binary relation on a set X, "*" and " $>$ " are binary operations on X and " 0 " is an element of X, verifying the axioms: for all $x, y, z \in X$,
(a1) $(x * y) \diamond(x * z) \preceq z * y,(x \diamond y) *(x \diamond z) \preceq z \diamond y$,
(a2) $x *(x \diamond y) \preceq y, x \diamond(x * y) \preceq y$,
(a3) $x \preceq x$,
(a4) $x \preceq y, y \preceq x \Longrightarrow x=y$,
(a5) $x \preceq y \Longleftrightarrow x * y=0 \Longleftrightarrow x \diamond y=0$.
Note that every pseudo- $B C I$ algebra satisfying $x * y=x \diamond y$ for all $x, y \in X$ is a $B C I$-algebra. Every pseudo- $B C K$ algebra is a pseudo- $B C I$ algebra.

Proposition 3.2. [2] In a pseudo-BCI algebra \mathfrak{X} the following holds:
(p1) $x \preceq 0 \Rightarrow x=0$.
(p2) $x \preceq y \Rightarrow z * y \preceq z * x, z \diamond y \preceq z \diamond x$.
(p3) $x \preceq y, y \preceq z \Rightarrow x \preceq z$.
(p4) $(x * y) \diamond z=(x \diamond z) * y$.
(p5) $x * y \preceq z \Leftrightarrow x \diamond z \preceq y$.
(p6) $(x * y) *(z * y) \preceq x * z,(x \diamond y) \diamond(z \diamond y) \preceq x \diamond z$.
(p7) $x \preceq y \Rightarrow x * z \preceq y * z, x \diamond z \preceq y \diamond z$.
(p8) $x * 0=x=x \diamond 0$.
$(\mathrm{p} 9) x *(x \diamond(x * y))=x * y$ and $x \diamond(x *(x \diamond y))=x \diamond y$.
Example 3.3. Let $X=[0, \infty]$ and let \leq be the usual order on X. Define binary operations "*" and " \diamond " on X by

$$
\begin{aligned}
& x * y:= \begin{cases}0 & \text { if } x \leq y, \\
\frac{2 x}{\pi} \arctan \left(\ln \left(\frac{x}{y}\right)\right) & \text { if } y<x,\end{cases} \\
& x \diamond y:= \begin{cases}0 & \text { if } x \leq y, \\
x e^{-\tan \left(\frac{\pi y}{2 x}\right)} & \text { if } y<x,\end{cases}
\end{aligned}
$$

for all $x, y \in X$. Then $\mathfrak{X}:=(X, \leq, *, \diamond, 0)$ is a pseudo- $B C K$ algebra, and so a pseudo- $B C I$ algebra.

Proposition 3.4 In a pseudo-BCI algebra \mathfrak{X}, the following holds for all $x, y \in X$:
(i) $0 *(x \diamond y) \preceq y \diamond x$.
(ii) $0 \diamond(x * y) \preceq y * x$.
(iii) $0 *(x * y)=(0 \diamond x) \diamond(0 * y)$.
(iv) $0 \diamond(x \diamond y)=(0 * x) *(0 \diamond y)$.

Proof. (i) and (ii). We have $0 *(x \diamond y)=(x \diamond x) *(x \diamond y) \preceq y \diamond x$ and $0 \diamond(x * y)=(x * x) \diamond(x * y) \preceq y * x$ by (a1) and (a3).
(iii) and (iv). Using (a3) and (p4), we obtain

$$
\begin{aligned}
(0 \diamond x) \diamond(0 * y) & =(((x * y) *(x * y)) \diamond x) \diamond(0 * y) \\
& =(((x * y) \diamond x) *(x * y)) \diamond(0 * y) \\
& =(((x \diamond x) * y) *(x * y)) \diamond(0 * y) \\
& =((0 * y) *(x * y)) \diamond(0 * y) \\
& =((0 * y) \diamond(0 * y)) *(x * y) \\
& =0 *(x * y)
\end{aligned}
$$

and

$$
\begin{aligned}
(0 * x) *(0 \diamond y) & =(((x \diamond y) \diamond(x \diamond y)) * x) *(0 \diamond y) \\
& =(((x \diamond y) * x) \diamond(x \diamond y)) *(0 \diamond y) \\
& =(((x * x) \diamond y) \diamond(x \diamond y)) *(0 \diamond y) \\
& =((0 \diamond y) \diamond(x \diamond y)) *(0 \diamond y) \\
& =((0 \diamond y) *(0 \diamond y)) \diamond(x \diamond y) \\
& =0 \diamond(x \diamond y) .
\end{aligned}
$$

Definition 3.5. An element w of a pseudo- $B C I$ algebra \mathfrak{X} is called a pseudoatom if for every $x \in X, x \preceq w$ implies $x=w$.

Obviously, 0 is a pseudo-atom of \mathfrak{X}.
Proposiiton 3.6. Let \mathfrak{X} be a pseudo-BCI algebra. If an element w of \mathfrak{X} satisfies the identity $y *(y \diamond(w * x))=w * x$ for all $x, y \in X$, then w is a pseudoatom of \mathfrak{X}.

Proof. Let $y \in X$ be such that $y \preceq w$. Then

$$
w=w * 0=y *(y \diamond(w * 0))=y *(y \diamond w)=y * 0=y .
$$

Hence w is a pseudo-atom of \mathfrak{X}.
Proposition 3.7. Let \mathfrak{X} be a pseudo-BCI algebra and let w be a pseudo-atom of \mathfrak{X}. Then the following are true.
(i) $w=x \diamond(x * w), \forall x \in X$.
(ii) $(x * y) \diamond(x * w)=w * y, \forall x, y \in X$.
(iii) $w *(x \diamond y) \preceq y \diamond(x * w), \forall x, y \in X$.
(iv) $(w \diamond x) *(y \diamond z) \preceq(z \diamond(y * w)) \diamond x, \forall x, y, z \in X$.
(v) $0 \diamond(y * w)=w * y, \forall y \in X$.

Proof. (i) Since $x \diamond(x * w) \preceq w$ by (a2), it follows that $w=x \diamond(x * w)$.
(ii) For every $x, y \in X$, we have

$$
(x * y) \diamond(x * w)=(x \diamond(x * w)) * y=w * y
$$

by (p4) and (i).
(iii) Using (i), (a2), (p4) and (p7), we have

$$
w *(x \diamond y)=(x \diamond(x * w)) *(x \diamond y)=(x *(x \diamond y)) \diamond(x * w) \preceq y \diamond(x * w)
$$

(iv) Using (p4), (p7) and (iii), we get

$$
(w \diamond x) *(y \diamond z)=(w *(y \diamond z)) \diamond x \preceq(z \diamond(y * w)) \diamond x .
$$

(v) For every $y \in X$, we obtain

$$
\begin{aligned}
w * y & =(w \diamond 0) *(y \diamond 0) & & \text { by }(\mathrm{p} 8) \\
& \preceq(0 \diamond(y * w)) \diamond 0 & & \text { by }(\mathrm{iv}) \\
& =0 \diamond(y * w) & & \text { by }(\mathrm{p} 8) \\
& \preceq w * y, & & \text { by Proposition 3.4(ii) }
\end{aligned}
$$

and so $0 \diamond(y * w)=w * y$.
Definition 3.8. A pseudo- $B C I$ algebra \mathfrak{X} is said to be \diamond-medial if it satisfies the following identity:
(M1) $\quad(x * y) \diamond(z * u)=(x * z) \diamond(y * u), \forall x, y, z, u \in X$.
Proposition 3.9. A pseudo-BCI algebra \mathfrak{X} is \diamond-medial if and only if it satisfies:
(M2) $x \diamond(y * z)=(x * y) \diamond(0 * z), \forall x, y, z \in X$.
Proof. Assume that \mathfrak{X} is \diamond-medial. Putting $z=0$ and $u=z$ in (M1) and using (p8), we have

$$
(x * y) \diamond(0 * z)=(x * 0) \diamond(y * z)=x \diamond(y * z)
$$

Suppose that \mathfrak{X} satisfies the condition (M2). Then

$$
\begin{aligned}
(x * y) \diamond(z * u) & =(x \diamond(z * u)) * y & & \text { by }(\mathrm{p} 4) \\
& =((x * z) \diamond(0 * u)) * y & & \text { by }(\mathrm{M} 2) \\
& =((x * z) * y) \diamond(0 * u) & & \text { by }(\mathrm{p} 4) \\
& =(x * z) \diamond(y * u) . & & \text { by }(\mathrm{M} 2)
\end{aligned}
$$

Therefore \mathfrak{X} is \diamond-medial.

Proposition 3.10. Every \diamond-medial pseudo-BCI algebra \mathfrak{X} satisfies the following identities.
(i) $x * y=0 \diamond(y * x)$.
(ii) $0 \diamond(0 * x)=x$.
(iii) $x \diamond(x * y)=y$.

Proof. (i) For any $x, y \in X$, we have

$$
\begin{aligned}
x * y & =(x * y) \diamond 0=(x * y) \diamond(x * x) \\
& =(x * x) \diamond(y * x)=0 \diamond(y * x) .
\end{aligned}
$$

(ii) If we put $y=0$ in (i), then we have (ii).
(iii) Using (ii), (a3) and (p8), we get

$$
x \diamond(x * y)=(x * 0) \diamond(x * y)=(x * x) \diamond(0 * y)=0 \diamond(0 * y)=y
$$

4. Pseudo-BCI ideals

Let \mathfrak{X} be a pseudo- $B C I$-algebra. For any nonempty subset J of X and any element y of X, we denote

$$
*(y, J):=\{x \in X \mid x * y \in J\} \text { and } \diamond(y, J):=\{x \in X \mid x \diamond y \in J\} .
$$

Note that $*(y, J) \cap \diamond(y, J)=\{x \in X \mid x * y \in J, x \diamond y \in J\}$.
Definition 4.1. A nonempty subset J of a pseudo- $B C I$ algebra \mathfrak{X} is called a pseudo-BCI ideal of \mathfrak{X} if it satisfies
(I1) $0 \in J$,
(I2) $\forall y \in J, *(y, J) \subseteq J$ and $\diamond(y, J) \subseteq J$.
Note that if \mathfrak{X} is a pseudo- $B C I$ algebra satisfying $x * y=x \diamond y$ for all $x, y \in X$, then the notion of a pseudo- $B C I$ ideal and a $B C I$-ideal coincide.

Proposition 4.2. Let J be a pseudo-BCI ideal of a pseudo-BCI algebra \mathfrak{X}. If $x \in J$ and $y \preceq x$, then $y \in J$.

Proof is straightforward.
Theorem 4.3. For any element a of a pseudo-BCI algebra \mathfrak{X}, the initial section $\downarrow a:=\{x \in X \mid x \preceq a\}$ is a pseudo-BCI ideal of \mathfrak{X} if and only if the following implications hold:
(i) $\forall x, y, z \in X, x * y \preceq z, y \preceq z \Rightarrow x \preceq z$,
(ii) $\forall x, y, z \in X, x \diamond y \preceq z, y \preceq z \Rightarrow x \preceq z$.

Proof. Assume that for each $a \in X, \downarrow a$ is a pseudo- $B C I$ ideal of \mathfrak{X}. Let $x, y, z \in X$ be such that $x * y \preceq z, x \diamond y \preceq z$, and $y \preceq z$. Then $x * y \in \downarrow z, x \diamond y \in \downarrow z$, and $y \in \downarrow z$, that is, $y \in \downarrow z, x \in *(y, \downarrow z)$ and $x \in \diamond(y, \downarrow z)$. Since $\downarrow z$ is a pseudo-BCI ideal of \mathfrak{X}, it follows from (I2) that $x \in \downarrow z$, i.e., $x \preceq z$. Conversely, consider $\downarrow z$ for any $z \in X$. Obviously $0 \in \downarrow z$. For every $y \in \downarrow z$, let $a \in *(y, \downarrow z)$ and $b \in \diamond(y, \downarrow z)$.

Then $a * y \in \downarrow z$ and $b \diamond y \in \downarrow z$, i.e., $a * y \preceq z$ and $b \diamond y \preceq z$. Since $y \in \downarrow z$, it follows from the hypothesis that $a \preceq z$ and $b \preceq z$, i.e., $a \in \downarrow z$ and $b \in \downarrow z$. This shows that $*(y, \downarrow z) \subseteq \downarrow z$ and $\diamond(y, \downarrow z) \subseteq \downarrow z$. Hence $\downarrow z$ is a pseudo- $B C I$ ideal of \mathfrak{X} for every $z \in X$.

Theorem 4.4. If J is a pseudo-BCI ideal of a pseudo-BCI algebra \mathfrak{X}, then (i) $\forall x, y, z \in X, x, y \in J, z * y \preceq x \Rightarrow z \in J$,
(ii) $\forall a, b, c \in X, a, b \in J, c \diamond b \preceq a \Rightarrow c \in J$.

Proof. Suppose that J is a pseudo-ideal of \mathfrak{X} and let $x, y, z \in X$ be such that $x, y \in J$ and $z * y \preceq x$. Then $(z * y) \diamond x=0 \in J$, and so $z * y \in \diamond(x, J) \subseteq J$. It follows that $z \in *(y, J) \subseteq J$ so that (i) is valid. Now let $a, b, c \in X$ be such that $a, b \in J$ and $c \diamond b \preceq a$. Then $(c \diamond b) * a=0 \in J$, and thus $c \diamond b \in *(a, J) \subseteq J$. Hence $c \in \diamond(b, J) \subseteq J$, which shows (ii).

A pseudo-BCI subalgebra of a pseudo- $B C I$ algebra \mathfrak{X} is a subset S of \mathfrak{X} which satisfies $x * y \in S$ and $x \diamond y \in S$ for all $x, y \in S$. We provide conditions for a pseudo- $B C I$ subalgebra to be a pseudo- $B C I$ ideal.

Theorem 4.5. Let J be a pseudo-BCI subalgebra of a pseudo-BCI algebra \mathfrak{X}. Then J is a pseudo-BCI ideal of \mathfrak{X} if and only if

$$
\forall x, y \in X, x \in J, y \in X-J \Rightarrow y * x \in X-J \text { and } y \diamond x \in X-J
$$

Proof. Assume that J is a pseudo- $B C I$ ideal of \mathfrak{X} and let $x, y \in X$ be such that $x \in J$ and $y \in X-J$. If $y * x \notin X-J$, then $y * x \in J$, i.e., $y \in *(x, J) \subseteq J$ which is a contradiction. Hence $y * x \in X-J$. Now if $y \diamond x \notin X-J$, then $y \diamond x \in J$ and so $y \in \diamond(x, J) \subseteq J$. This is a contradiction, and therefore $y \diamond x \in X-J$. Conversely, assume that

$$
\forall x, y \in X, x \in J, y \in X-J \Rightarrow y * x \in X-J \text { and } y \diamond x \in X-J
$$

Since J is a pseudo- $B C I$ subalgebra, therefore $0 \in J$. For every $x \in J$, let $y \in$ $*(x, J)$. Then $y * x \in J$. If $y \notin J$, then $y * x \in X-J$ by assumption. This is a contradiction, and so $y \in J$ which shows that $*(x, J) \subseteq J$. Now let $z \in \diamond(x, J)$. Then $z \diamond x \in J$. It follows from the hypothesis that $z \in J$ so that $\diamond(x, J) \subseteq J$. Consequently, J is a pseudo- $B C I$ ideal of \mathfrak{X}.

Using [2, Theorem 3.5], we know that every pseudo- $B C I$ algebra \mathfrak{X} contains a maximal pseudo- $B C K$ algebra $K(\mathfrak{X}):=\{x \in X \mid 0 \preceq x\}$.

Proposition 4.6. Let \mathfrak{X} be a pseudo-BCI algebra. If $x \in K(\mathfrak{X})$ and $y \in$ $X-K(\mathfrak{X})$, then $x * y \in X-K(\mathfrak{X})$ and $x \diamond y \in X-K(\mathfrak{X})$.

Proof. If $x * y \in K(\mathfrak{X})$, then $x \diamond(x * y) \in K(\mathfrak{X})$ because $K(\mathfrak{X})$ is a pseudo- $B C I$ subalgebra of \mathfrak{X}. Hence $0 \preceq x \diamond(x * y) \preceq y$, and so $y \in K(\mathfrak{X})$. This is a contradiction. Now if $x \diamond y \in K(\mathfrak{X})$, then $x *(x \diamond y) \in K(\mathfrak{X})$ and so $0 \preceq x *(x \diamond y) \preceq y$ by (a2). Therefore $y \in K(\mathfrak{X})$, a contradiction.

Theorem 4.7. Let \mathfrak{X} be a pseudo-BCI algebra. Then the maximal pseudo$B C K$ algebra $K(\mathfrak{X})$ is a pseudo-BCI ideal of \mathfrak{X}.

Proof. Let $x, y \in X$ be such that $x \in K(\mathfrak{X})$ and $y \in X-K(\mathfrak{X})$. Using (a1) and (p8), we have

$$
(y * x) \diamond y=(y * x) \diamond(y * 0) \preceq 0 * x=0
$$

and

$$
(y \diamond x) * y=(y \diamond x) *(y \diamond 0) \preceq 0 \diamond x=0
$$

since $x \in K(\mathfrak{X})$. It follows from (p1) that $(y * x) \diamond y=0$ and $(y \diamond x) * y=0$ so that $y * x \preceq y$ and $y \diamond x \preceq y$. If $y * x \in K(\mathfrak{X})$, then $0 \preceq y * x \preceq y$, and so $y \in K(\mathfrak{X})$ which is a contradiction. Now if $y \diamond x \in K(\mathfrak{X})$, then $0 \preceq y \diamond x \preceq y$ which implies that $y \in K(\mathfrak{X})$, a contradiction. Hence $y * x \in X-K(\mathfrak{X})$ and $y \diamond x \in X-K(\mathfrak{X})$. By means of Theorem 4.5, we know that $K(\mathfrak{X})$ is a pseudo- $B C I$ ideal of \mathfrak{X}.

Theorem 4.8. Let J be a pseudo-BCI ideal of a pseudo-BCI algebra \mathfrak{X}. Then the following are equivalent.
(i) J contains the maximal pseudo-BCK algebra $K(\mathfrak{X})$.
(ii) $\forall x, y \in X, x \preceq y, x \in J \Rightarrow y \in J$.

Proof. The sufficiency is straightforward. Assume that $K(\mathfrak{X}) \subset J$. Let $x, y \in$ X be such that $x \preceq y$ and $x \in J$. Then $x * y=0$, and so

$$
0=0 \diamond 0=0 \diamond(x * y)=(x * x) \diamond(x * y) \preceq y * x
$$

Thus $y * x \in K(\mathfrak{X}) \subset J$, which implies that $y \in *(x, J) \subseteq J$.
Definition 4.9. Let \mathfrak{X} and \mathfrak{Y} be pseudo- $B C I$ algebras. A mapping $\mathfrak{f}: \mathfrak{X} \rightarrow \mathfrak{Y}$ is called a pseudo-BCI homomorphism if $\mathfrak{f}(x * y)=\mathfrak{f}(x) * \mathfrak{f}(y)$ and $\mathfrak{f}(x \diamond y)=\mathfrak{f}(x) \diamond \mathfrak{f}(y)$ for all $x, y \in X$.

Note that if $\mathfrak{f}: \mathfrak{X} \rightarrow \mathfrak{Y}$ is a pseudo- $B C I$ homomorphism, then $\mathfrak{f}\left(0_{\mathfrak{X}}\right)=0_{\mathfrak{Y}}$ where $0_{\mathfrak{X}}$ and $0_{\mathfrak{Y}}$ are zero elements of \mathfrak{X} and \mathfrak{Y}, respectively.

Theorem 4.10. Let $\mathfrak{f}: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a pseudo-BCI homomorphism of pseudo$B C I$ algebras \mathfrak{X} and \mathfrak{Y}. (i) If J is a pseudo-BCI ideal of \mathfrak{Y}, then $\mathfrak{f}^{-1}(J)$ is a pseudo-BCI ideal of \mathfrak{X}. (ii) If \mathfrak{f} is surjective and I is a pseudo-BCI ideal of \mathfrak{X}, then $\mathfrak{f}(I)$ is a pseudo-BCI ideal of \mathfrak{Y}.

Proof. (i) Assume that J is a pseudo- $B C I$ ideal of \mathfrak{Y}. Obviously $0_{\mathfrak{X}} \in \mathfrak{f}^{-1}(J)$. For every $y \in \mathfrak{f}^{-1}(J)$, let

$$
a \in *\left(y, \mathfrak{f}^{-1}(J)\right) \text { and } b \in \diamond\left(y, \mathfrak{f}^{-1}(J)\right)
$$

Then $a * y \in \mathfrak{f}^{-1}(J)$ and $b \diamond y \in \mathfrak{f}^{-1}(J)$. It follows that $\mathfrak{f}(a) * \mathfrak{f}(y)=\mathfrak{f}(a * y) \in J$ and $\mathfrak{f}(b) \diamond \mathfrak{f}(y)=\mathfrak{f}(b \diamond y) \in J$ so that $\mathfrak{f}(a) \in *(\mathfrak{f}(y), J) \subseteq J$ and $\mathfrak{f}(b) \in \diamond(\mathfrak{f}(y), J) \subseteq J$ because J is a pseudo- $B C I$ ideal of \mathfrak{X} and $\mathfrak{f}(y) \in J$. Hence $a \in \mathfrak{f}^{-1}(J)$ and $b \in \mathfrak{f}^{-1}(J)$, which shows that $*\left(y, \mathfrak{f}^{-1}(J)\right) \subseteq \mathfrak{f}^{-1}(J)$ and $\diamond\left(y, \mathfrak{f}^{-1}(J)\right) \subseteq \mathfrak{f}^{-1}(J)$. Hence $\mathfrak{f}^{-1}(J)$ is a pseudo- $B C I$ ideal of \mathfrak{X}.
(ii) Assume that \mathfrak{f} is surjective and let I be a pseudo- $B C I$ ideal of \mathfrak{X}. Obviously, $0_{\mathfrak{Y}} \in \mathfrak{f}(I)$. For every $y \in \mathfrak{f}(I)$, let $a, b \in Y$ be such that $a \in *(y, \mathfrak{f}(I))$ and $b \in \diamond(y, \mathfrak{f}(I))$. Then $a * y \in \mathfrak{f}(I)$ and $b \diamond y \in \mathfrak{f}(I)$. It follows that there exist
$x_{*}, x_{\diamond} \in I$ such that $\mathfrak{f}\left(x_{*}\right)=a * y$ and $\mathfrak{f}\left(x_{\diamond}\right)=b \diamond y$. Since $y \in \mathfrak{f}(I)$, there exists $x_{y} \in I$ such that $\mathfrak{f}\left(x_{y}\right)=y$. Also since \mathfrak{f} is surjective, there exist $x_{a}, x_{b} \in X$ such that $\mathfrak{f}\left(x_{a}\right)=a$ and $\mathfrak{f}\left(x_{b}\right)=b$. Hence

$$
\mathfrak{f}\left(x_{a} * x_{y}\right)=\mathfrak{f}\left(x_{a}\right) * \mathfrak{f}\left(x_{y}\right)=a * y \in \mathfrak{f}(I)
$$

and

$$
\mathfrak{f}\left(x_{b} \diamond x_{y}\right)=\mathfrak{f}\left(x_{b}\right) \diamond \mathfrak{f}\left(x_{y}\right)=b \diamond y \in \mathfrak{f}(I),
$$

which imply that $x_{a} * x_{y} \in I$ and $x_{b} \diamond x_{y} \in I$. Since I is a pseudo- $B C I$ ideal of \mathfrak{X}, we get $x_{a} \in *\left(x_{y}, I\right) \subseteq I$ and $x_{b} \in \diamond\left(x_{y}, I\right) \subseteq I$, and thus $a=\mathfrak{f}\left(x_{a}\right) \in \mathfrak{f}(I)$ and $b=\mathfrak{f}\left(x_{b}\right) \in \mathfrak{f}(I)$. This shows that $*(y, \mathfrak{f}(I)) \subseteq \mathfrak{f}(I)$ and $\diamond(y, \mathfrak{f}(I)) \subseteq \mathfrak{f}(I)$. Therefore $\mathfrak{f}(I)$ is a pseudo- $B C I$ ideal of \mathfrak{Y}.

Corollary 4.11. Let $\mathfrak{f}: \mathfrak{X} \rightarrow \mathfrak{Y}$ be a pseudo-BCI homomorphism of pseudoBCI algebras \mathfrak{X} and \mathfrak{Y}. Then the kernel

$$
\operatorname{Ker}(\mathfrak{f}):=\left\{x \in X \mid \mathfrak{f}(x)=0_{\mathfrak{Y}}\right\}
$$

of \mathfrak{f} is a pseudo-BCI ideal of \mathfrak{X}.
Proof is straightforward.

REFERENCES

[1] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, Combinatorics, computability and logic, $97-114$, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 2001.
[2] W. A. Dudek and Y. B. Jun, On pseudo-BCI algebras, (submitted).
[3] Y. B. Jun, Characterizations of pseudo-BCK algebras, Scientiae Mathematicae Japonicae Online 7 (2002), 225-230.
[4] Y. B. Jun, M. Kondo and K. H. Kim, Pseudo-ideals of pseudo-BCK algebras, Scientiae Mathematicae Japonicae 58 (2003), 93-97.
(received 28.08.2004)
Y. B. Jun, Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea
E-mail: ybjun@nongae.gsnu.ac.kr
H. S. Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea

E-mail: heekim@hanyang.ac.kr
J. Neggers, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA

E-mail: jneggers@gp.as.ua.edu

[^0]: AMS Subject Classification: 06 F 35, 03 G 25
 Keywords and phrases: Pseudo- $B C K / B C I$-algebra, pseudo-atom, pseudo- $B C I$ ideal, pseudo- $B C I$ homomorphism.

 The first author was supported by Korea Research Foundation Grant (KRF-2001-005D00002).

