ON PSEUDO-BCI IDEALS OF PSEUDO-BCI ALGEBRAS

Young Bae Jun, Hee Sik Kim and J. Neggers

Abstract. The notions of pseudo-atoms, pseudo-BCI ideals and pseudo-BCI homomorphisms in pseudo-BCI algebras are introduced. Characterizations of a pseudo-BCI ideal are displayed, and conditions for a subset to be a pseudo-BCI ideal are given. The concept of a \diamond -medial pseudo-BCI algebra is also introduced, and its characterization is provided. We show that every pseudo-BCI homomorphic image and preimage of a pseudo-BCI ideal is also a pseudo-BCI ideal.

1. Introduction

G. Georgescu and A. Iorgulescu [1] introduced the notion of a pseudo-BCK algebra as an extended notion of BCK-algebras. In [2], Y. B. Jun, one of the present authors, gave a characterization of pseudo-BCK algebra, and provided conditions for a pseudo-BCK algebra to be \wedge -semi-lattice ordered (resp. \cap -semi-lattice ordered). Y. B. Jun et al. [4] introduced the notion of (positive implicative) pseudo-ideals in a pseudo-BCK algebra, and then they investigated some of their properties. In [2], W. A. Dudek and Y. B. Jun introduced the notion of pseudo-BCI algebras as an extension of BCI-algebras, and investigated some properties. In this paper, we introduce the concepts of pseudo-atoms, pseudo-BCI ideals and pseudo-BCI homomorphisms in pseudo-BCI algebras. We display characterizations of a pseudo-BCI ideal, and provide conditions for a subset to be a pseudo-BCI ideal. We also introduced the notion of a \diamond -medial pseudo-BCI algebra, and give its characterization. We prove that every pseudo-BCI homomorphic image and preimage of a pseudo-BCI ideal is also a pseudo-BCI ideal.

2. Preliminaries

Recall that a *BCI-algebra* is an algebra (X, *, 0) of type (2,0) satisfying the following axioms: for every $x, y, z \in X$,

AMS Subject Classification: 06 F 35, 03 G 25

 $Keywords\ and\ phrases:$ Pseudo-BCK/BCI-algebra, pseudo-atom, pseudo-BCIideal, pseudo-BCI homomorphism.

The first author was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).

³⁹

- ((x*y)*(x*z))*(z*y) = 0,
- (x * (x * y)) * y = 0,
- x * x = 0,
- x * y = 0 and y * x = 0 imply x = y.

For any BCI-algebra X, the relation \leq defined by $x \leq y$ if and only if x * y = 0 is a partial order on X. A nonempty subset I of a BCI-algebra X is called a BCI-*ideal* of X if it satisfies

- $0 \in I$,
- $\forall x, y \in X, x * y \in I, y \in I \Rightarrow x \in I.$

3. Properties of Pseudo-BCI algebras

DEFINITION 3.1. A pseudo-BCI algebra is a structure $\mathfrak{X} = (X, \leq, *, \diamond, 0)$, where " \leq " is a binary relation on a set X, "*" and " \diamond " are binary operations on X and "0" is an element of X, verifying the axioms: for all $x, y, z \in X$,

- (a1) $(x * y) \diamond (x * z) \preceq z * y, (x \diamond y) * (x \diamond z) \preceq z \diamond y,$
- (a2) $x * (x \diamond y) \preceq y, \ x \diamond (x * y) \preceq y,$
- (a3) $x \leq x$,
- (a4) $x \leq y, y \leq x \Longrightarrow x = y$,
- (a5) $x \preceq y \iff x * y = 0 \iff x \diamond y = 0$.

Note that every pseudo-BCI algebra satisfying $x * y = x \diamond y$ for all $x, y \in X$ is a BCI-algebra. Every pseudo-BCK algebra is a pseudo-BCI algebra.

PROPOSITION 3.2. [2] In a pseudo-BCI algebra \mathfrak{X} the following holds:

$$(p1) \ x \leq 0 \Rightarrow x = 0.$$

- (p2) $x \preceq y \Rightarrow z * y \preceq z * x, \ z \diamond y \preceq z \diamond x.$
- (p3) $x \leq y, y \leq z \Rightarrow x \leq z$.

$$(p4) (x*y) \diamond z = (x \diamond z) * y.$$

$$(p5) \ x * y \preceq z \Leftrightarrow x \diamond z \preceq y.$$

- (p6) $(x * y) * (z * y) \preceq x * z, \ (x \diamond y) \diamond (z \diamond y) \preceq x \diamond z.$
- (p7) $x \preceq y \Rightarrow x * z \preceq y * z, x \diamond z \preceq y \diamond z.$
- (p8) $x * 0 = x = x \diamond 0$.
- (p9) $x * (x \diamond (x * y)) = x * y$ and $x \diamond (x * (x \diamond y)) = x \diamond y$.

EXAMPLE 3.3. Let $X = [0, \infty]$ and let \leq be the usual order on X. Define binary operations "*" and " \diamond " on X by

$$\begin{aligned} x * y &:= \begin{cases} 0 & \text{if } x \leq y, \\ \frac{2x}{\pi} \arctan(\ln(\frac{x}{y})) & \text{if } y < x, \end{cases} \\ x \diamond y &:= \begin{cases} 0 & \text{if } x \leq y, \\ x e^{-\tan(\frac{\pi y}{2x})} & \text{if } y < x, \end{cases} \end{aligned}$$

40

for all $x, y \in X$. Then $\mathfrak{X} := (X, \leq, *, \diamond, 0)$ is a pseudo-*BCK* algebra, and so a pseudo-*BCI* algebra.

PROPOSITION 3.4 In a pseudo-BCI algebra \mathfrak{X} , the following holds for all $x, y \in X$:

- (i) $0 * (x \diamond y) \preceq y \diamond x$.
- (ii) $0 \diamond (x * y) \preceq y * x$.
- (iii) $0 * (x * y) = (0 \diamond x) \diamond (0 * y).$
- (iv) $0 \diamond (x \diamond y) = (0 \ast x) \ast (0 \diamond y).$

Proof. (i) and (ii). We have $0 * (x \diamond y) = (x \diamond x) * (x \diamond y) \preceq y \diamond x$ and $0 \diamond (x * y) = (x * x) \diamond (x * y) \preceq y * x$ by (a1) and (a3).

(iii) and (iv). Using (a3) and (p4), we obtain

$$(0 \diamond x) \diamond (0 * y) = (((x * y) * (x * y)) \diamond x) \diamond (0 * y)$$

= (((x * y) \delta x) * (x * y)) \delta (0 * y)
= (((x \delta x) * y) * (x * y)) \delta (0 * y)
= ((0 * y) * (x * y)) \delta (0 * y)
= ((0 * y) \delta (0 * y)) * (x * y)
= 0 * (x * y)

and

$$\begin{array}{l} (0*x)*(0\diamond y) = (((x\diamond y)\diamond (x\diamond y))*x)*(0\diamond y) \\ = (((x\diamond y)*x)\diamond (x\diamond y))*(0\diamond y) \\ = (((x*x)\diamond y)\diamond (x\diamond y))*(0\diamond y) \\ = ((0\diamond y)\diamond (x\diamond y))*(0\diamond y) \\ = ((0\diamond y)*(0\diamond y))\diamond (x\diamond y) \\ = 0\diamond (x\diamond y). \quad \bullet \end{array}$$

DEFINITION 3.5. An element w of a pseudo-BCI algebra \mathfrak{X} is called a *pseudo-atom* if for every $x \in X, x \leq w$ implies x = w.

Obviously, 0 is a pseudo-atom of \mathfrak{X} .

PROPOSIITON 3.6. Let \mathfrak{X} be a pseudo-BCI algebra. If an element w of \mathfrak{X} satisfies the identity $y * (y \diamond (w * x)) = w * x$ for all $x, y \in X$, then w is a pseudoatom of \mathfrak{X} .

Proof. Let $y \in X$ be such that $y \preceq w$. Then

$$w = w * 0 = y * (y \diamond (w * 0)) = y * (y \diamond w) = y * 0 = y.$$

Hence w is a pseudo-atom of \mathfrak{X} .

PROPOSITION 3.7. Let \mathfrak{X} be a pseudo-BCI algebra and let w be a pseudo-atom of \mathfrak{X} . Then the following are true.

- (i) $w = x \diamond (x * w), \forall x \in X.$
- (ii) $(x * y) \diamond (x * w) = w * y, \forall x, y \in X.$
- (iii) $w * (x \diamond y) \preceq y \diamond (x * w), \forall x, y \in X.$
- (iv) $(w \diamond x) * (y \diamond z) \preceq (z \diamond (y * w)) \diamond x, \forall x, y, z \in X.$
- (v) 0 ◊ (y * w) = w * y, ∀y ∈ X.
 Proof. (i) Since x ◊ (x * w) ≤ w by (a2), it follows that w = x ◊ (x * w).
 (ii) For every x, y ∈ X, we have

$$(x * y) \diamond (x * w) = (x \diamond (x * w)) * y = w * y$$

by (p4) and (i).

(iii) Using (i), (a2), (p4) and (p7), we have

$$w * (x \diamond y) = (x \diamond (x * w)) * (x \diamond y) = (x * (x \diamond y)) \diamond (x * w) \preceq y \diamond (x * w).$$

(iv) Using (p4), (p7) and (iii), we get

$$(w \diamond x) \ast (y \diamond z) = (w \ast (y \diamond z)) \diamond x \preceq (z \diamond (y \ast w)) \diamond x$$

(v) For every $y \in X$, we obtain

$$\begin{split} w*y &= (w \diamond 0) * (y \diamond 0) & \text{by (p8)} \\ &\preceq (0 \diamond (y * w)) \diamond 0 & \text{by (iv)} \\ &= 0 \diamond (y * w) & \text{by (p8)} \\ &\preceq w * y, & \text{by Proposition 3.4(ii)} \end{split}$$

and so $0 \diamond (y * w) = w * y$.

DEFINITION 3.8. A pseudo-BCI algebra \mathfrak{X} is said to be \diamond -medial if it satisfies the following identity:

(M1) $(x * y) \diamond (z * u) = (x * z) \diamond (y * u), \forall x, y, z, u \in X.$

PROPOSITION 3.9. A pseudo-BCI algebra \mathfrak{X} is \diamond -medial if and only if it satisfies:

(M2) $x \diamond (y * z) = (x * y) \diamond (0 * z), \forall x, y, z \in X.$

Proof. Assume that \mathfrak{X} is \diamond -medial. Putting z = 0 and u = z in (M1) and using (p8), we have

$$(x * y) \diamond (0 * z) = (x * 0) \diamond (y * z) = x \diamond (y * z)$$

Suppose that \mathfrak{X} satisfies the condition (M2). Then

$$(x * y) \diamond (z * u) = (x \diamond (z * u)) * y \qquad \text{by (p4)}$$
$$= ((x * z) \diamond (0 * u)) * y \qquad \text{by (M2)}$$
$$= ((x * z) * y) \diamond (0 * u) \qquad \text{by (p4)}$$

$$= (x * z) \diamond (y * u).$$
 by (M2)

Therefore $\mathfrak X$ is $\diamond\text{-medial.} \blacksquare$

42

PROPOSITION 3.10. Every \diamond -medial pseudo-BCI algebra \mathfrak{X} satisfies the following identities.

- (i) $x * y = 0 \diamond (y * x)$.
- (ii) $0 \diamond (0 * x) = x$.
- (iii) $x \diamond (x * y) = y$.

Proof. (i) For any $x, y \in X$, we have

$$\begin{aligned} x*y &= (x*y) \diamond 0 = (x*y) \diamond (x*x) \\ &= (x*x) \diamond (y*x) = 0 \diamond (y*x). \end{aligned}$$

- (ii) If we put y = 0 in (i), then we have (ii).
- (iii) Using (ii), (a3) and (p8), we get

$$x \diamond (x \ast y) = (x \ast 0) \diamond (x \ast y) = (x \ast x) \diamond (0 \ast y) = 0 \diamond (0 \ast y) = y. \quad \blacksquare$$

4. Pseudo-BCI ideals

Let \mathfrak{X} be a pseudo-*BCI* -algebra. For any nonempty subset *J* of *X* and any element *y* of *X*, we denote

$$*(y,J) := \{x \in X \mid x * y \in J\} \text{ and } \diamond (y,J) := \{x \in X \mid x \diamond y \in J\}.$$

Note that $*(y, J) \cap \diamond(y, J) = \{x \in X \mid x * y \in J, x \diamond y \in J\}.$

DEFINITION 4.1. A nonempty subset J of a pseudo-BCI algebra $\mathfrak X$ is called a pseudo-BCI ideal of $\mathfrak X$ if it satisfies

(I1) $0 \in J$,

(I2) $\forall y \in J, *(y, J) \subseteq J \text{ and } \diamond (y, J) \subseteq J.$

Note that if \mathfrak{X} is a pseudo-*BCI* algebra satisfying $x * y = x \diamond y$ for all $x, y \in X$, then the notion of a pseudo-*BCI* ideal and a *BCI*-ideal coincide.

PROPOSITION 4.2. Let J be a pseudo-BCI ideal of a pseudo-BCI algebra \mathfrak{X} . If $x \in J$ and $y \leq x$, then $y \in J$.

Proof is straightforward. \blacksquare

THEOREM 4.3. For any element a of a pseudo-BCI algebra \mathfrak{X} , the initial section $\downarrow a := \{x \in X \mid x \leq a\}$ is a pseudo-BCI ideal of \mathfrak{X} if and only if the following implications hold:

- (i) $\forall x, y, z \in X, x * y \leq z, y \leq z \Rightarrow x \leq z$,
- (ii) $\forall x, y, z \in X, x \diamond y \leq z, y \leq z \Rightarrow x \leq z.$

Proof. Assume that for each $a \in X$, $\downarrow a$ is a pseudo-BCI ideal of \mathfrak{X} . Let $x, y, z \in X$ be such that $x * y \leq z, x \diamond y \leq z$, and $y \leq z$. Then $x * y \in \downarrow z, x \diamond y \in \downarrow z$, and $y \in \downarrow z$, that is, $y \in \downarrow z, x \in *(y, \downarrow z)$ and $x \in \diamond(y, \downarrow z)$. Since $\downarrow z$ is a pseudo-BCI ideal of \mathfrak{X} , it follows from (I2) that $x \in \downarrow z$, i.e., $x \leq z$. Conversely, consider $\downarrow z$ for any $z \in X$. Obviously $0 \in \downarrow z$. For every $y \in \downarrow z$, let $a \in *(y, \downarrow z)$ and $b \in \diamond(y, \downarrow z)$.

Then $a * y \in \downarrow z$ and $b \diamond y \in \downarrow z$, i.e., $a * y \preceq z$ and $b \diamond y \preceq z$. Since $y \in \downarrow z$, it follows from the hypothesis that $a \preceq z$ and $b \preceq z$, i.e., $a \in \downarrow z$ and $b \in \downarrow z$. This shows that $*(y, \downarrow z) \subseteq \downarrow z$ and $\diamond(y, \downarrow z) \subseteq \downarrow z$. Hence $\downarrow z$ is a pseudo-*BCI* ideal of \mathfrak{X} for every $z \in X$.

THEOREM 4.4. If J is a pseudo-BCI ideal of a pseudo-BCI algebra \mathfrak{X} , then

- (i) $\forall x, y, z \in X, x, y \in J, z * y \preceq x \Rightarrow z \in J,$
- (ii) $\forall a, b, c \in X, a, b \in J, c \diamond b \preceq a \Rightarrow c \in J.$

Proof. Suppose that J is a pseudo-ideal of \mathfrak{X} and let $x, y, z \in X$ be such that $x, y \in J$ and $z * y \preceq x$. Then $(z * y) \diamond x = 0 \in J$, and so $z * y \in \diamond(x, J) \subseteq J$. It follows that $z \in *(y, J) \subseteq J$ so that (i) is valid. Now let $a, b, c \in X$ be such that $a, b \in J$ and $c \diamond b \preceq a$. Then $(c \diamond b) * a = 0 \in J$, and thus $c \diamond b \in *(a, J) \subseteq J$. Hence $c \in \diamond(b, J) \subseteq J$, which shows (ii).

A pseudo-BCI subalgebra of a pseudo-BCI algebra \mathfrak{X} is a subset S of \mathfrak{X} which satisfies $x * y \in S$ and $x \diamond y \in S$ for all $x, y \in S$. We provide conditions for a pseudo-BCI subalgebra to be a pseudo-BCI ideal.

THEOREM 4.5. Let J be a pseudo-BCI subalgebra of a pseudo-BCI algebra \mathfrak{X} . Then J is a pseudo-BCI ideal of \mathfrak{X} if and only if

$$\forall x, y \in X, x \in J, y \in X - J \Rightarrow y * x \in X - J \text{ and } y \diamond x \in X - J.$$

Proof. Assume that J is a pseudo-BCI ideal of \mathfrak{X} and let $x, y \in X$ be such that $x \in J$ and $y \in X - J$. If $y * x \notin X - J$, then $y * x \in J$, i.e., $y \in *(x, J) \subseteq J$ which is a contradiction. Hence $y * x \in X - J$. Now if $y \diamond x \notin X - J$, then $y \diamond x \in J$ and so $y \in \diamond(x, J) \subseteq J$. This is a contradiction, and therefore $y \diamond x \in X - J$. Conversely, assume that

$$\forall x, y \in X, x \in J, y \in X - J \Rightarrow y * x \in X - J \text{ and } y \diamond x \in X - J.$$

Since J is a pseudo-BCI subalgebra, therefore $0 \in J$. For every $x \in J$, let $y \in *(x, J)$. Then $y * x \in J$. If $y \notin J$, then $y * x \in X - J$ by assumption. This is a contradiction, and so $y \in J$ which shows that $*(x, J) \subseteq J$. Now let $z \in \diamond(x, J)$. Then $z \diamond x \in J$. It follows from the hypothesis that $z \in J$ so that $\diamond(x, J) \subseteq J$. Consequently, J is a pseudo-BCI ideal of \mathfrak{X} .

Using [2, Theorem 3.5], we know that every pseudo-BCI algebra \mathfrak{X} contains a maximal pseudo-BCK algebra $K(\mathfrak{X}) := \{x \in X \mid 0 \leq x\}.$

PROPOSITION 4.6. Let \mathfrak{X} be a pseudo-BCI algebra. If $x \in K(\mathfrak{X})$ and $y \in X - K(\mathfrak{X})$, then $x * y \in X - K(\mathfrak{X})$ and $x \diamond y \in X - K(\mathfrak{X})$.

Proof. If $x * y \in K(\mathfrak{X})$, then $x \diamond (x * y) \in K(\mathfrak{X})$ because $K(\mathfrak{X})$ is a pseudo-*BCI* subalgebra of \mathfrak{X} . Hence $0 \preceq x \diamond (x * y) \preceq y$, and so $y \in K(\mathfrak{X})$. This is a contradiction. Now if $x \diamond y \in K(\mathfrak{X})$, then $x * (x \diamond y) \in K(\mathfrak{X})$ and so $0 \preceq x * (x \diamond y) \preceq y$ by (a2). Therefore $y \in K(\mathfrak{X})$, a contradiction.

THEOREM 4.7. Let \mathfrak{X} be a pseudo-BCI algebra. Then the maximal pseudo-BCK algebra $K(\mathfrak{X})$ is a pseudo-BCI ideal of \mathfrak{X} . *Proof.* Let $x, y \in X$ be such that $x \in K(\mathfrak{X})$ and $y \in X - K(\mathfrak{X})$. Using (a1) and (p8), we have

$$(y\ast x)\diamond y=(y\ast x)\diamond (y\ast 0)\preceq 0\ast x=0$$

and

$$(y \diamond x) * y = (y \diamond x) * (y \diamond 0) \preceq 0 \diamond x = 0$$

since $x \in K(\mathfrak{X})$. It follows from (p1) that $(y * x) \diamond y = 0$ and $(y \diamond x) * y = 0$ so that $y * x \leq y$ and $y \diamond x \leq y$. If $y * x \in K(\mathfrak{X})$, then $0 \leq y * x \leq y$, and so $y \in K(\mathfrak{X})$ which is a contradiction. Now if $y \diamond x \in K(\mathfrak{X})$, then $0 \leq y \diamond x \leq y$ which implies that $y \in K(\mathfrak{X})$, a contradiction. Hence $y * x \in X - K(\mathfrak{X})$ and $y \diamond x \in X - K(\mathfrak{X})$. By means of Theorem 4.5, we know that $K(\mathfrak{X})$ is a pseudo-*BCI* ideal of \mathfrak{X} .

THEOREM 4.8. Let J be a pseudo-BCI ideal of a pseudo-BCI algebra \mathfrak{X} . Then the following are equivalent.

- (i) J contains the maximal pseudo-BCK algebra $K(\mathfrak{X})$.
- (ii) $\forall x, y \in X, x \leq y, x \in J \Rightarrow y \in J.$

Proof. The sufficiency is straightforward. Assume that $K(\mathfrak{X}) \subset J$. Let $x, y \in X$ be such that $x \leq y$ and $x \in J$. Then x * y = 0, and so

$$0 = 0 \diamond 0 = 0 \diamond (x * y) = (x * x) \diamond (x * y) \preceq y * x.$$

Thus $y * x \in K(\mathfrak{X}) \subset J$, which implies that $y \in *(x, J) \subseteq J$.

DEFINITION 4.9. Let \mathfrak{X} and \mathfrak{Y} be pseudo-BCI algebras. A mapping $\mathfrak{f} : \mathfrak{X} \to \mathfrak{Y}$ is called a *pseudo-BCI homomorphism* if $\mathfrak{f}(x*y) = \mathfrak{f}(x)*\mathfrak{f}(y)$ and $\mathfrak{f}(x\diamond y) = \mathfrak{f}(x)\diamond\mathfrak{f}(y)$ for all $x, y \in X$.

Note that if $\mathfrak{f} : \mathfrak{X} \to \mathfrak{Y}$ is a pseudo-*BCI* homomorphism, then $\mathfrak{f}(0_{\mathfrak{X}}) = 0_{\mathfrak{Y}}$ where $0_{\mathfrak{X}}$ and $0_{\mathfrak{Y}}$ are zero elements of \mathfrak{X} and \mathfrak{Y} , respectively.

THEOREM 4.10. Let $\mathfrak{f}: \mathfrak{X} \to \mathfrak{Y}$ be a pseudo-BCI homomorphism of pseudo-BCI algebras \mathfrak{X} and \mathfrak{Y} . (i) If J is a pseudo-BCI ideal of \mathfrak{Y} , then $\mathfrak{f}^{-1}(J)$ is a pseudo-BCI ideal of \mathfrak{X} . (ii) If \mathfrak{f} is surjective and I is a pseudo-BCI ideal of \mathfrak{X} , then $\mathfrak{f}(I)$ is a pseudo-BCI ideal of \mathfrak{Y} .

Proof. (i) Assume that J is a pseudo-BCI ideal of \mathfrak{Y} . Obviously $0_{\mathfrak{X}} \in \mathfrak{f}^{-1}(J)$. For every $y \in \mathfrak{f}^{-1}(J)$, let

$$a \in *(y, \mathfrak{f}^{-1}(J))$$
 and $b \in \diamond(y, \mathfrak{f}^{-1}(J))$.

Then $a * y \in \mathfrak{f}^{-1}(J)$ and $b \diamond y \in \mathfrak{f}^{-1}(J)$. It follows that $\mathfrak{f}(a) * \mathfrak{f}(y) = \mathfrak{f}(a * y) \in J$ and $\mathfrak{f}(b) \diamond \mathfrak{f}(y) = \mathfrak{f}(b \diamond y) \in J$ so that $\mathfrak{f}(a) \in *(\mathfrak{f}(y), J) \subseteq J$ and $\mathfrak{f}(b) \in \diamond(\mathfrak{f}(y), J) \subseteq J$ because J is a pseudo-BCI ideal of \mathfrak{X} and $\mathfrak{f}(y) \in J$. Hence $a \in \mathfrak{f}^{-1}(J)$ and $b \in \mathfrak{f}^{-1}(J)$, which shows that $*(y, \mathfrak{f}^{-1}(J)) \subseteq \mathfrak{f}^{-1}(J)$ and $\diamond(y, \mathfrak{f}^{-1}(J)) \subseteq \mathfrak{f}^{-1}(J)$. Hence $\mathfrak{f}^{-1}(J)$ is a pseudo-BCI ideal of \mathfrak{X} .

(ii) Assume that \mathfrak{f} is surjective and let I be a pseudo-BCI ideal of \mathfrak{X} . Obviously, $0_{\mathfrak{Y}} \in \mathfrak{f}(I)$. For every $y \in \mathfrak{f}(I)$, let $a, b \in Y$ be such that $a \in *(y, \mathfrak{f}(I))$ and $b \in \diamond(y, \mathfrak{f}(I))$. Then $a * y \in \mathfrak{f}(I)$ and $b \diamond y \in \mathfrak{f}(I)$. It follows that there exist $x_*, x_\diamond \in I$ such that $\mathfrak{f}(x_*) = a * y$ and $\mathfrak{f}(x_\diamond) = b \diamond y$. Since $y \in \mathfrak{f}(I)$, there exists $x_y \in I$ such that $\mathfrak{f}(x_y) = y$. Also since \mathfrak{f} is surjective, there exist $x_a, x_b \in X$ such that $\mathfrak{f}(x_a) = a$ and $\mathfrak{f}(x_b) = b$. Hence

$$\mathfrak{f}(x_a\ast x_y)=\mathfrak{f}(x_a)\ast \mathfrak{f}(x_y)=a\ast y\in \mathfrak{f}(I)$$

and

$$\mathfrak{f}(x_b \diamond x_y) = \mathfrak{f}(x_b) \diamond \mathfrak{f}(x_y) = b \diamond y \in \mathfrak{f}(I),$$

which imply that $x_a * x_y \in I$ and $x_b \diamond x_y \in I$. Since I is a pseudo-BCI ideal of \mathfrak{X} , we get $x_a \in *(x_y, I) \subseteq I$ and $x_b \in \diamond(x_y, I) \subseteq I$, and thus $a = \mathfrak{f}(x_a) \in \mathfrak{f}(I)$ and $b = \mathfrak{f}(x_b) \in \mathfrak{f}(I)$. This shows that $*(y, \mathfrak{f}(I)) \subseteq \mathfrak{f}(I)$ and $\diamond(y, \mathfrak{f}(I)) \subseteq \mathfrak{f}(I)$. Therefore $\mathfrak{f}(I)$ is a pseudo-BCI ideal of \mathfrak{Y} .

COROLLARY 4.11. Let $\mathfrak{f}: \mathfrak{X} \to \mathfrak{Y}$ be a pseudo-BCI homomorphism of pseudo-BCI algebras \mathfrak{X} and \mathfrak{Y} . Then the kernel

$$\operatorname{Ker}(\mathfrak{f}) := \{ x \in X \mid \mathfrak{f}(x) = 0_{\mathfrak{Y}} \}$$

of \mathfrak{f} is a pseudo-BCI ideal of \mathfrak{X} .

Proof is straightforward. \blacksquare

REFERENCES

- G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, Combinatorics, computability and logic, 97–114, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 2001.
- [2] W. A. Dudek and Y. B. Jun, On pseudo-BCI algebras, (submitted).
- Y. B. Jun, Characterizations of pseudo-BCK algebras, Scientiae Mathematicae Japonicae Online 7 (2002), 225–230.
- [4] Y. B. Jun, M. Kondo and K. H. Kim, Pseudo-ideals of pseudo-BCK algebras, Scientiae Mathematicae Japonicae 58 (2003), 93–97.

(received 28.08.2004)

Y. B. Jun, Department of Mathematics Education, Gyeongsang National University, Chinju (Jinju) 660-701, Korea

E-mail: ybjun@nongae.gsnu.ac.kr

H. S. Kim, Department of Mathematics, Hanyang University, Seoul 133-791, Korea

E-mail: heekim@hanyang.ac.kr

J. Neggers, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA *E-mail*: jneggers@gp.as.ua.edu