ON HADAMARD TYPE POLYNOMIAL CONVOLUTIONS WITH REGULARLY VARYING SEQUENCES

Slavko Simić

Abstract. For a sequence of polynomials $P_{n}(x):=\sum_{m \leqslant n} p_{m} x^{m}, n \geqslant 1$, we give a necessary and sufficient condition for the asymptotic equivalence

$$
P_{n}^{(\alpha)}(x):=\sum_{m \leqslant n} c_{m} p_{m} x^{m} \sim c_{n} P_{n}(x) \quad(n \rightarrow \infty)
$$

to hold for each $x \geqslant A$ and an arbitrary regularly varying sequence $\left\{c_{n}\right\}$ of index $\alpha \in \mathbf{R}$.

Introduction

A sequence $\left\{p_{n}\right\}_{n \geqslant 1}$ of non-negative numbers generates a sequence of polynomials $\left\{P_{n}(x)\right\}_{n \geqslant 1}$ defined by $P_{n}(x):=\sum_{m \leqslant n} p_{m} x^{m}$.

A sequence $\left\{c_{n}\right\}_{n \geqslant 1}$ of positive numbers is regularly varying with index $\alpha \in \mathbf{R}$ if it can be represented in the form $c_{n}=n^{\alpha} \ell_{n}$, where $\left\{\ell_{n}\right\}$ is a slowly varying sequence, i.e. satisfying $\ell_{[\lambda n]} \sim \ell_{n}(n \rightarrow \infty)$ for each $\lambda>0$ ([1], [2]).

Some examples of slowly varying sequences are:
$\log ^{a}(n+1), a \in \mathbf{R} ; \log ^{b}(\log (n+1)), b \in \mathbf{R} ; \exp \left(\log ^{c}(n+1)\right), 0<c<1$.
Our task here is to investigate asymptotic behavior of Hadamard-type convolutions $P_{n}^{(\alpha)}(x):=\sum_{m \leqslant n} c_{m} p_{m} x^{m}$ as $n \rightarrow \infty$ (cf. [2]).

In [2] we introduced an operator $T f(x)$ in the following way.
Definition. Let $f \in C^{\infty}[0, \infty)$. Then

$$
T f(x):=\frac{x f^{\prime}(x)}{f(x)}
$$

Under a more general framework, we obtained asymptotic behavior of $P_{n}^{(\alpha)}(x)$ supposing

$$
\begin{equation*}
T\left(T P_{n}(x)\right)<M \tag{I}
\end{equation*}
$$

where M does not depend on n or x.

[^0]In this paper we find a necessary and sufficient condition for the given asymptotics avoiding the somewhat ambiguous condition (I).

Results

Theorem. Let A be a positive number. Then the asymptotic relation

$$
\begin{equation*}
P_{n}^{(\alpha)}(x) \sim n^{\alpha} \ell_{n} P_{n}(x) \quad(n \rightarrow \infty) \tag{1}
\end{equation*}
$$

holds for each $x \geqslant A, \alpha \in \mathbf{R}$, and an arbitrary slowly varying sequence $\left\{\ell_{n}\right\}$, if and only if

$$
\begin{equation*}
T P_{n}(A):=\frac{A P_{n}^{\prime}(A)}{P_{n}(A)} \sim n \quad(n \rightarrow \infty) \tag{2}
\end{equation*}
$$

Proof. Denote $Q_{n}(x):=\sum_{m \leqslant n} P_{m}(x)$. We can see that the condition (2) is necessary if we put in (1): $\alpha=1, \ell_{n}=1, x=A$. That it is also sufficient can be proved using the following lemmas.

Lemma 1. Under the condition (2), for each real α we have
(i) $n^{\alpha} Q_{n}(A) \rightarrow \infty$;
(ii) $\sum_{m \leqslant n} m^{\alpha} p_{m} A^{m} \sim n^{\alpha} P_{n}(A) \quad(n \rightarrow \infty)$.

Lemma 2. We have $\sup _{m \leqslant n}\left(m \ell_{m}\right) \sim n \ell_{n} ; \inf _{m \leqslant n}\left(\ell_{m} / m\right) \sim \ell_{n} / n(n \rightarrow \infty)$.
Lemma 3. The function $x \mapsto \frac{x P_{n}^{\prime}(x)}{P_{n}(x)}$ is non-decreasing for $x>0$.
Lemma 4. (Stoltz's lemma) If $\sum_{m \leqslant n} b_{m} \rightarrow \infty$ and $a_{n} / b_{n} \rightarrow s$ as $n \rightarrow \infty$, then

$$
\sum_{m \leqslant n} a_{m} / \sum_{m \leqslant n} b_{m} \rightarrow s \quad(n \rightarrow \infty)
$$

Proof of Lemma 1. By partial summation we get $\sum_{m \leqslant n} m p_{m} A^{m}=$ $(n+1) P_{n}(A)-Q_{n}(A)$. Hence, the condition (2) is equivalent to

$$
\begin{equation*}
n P_{n}(A) / Q_{n}(A) \rightarrow \infty \quad(n \rightarrow \infty) \tag{3}
\end{equation*}
$$

Therefore, for $n>n_{0}$ and fixed $\alpha \in \mathbf{R}$, we deduce

$$
\begin{gathered}
\frac{n P_{n}(A)}{Q_{n}(A)}>|\alpha|+1 ; \quad \quad \frac{Q_{n}(A)-Q_{n-1}(A)}{Q_{n}(A)}>\frac{|\alpha|+1}{n} \\
\frac{Q_{n-1}(A)}{Q_{n}(A)}<1-\frac{|\alpha|+1}{n}<\exp \left(-\frac{|\alpha|+1}{n}\right)
\end{gathered}
$$

Hence

$$
Q_{n}(A) \gg \exp \left((|\alpha|+1) \sum_{m \leqslant n} 1 / m\right) \gg \exp ((|\alpha|+1) \log n)
$$

i.e. $n^{\alpha} Q_{n}(A) \gg n^{\alpha+|\alpha|+1}$ and the part (i) is proved.

Denoting $\Delta r_{n}:=r_{n+1}-r_{n}$, by (3) we get

$$
\frac{P_{n}(A) \Delta n^{\alpha}}{\Delta\left(n^{\alpha-1} Q_{n-1}(A)\right)}=\frac{P_{n}(A) \Delta n^{\alpha}}{n^{\alpha-1} P_{n}(A)+Q_{n}(A) \Delta n^{\alpha-1}} \rightarrow \alpha \quad(n \rightarrow \infty)
$$

Now, applying part (i), Stoltz's lemma and (3), we obtain

$$
S_{n}(A):=\sum_{m \leqslant n} P_{m}(A) \Delta m^{\alpha} \sim \alpha n^{\alpha-1} Q_{n}(A)=o\left(n^{\alpha} P_{n}(A)\right) \quad(n \rightarrow \infty)
$$

Therefore, by partial summation we get
$\sum_{m \leqslant n} m^{\alpha} p_{m} A^{m}=(n+1)^{\alpha} P_{n}(A)-S_{n}(A)=(n+1)^{\alpha} P_{n}(A)+o\left(n^{\alpha} P_{n}(A)\right) \quad(n \rightarrow \infty)$,
and the part ($i i$) of Lemma 1 is also proved.
Lemma 2. is proved in [1, p. 23].
Proof of Lemma 3. Indeed, for $x>0$ by Cauchy's inequality, we get

$$
x \frac{d}{d x}\left(\frac{x P_{n}^{\prime}(x)}{P_{n}(x)}\right)=\frac{\sum_{m \leqslant n} m^{2} p_{m} x^{m}}{\sum_{m \leqslant n} p_{m} x^{m}}-\left(\frac{\sum_{m \leqslant n} m p_{m} x^{m}}{\sum_{m \leqslant n} p_{m} x^{m}}\right)^{2} \geqslant 0
$$

Hence $T P_{n}(x)$ is monotone non-decreasing for $x>0$.
Stoltz's lemma is a classical one and is proved, for example, in [3, p. 30].
Now we can give the proof of the Theorem at the point $x=A$. By Lemmas 1 and 2 , as $n \rightarrow \infty$, we get

$$
P_{n}^{\alpha}(A)=\sum_{m \leqslant n} m^{\alpha} \ell_{m} p_{m} A^{m} \leqslant \sup _{m \leq n}\left(m \ell_{m}\right) \sum_{m \leqslant n} m^{\alpha-1} p_{m} A^{m} \sim n^{\alpha} \ell_{n} P_{n}(A)
$$

and

$$
\sum_{m \leqslant n} m^{\alpha} \ell_{m} p_{m} A^{m} \geqslant \inf _{m \leqslant n}\left(\ell_{m} / m\right) \sum_{m \leqslant n} m^{\alpha+1} p_{m} A^{m} \sim n^{\alpha} \ell_{n} P_{n}(A)
$$

Hence

$$
1 \leqslant \liminf _{n}\left(P_{n}^{(\alpha)}(A) / n^{\alpha} \ell_{n} P_{n}(A)\right) \leqslant \limsup _{n}\left(P_{n}^{(\alpha)}(A) / n^{\alpha} \ell_{n} P_{n}(A)\right) \leqslant 1
$$

and the proof is done.
For $x>A$, by Lemma 3, we obtain

$$
n \sim A P_{n}^{\prime}(A) / P_{n}(A) \leqslant x P_{n}^{\prime}(x) / P_{n}(x) \leqslant n
$$

Hence $x P_{n}^{\prime}(x) / P_{n}(x) \sim n(n \rightarrow \infty)$ and we can apply the previous proof replacing A by x.

Comment. As the referee notes, the condition (2) is certainly less opaque then the former condition (I), but it still is opaque in that one has to do a calculation and some asymptotic approximations to decide if a candidate sequence satisfies it.

There is also a problem to determine the least possible A such that (2) holds.
For instance, if $p_{n}=a^{n}$ for some $a>0$ then (2) holds for $A>1 / a$ and fails for $A \leqslant 1 / a$.

Also, if $p_{n}=1 / n$! then (2) never holds; but for $p_{n}=n!$ an easy calculation shows that (2) is valid for all $A>0$.

Therefore we shall establish two simple criteria which can help to decide if a given sequence $\left\{p_{n}\right\}$ satisfies (2) or not.

Proposition 1. If A lies inside the interval of convergence of $\sum p_{n} x^{n}$ then the condition (2) fails.

Proof. We have, as $n \rightarrow \infty, \sum_{m \leqslant n} p_{m} A^{m} \rightarrow P(A)$, and consequently,

$$
\sum_{m \leqslant n} m p_{m} A^{m} \rightarrow A P^{\prime}(A)
$$

Hence $T P_{n}(A) \rightarrow 0(n \rightarrow \infty)$.
But the divergence of $\sum p_{n} A^{n}$ does not imply that (2) is true. This can be seen from the following example.

Let $p_{m}=1$ if m is in the factorial form and $p_{m}=0$ otherwise. Then

$$
P_{(n+1)!-1}(A)=A^{n!}+A^{(n-1)!}+\cdots .
$$

For $A>1$, we have $P_{(n+1)!-1}(A) \sim A^{n!}$, and

$$
A P_{(n+1)!-1}^{\prime}(A)=n!A^{n!}+(n-1)!A^{(n-1)!}+\cdots \sim n!A^{n!} \quad(n \rightarrow \infty)
$$

Therefore

$$
T P_{(n+1)!-1}(A) \sim \frac{n!}{(n+1)!-1} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Proposition 2. If, for some $A>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(1-\frac{1}{A} \frac{p_{n}}{p_{n+1}}\right)=+\infty \tag{4}
\end{equation*}
$$

then (2) holds.
Proof. Note that the condition (4) implies just a finite number of $p_{n}=0$. Also, by Raabe's convergence criteria, $\sum p_{n} A^{n}$ diverges.

Now, the condition (4) is equivalent to

$$
1+(n-1)\left(1-\frac{1}{A} \frac{p_{n-1}}{p_{n}}\right) \rightarrow+\infty
$$

i.e.

$$
\left(n p_{n} A^{n}-(n-1) p_{n-1} A^{n-1}\right) / p_{n} A^{n} \rightarrow+\infty .
$$

Applying Lemma 4 , we get $\sum_{m \leqslant n} p_{m} A^{m} / n p_{n} A^{n} \rightarrow 0(n \rightarrow \infty)$. It follows that

$$
\frac{n p_{n} A^{n}}{n p_{n} A^{n}+\sum_{m \leqslant n-1} p_{m} A^{m}} \rightarrow 1 \quad(n \rightarrow \infty)
$$

i.e.

$$
\frac{n p_{n} A^{n}}{n \sum_{m \leqslant n} p_{m} A^{m}-(n-1) \sum_{m \leqslant n-1} p_{m} A^{m}} \rightarrow 1
$$

Applying Lemma 4 again, we obtain the condition (2).
Now it is not difficult to verify the above examples using Propositions 1 and 2.

REFERENCES

[1] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge Univ. Press, 1987.
[2] S. Simić, Orthogonal polynomials and regularly varying sequences, Publ. Inst. Math. Belgrade (N.S) 70(84) (2001).
[3] G. Polya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, Berlin, 1964.
(received 20.10.2003, in revised form 26.10.2005)
Mathematical Institute, Kneza Mihaila 35/I, 11000 Belgrade, Serbia
E-mail: ssimic@turing.mi.sanu.ac.yu

[^0]: AMS Subject Classification: 26 A 12
 Keywords and phrases: Regular variation, polynomials, asymptotic behavior.

