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ON HADAMARD TYPE POLYNOMIAL CONVOLUTIONS
WITH REGULARLY VARYING SEQUENCES

Slavko Simić

Abstract. For a sequence of polynomials Pn(x) :=
∑

m�n pmxm, n � 1, we give a neces-

sary and sufficient condition for the asymptotic equivalence

P
(α)
n (x) :=

∑
m�n

cmpmxm ∼ cnPn(x) (n → ∞),

to hold for each x � A and an arbitrary regularly varying sequence {cn} of index α ∈ R.

Introduction

A sequence {pn}n�1 of non-negative numbers generates a sequence of polyno-
mials {Pn(x)}n�1 defined by Pn(x) :=

∑
m�n pmxm.

A sequence {cn}n�1 of positive numbers is regularly varying with index α ∈ R
if it can be represented in the form cn = nα�n, where {�n} is a slowly varying
sequence, i.e. satisfying �[λn] ∼ �n (n → ∞) for each λ > 0 ([1], [2]).

Some examples of slowly varying sequences are:

loga(n + 1), a ∈ R; logb(log(n + 1)), b ∈ R; exp(logc(n + 1)), 0 < c < 1.

Our task here is to investigate asymptotic behavior of Hadamard-type convolutions
P

(α)
n (x) :=

∑
m�n cmpmxm as n → ∞ (cf. [2]).

In [2] we introduced an operator Tf(x) in the following way.

Definition. Let f ∈ C∞[0,∞). Then

Tf(x) :=
xf ′(x)
f(x)

.

Under a more general framework, we obtained asymptotic behavior of P
(α)
n (x)

supposing
T (TPn(x)) < M, (I)

where M does not depend on n or x.
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In this paper we find a necessary and sufficient condition for the given asymp-
totics avoiding the somewhat ambiguous condition (I).

Results

Theorem. Let A be a positive number. Then the asymptotic relation

P (α)
n (x) ∼ nα�nPn(x) (n → ∞), (1)

holds for each x � A, α ∈ R, and an arbitrary slowly varying sequence {�n}, if and
only if

TPn(A) :=
AP ′

n(A)
Pn(A)

∼ n (n → ∞). (2)

Proof. Denote Qn(x) :=
∑

m�n Pm(x). We can see that the condition (2) is
necessary if we put in (1): α = 1, �n = 1, x = A. That it is also sufficient can be
proved using the following lemmas.

Lemma 1. Under the condition (2), for each real α we have

(i) nαQn(A) → ∞; (ii)
∑
m�n

mαpmAm ∼ nαPn(A) (n → ∞).

Lemma 2. We have supm�n(m�m) ∼ n�n; infm�n(�m/m) ∼ �n/n (n → ∞).

Lemma 3. The function x �→ xP ′
n(x)

Pn(x)
is non-decreasing for x > 0.

Lemma 4. (Stoltz’s lemma) If
∑

m�n bm → ∞ and an/bn → s as n → ∞,
then ∑

m�n

am

/ ∑
m�n

bm → s (n → ∞).

Proof of Lemma 1. By partial summation we get
∑

m�n mpmAm =
(n + 1)Pn(A) − Qn(A). Hence, the condition (2) is equivalent to

nPn(A)/Qn(A) → ∞ (n → ∞) (3)

Therefore, for n > n0 and fixed α ∈ R, we deduce

nPn(A)
Qn(A)

> |α| + 1;
Qn(A) − Qn−1(A)

Qn(A)
>

|α| + 1
n

;

Qn−1(A)
Qn(A)

< 1 − |α| + 1
n

< exp(−|α| + 1
n

).

Hence
Qn(A) � exp((|α| + 1)

∑
m�n

1/m) � exp((|α| + 1) log n),

i.e. nαQn(A) � nα+|α|+1 and the part (i) is proved.
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Denoting ∆rn := rn+1 − rn, by (3) we get

Pn(A)∆nα

∆(nα−1Qn−1(A))
=

Pn(A)∆nα

nα−1Pn(A) + Qn(A)∆nα−1
→ α (n → ∞).

Now, applying part (i), Stoltz’s lemma and (3), we obtain

Sn(A) :=
∑
m�n

Pm(A)∆mα ∼ αnα−1Qn(A) = o(nαPn(A)) (n → ∞).

Therefore, by partial summation we get∑
m�n

mαpmAm = (n+1)αPn(A)−Sn(A) = (n+1)αPn(A)+o(nαPn(A)) (n → ∞),

and the part (ii) of Lemma 1 is also proved.
Lemma 2. is proved in [1, p. 23].

Proof of Lemma 3. Indeed, for x > 0 by Cauchy’s inequality, we get

x
d

dx

(
xP ′

n(x)
Pn(x)

)
=

∑
m�n m2pmxm∑

m�n pmxm
−

(∑
m�n mpmxm∑
m�n pmxm

)2

� 0.

Hence TPn(x) is monotone non-decreasing for x > 0.
Stoltz’s lemma is a classical one and is proved, for example, in [3, p. 30].
Now we can give the proof of the Theorem at the point x = A. By Lemmas 1

and 2, as n → ∞, we get

Pα
n (A) =

∑
m�n

mα�mpmAm � sup
m≤n

(m�m)
∑
m�n

mα−1pmAm ∼ nα�nPn(A),

and ∑
m�n

mα�mpmAm � inf
m�n

(�m/m)
∑
m�n

mα+1pmAm ∼ nα�nPn(A).

Hence

1 � lim inf
n

(P (α)
n (A)/nα�nPn(A)) � lim sup

n
(P (α)

n (A)/nα�nPn(A)) � 1,

and the proof is done.
For x > A, by Lemma 3, we obtain

n ∼ AP ′
n(A)/Pn(A) � xP ′

n(x)/Pn(x) � n.

Hence xP ′
n(x)/Pn(x) ∼ n (n → ∞) and we can apply the previous proof replacing

A by x.

Comment. As the referee notes, the condition (2) is certainly less opaque then
the former condition (I), but it still is opaque in that one has to do a calculation
and some asymptotic approximations to decide if a candidate sequence satisfies it.
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There is also a problem to determine the least possible A such that (2) holds.
For instance, if pn = an for some a > 0 then (2) holds for A > 1/a and fails

for A � 1/a.
Also, if pn = 1/n! then (2) never holds; but for pn = n! an easy calculation

shows that (2) is valid for all A > 0.
Therefore we shall establish two simple criteria which can help to decide if a

given sequence {pn} satisfies (2) or not.

Proposition 1. If A lies inside the interval of convergence of
∑

pnxn then
the condition (2) fails.

Proof. We have, as n → ∞,
∑

m�n pmAm → P (A), and consequently,∑
m�n

mpmAm → AP ′(A).

Hence TPn(A) → 0 (n → ∞).
But the divergence of

∑
pnAn does not imply that (2) is true. This can be

seen from the following example.
Let pm = 1 if m is in the factorial form and pm = 0 otherwise. Then

P(n+1)!−1(A) = An! + A(n−1)! + · · · .

For A > 1, we have P(n+1)!−1(A) ∼ An!, and

AP ′
(n+1)!−1(A) = n!An! + (n − 1)!A(n−1)! + · · · ∼ n!An! (n → ∞).

Therefore
TP(n+1)!−1(A) ∼ n!

(n + 1)! − 1
→ 0 (n → ∞).

Proposition 2. If, for some A > 0,

lim
n→∞n

(
1 − 1

A

pn

pn+1

)
= +∞, (4)

then (2) holds.

Proof. Note that the condition (4) implies just a finite number of pn = 0. Also,
by Raabe’s convergence criteria,

∑
pnAn diverges.

Now, the condition (4) is equivalent to

1 + (n − 1)
(

1 − 1
A

pn−1

pn

)
→ +∞,

i.e.
(npnAn − (n − 1)pn−1A

n−1)/pnAn → +∞.



On Hadamard type polynomial convolutions 17

Applying Lemma 4, we get
∑

m�n pmAm/npnAn → 0 (n → ∞). It follows that

npnAn

npnAn +
∑

m�n−1 pmAm
→ 1 (n → ∞),

i.e.
npnAn

n
∑

m�n pmAm − (n − 1)
∑

m�n−1 pmAm
→ 1.

Applying Lemma 4 again, we obtain the condition (2).
Now it is not difficult to verify the above examples using Propositions 1 and 2.
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