HARMONIC FUNCTIONS STARLIKE OF THE COMPLEX ORDER

Sibel Yalçin and Metin Öztürk

Abstract

The main purpose of this paper is to introduce a class $T S_{H}^{*}(\gamma)(\gamma \in \mathbf{C} \backslash\{0\})$ of functions which are harmonic in the unit disc. We give necessary and sufficient conditions for the functions to be in $T S_{H}^{*}(\gamma)$.

1. Introduction

A continuous complex-valued function $f=u+i v$ defined in a simply connected domain \mathcal{D} is said to be harmonic in \mathcal{D} if both u and v are real harmonic in \mathcal{D}. In any simply connected domain we can write $f=h+\bar{g}$, where h and g are analytic in \mathcal{D}. A necessary and sufficient condition for f to be locally univalent and sense preserving in \mathcal{D} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in \mathcal{D}.

Denote by S_{H} the class of functions $f=h+\bar{g}$ that are harmonic univalent and sense preserving in the unit disc $U=\{z:|z|<1\}$ for which $f(0)=f_{z}(0)-1=0$. Then for $f=h+\bar{g} \in S_{H}$ we may express analytic functions h and g as

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}, \quad\left|b_{1}\right|<1 . \tag{1}
\end{equation*}
$$

In 1984 Clunie and Sheil-Small [2] investigated the class S_{H} as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on S_{H} and its subclasses.

Let $T S_{H}$ denote the family of functions $f=h+\bar{g}$ that are harmonic in U with the normalization

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}, \quad a_{n}, b_{n} \geqslant 0, \quad b_{1}<1 . \tag{2}
\end{equation*}
$$

We let $T S_{H}^{*}(\gamma)$ denote the subclass of $T S_{H}$ consisting of functions $f=h+\bar{g} \in T S_{H}$ that satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{\gamma}\left(\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}-1\right)\right\}>0, \quad \gamma \in \mathbf{C} \backslash\{0\} . \tag{3}
\end{equation*}
$$

[^0]We further let $O S_{H}^{*}(\gamma)$ denote the subclass of $T S_{H}$ consisting of functions $f=h+\bar{g} \in T S_{H}$ that satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[2(n-1+|\gamma|) a_{n}+(n+1+|n+1-2 \gamma|) b_{n}\right] \leqslant 4|\gamma| \tag{4}
\end{equation*}
$$

Denote by $P S_{H}^{*}(\gamma)$ the subclass of $T S_{H}$ consisting of functions $f=h+\bar{g} \in T S_{H}$ that satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[(n-1) \frac{\operatorname{Re}(\gamma)}{|\gamma|}+|\gamma|\right] a_{n}+\left[(n+1) \frac{\operatorname{Re}(\gamma)}{|\gamma|}-|\gamma|\right] b_{n} \leqslant 2|\gamma| \tag{5}
\end{equation*}
$$

Recently, Avcı and Zlotkiewicz [1], Jahangiri [3], Silverman [4], and Silverman and Silvia [5] studied the harmonic starlike functions. Avcı and Slotkiewicz [1] proved that the coefficient condition

$$
\sum_{n=2}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leqslant 1, \quad b_{1}=0
$$

is sufficient for functions $f=h+\bar{g}$ to be harmonic starlike. Silverman 4 proved that this coefficient condition is also necessary if $b_{1}=0$ and if a_{n} and b_{n} in (1) are negative. Jahangiri [3] proved that if $f=h+\bar{g}$ is given by (1) and if

$$
\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha}\left|a_{n}\right|+\sum_{n=1}^{\infty} \frac{n+\alpha}{1-\alpha}\left|b_{n}\right| \leqslant 1, \quad 0 \leqslant \alpha<1
$$

then f is a harmonic, univalent and starlike function of order α in U. This condition proved to be also necessary if h and g are of the form (2). The case when $\alpha=0$ is given in [5] and for $\alpha=b_{1}=0$ see [4].

In this paper, we give an answer to the conjecture that $T S_{H}^{*}(\gamma)=O S_{H}^{*}(\gamma)$.

2. Main results

Theorem 2.1. $O S_{H}^{*}(\gamma) \subset T S_{H}^{*}(\gamma)$.
Proof. Let $f \in O S_{H}^{*}(\gamma)$. According to the condition (2) we only need to show that if (4) holds then

$$
\operatorname{Re}\left\{\frac{(\gamma-1)(h(z)+\overline{g(z)})+z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{\gamma(h(z)+\overline{g(z)})}\right\}>0
$$

where $\gamma \in \mathbf{C} \backslash\{0\}$. Using the fact that $\operatorname{Re} w>0$ if and only if $|1+w|>|1-w|$, it suffices to show that

$$
\begin{equation*}
\left|(2 \gamma-1)(h(z)+\overline{g(z)})+z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right|-\left|h(z)+\overline{g(z)}-z h^{\prime}(z)+\overline{z g^{\prime}(z)}\right|>0 \tag{6}
\end{equation*}
$$

Substituting for $h(z)$ and $g(z)$ in (6) yields

$$
\left|(2 \gamma-1)(h(z)+\overline{g(z)})+z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right|-\left|h(z)+\overline{g(z)}-z h^{\prime}(z)+\overline{z g^{\prime}(z)}\right|
$$

$$
\begin{gathered}
=\left|2 \gamma z-\sum_{n=2}^{\infty}(2 \gamma-1+n) a_{n} z^{n}-\sum_{n=1}^{\infty}(n+1-2 \gamma) b_{n} \bar{z}^{n}\right|- \\
\quad-\left|\sum_{n=2}^{\infty}(n-1) a_{n} z^{n}+\sum_{n=1}^{\infty}(n+1) b_{n} \bar{z}^{n}\right| \\
\geqslant 2|\gamma||z|-\sum_{n=2}^{\infty} 2(n-1+|\gamma|) a_{n}|z|^{n}-\sum_{n=1}^{\infty}(n+1+|n+1-2 \gamma|) b_{n}|z|^{n} \\
>2|\gamma|-\left(\sum_{n=2}^{\infty} 2(n-1+|\gamma|) a_{n}+\sum_{n=1}^{\infty}(n+1+|n+1-2 \gamma|) b_{n}\right) \geqslant 0 .
\end{gathered}
$$

The functions

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} \frac{|\gamma|}{n-1+|\gamma|} x_{n} z^{n}+\sum_{n=1}^{\infty} \frac{2|\gamma|}{n+1+|n+1-2 \gamma|} y_{n} \bar{z}^{n} \tag{7}
\end{equation*}
$$

where x_{n}, y_{n} are non-negative and

$$
\sum_{n=2}^{\infty} x_{n}+\sum_{n=1}^{\infty} y_{n}=1
$$

show that the coefficient bound given by (4) is sharp. The functions of the form (7) are in $T S_{H}^{*}(\gamma)$ because

$$
\begin{aligned}
\sum_{n=2}^{\infty} 2(n-1+|\gamma|) a_{n}+\sum_{n=1}^{\infty}(n+1+\mid n & +1-2 \gamma \mid) b_{n} \\
& =2|\gamma|\left(1+\sum_{n=2}^{\infty} x_{n}+\sum_{n=1}^{\infty} y_{n}\right)=4|\gamma|
\end{aligned}
$$

Theorem 2.2. $T S_{H}^{*}(\gamma) \subset P S_{H}^{*}(\gamma)$.
Proof. Let $f \in T S_{H}^{*}(\gamma)$. From (3) we have

$$
\operatorname{Re}\left\{\frac{1}{\gamma}\left(\frac{-\sum_{n=2}^{\infty}(n-1) a_{n} z^{n}-\sum_{n=1}^{\infty}(n+1) b_{n} \bar{z}^{n}}{1-\sum_{n=2}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} b_{n} \bar{z}^{n}}\right)\right\}>-1 .
$$

If we choose z on the real axis and $z \rightarrow 1^{-}$we get

$$
\frac{\sum_{n=2}^{\infty}(n-1) a_{n}+\sum_{n=1}^{\infty}(n+1) b_{n}}{1-\sum_{n=2}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}} \operatorname{Re}\left(\frac{1}{\gamma}\right) \leqslant 1
$$

whence

$$
\frac{\sum_{n=2}^{\infty}(n-1) a_{n}+\sum_{n=1}^{\infty}(n+1) b_{n}}{1-\sum_{n=2}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}} \frac{\operatorname{Re}(\gamma)}{|\gamma|^{2}} \leqslant 1
$$

and so

$$
\sum_{n=2}^{\infty}(n-1) a_{n}+\sum_{n=1}^{\infty}(n+1) b_{n} \leqslant \frac{|\gamma|^{2}}{\operatorname{Re}(\gamma)}\left(1-\sum_{n=2}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}\right)
$$

which is equivalent to (5). Thus $f \in P S_{H}^{*}(\gamma)$.

THEOREM 2.3. If $\gamma \in(0,1]$, then $O S_{H}^{*}(\gamma)=T S_{H}^{*}(\gamma)=P S_{H}^{*}(\gamma)$.
Proof. If $\gamma \in(0,1]$, then the inequalities (4) and (5) are equivalent; hence $O S_{H}^{*}(\gamma)=P S_{H}^{*}(\gamma)$. By using Theorem 2.1 and Theorem 2.2, from this assertion we obtain the conclusion of the present theorem.

Theorem 2.4. If $-1 / 2>\operatorname{Re}(\gamma) \leqslant 0$ or $\gamma \in(3 / 2,+\infty)$, then

$$
P S_{H}^{*}(\gamma) \nsubseteq T S_{H}^{*}(\gamma)
$$

Proof. Let

$$
\begin{equation*}
f(z)=z-z^{2} \tag{8}
\end{equation*}
$$

Then $f \in P S_{H}^{*}(\gamma)$ when $\gamma \in \mathbf{C} \backslash\{0\}$ and $\operatorname{Re}(\gamma)<0$, because

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left[(n-1) \frac{\operatorname{Re}(\gamma)}{|\gamma|}+|\gamma|\right] a_{n}+ & {\left[(n+1) \frac{\operatorname{Re}(\gamma)}{|\gamma|}-|\gamma|\right] b_{n} } \\
& =|\gamma| \cdot 1+\frac{\operatorname{Re}(\gamma)}{|\gamma|}+|\gamma|=2|\gamma|+\frac{\operatorname{Re}(\gamma)}{|\gamma|} \leqslant 2|\gamma|
\end{aligned}
$$

Now let $r=\operatorname{Re}(\gamma)<0$ and let s be a negative real number such that $1+2 r(1-s)>$ 0 . If we choose $z=\frac{\gamma(1-s)}{1+\gamma(1-s)}$, then $z \in U$ and for f given by (8) we have

$$
1+\frac{1}{\gamma}\left(\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}-1\right)=s<0
$$

hence $f \notin T S_{H}^{*}(\gamma)$.
Similarly, let

$$
\begin{equation*}
f(z)=z+\bar{z}^{2} \tag{9}
\end{equation*}
$$

Then $f \in P S_{H}^{*}(\gamma)$ when $\gamma \in(3 / 2,+\infty)$, because

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left[(n-1) \frac{\operatorname{Re}(\gamma)}{|\gamma|}+|\gamma|\right] a_{n}+ & {\left[(n+1) \frac{\operatorname{Re}(\gamma)}{|\gamma|}-|\gamma|\right] b_{n} } \\
& =|\gamma| \cdot 1+\left(3 \frac{\operatorname{Re}(\gamma)}{|\gamma|}-|\gamma|\right) \cdot 1=3 \frac{\operatorname{Re}(\gamma)}{|\gamma|} \leqslant 2|\gamma|
\end{aligned}
$$

Now let $\gamma \in(3 / 2,+\infty)$ and let s be a negative real number such that $\gamma+\gamma(s-1)<0$.
If we choose $z=-\frac{\gamma(s-1)}{3+\gamma(s-1)}$, then $z \in U$ and for f given by (9) we have

$$
1+\frac{1}{\gamma}\left(\frac{z h^{\prime}(z)-\overline{z g^{\prime}(z)}}{h(z)+\overline{g(z)}}-1\right)=s<0
$$

hence $f \notin T S_{H}^{*}(\gamma)$.

Theorem 2.5. If $\gamma \in(-\infty,-1) \cup(-1 / 2,0)$, then

$$
T S_{H}^{*}(\gamma) \nsubseteq O S_{H}^{*}(\gamma)
$$

Proof. Let $\gamma \in(-\infty,-1)$; we verify that the functions

$$
\begin{equation*}
f_{\lambda}(z)=z-\lambda z^{2} \tag{10}
\end{equation*}
$$

belong to $T S_{H}^{*}(\gamma)$ for $\lambda>\frac{\gamma}{1+\gamma}$ and that $f \notin O S_{H}^{*}(\gamma)$.
Indeed we have

$$
\sum_{n=1}^{\infty}\left[2(n-1+|\gamma|) a_{n}+(n+1+|n+1-2 \gamma|) b_{n}\right]=2|\gamma|+2(1+|\gamma|) \lambda>4|\gamma|
$$

because $\lambda>\frac{\gamma}{1+\gamma}>1$.
We also have

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{\gamma}\left(\frac{z h_{\lambda}^{\prime}(z)-\overline{z g_{\lambda}^{\prime}(z)}}{h_{\lambda}(z)+\overline{g_{\lambda}(z)}}-1\right)\right\}=\operatorname{Re}\left\{1+\frac{\lambda z}{\gamma(\lambda z-1)}\right\}>0, \quad z \in U \tag{11}
\end{equation*}
$$

for $\lambda>\frac{\gamma}{1+\gamma}$ and $\gamma<-1$, hence $f_{\lambda} \in T S_{H}^{*}(\gamma)$.
Let now $\gamma \in(-1 / 2,0)$, and let f_{λ} be defined by (10), where

$$
-\frac{\gamma}{1-\gamma}<\lambda<-\frac{\gamma}{1+\gamma}
$$

Then $\lambda>-\frac{\gamma}{1-\gamma}$ implies $f_{\lambda} \notin O S_{H}^{*}(\gamma)$ and for $\lambda<-\frac{\gamma}{1+\gamma}$ the inequality (11) is also verified, hence $f_{\lambda} \in T S_{H}^{*}(\gamma)$.

Acknowledgments. The authors warmly thank the referee and editors for their suggestions and criticisms which have essentially improved our original paper.

REFERENCES

[1] Avcı, Y. and Zlotkiewicz, E., On harmonic univalent mappings, Ann. Univ. Mariae CurieSklodowska, Sect. A, 44 (1990), 1-7.
[2] Clunie, J. and Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn., Ser. A I Math. 9 (1984), 3-25.
[3] Jahangiri, J. M., Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235 (1999), 470-477.
[4] Silverman, H., Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283-289.
[5] Silverman, H. and Silvia, E. M., Subclasses of harmonic univalent functions, N. Z. J. Math., 28 (1999), 275-284.
(received 24.09.2003, in revised form 24.04.2005)
Uludağ Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, 16059, Bursa, Turkey
E-mail: skarpuz@uludag.edu.tr

[^0]: AMS Subject Classification: 30 C 45, 30 C 50, 31 A 05
 Keywords and phrases: Harmonic functions, starlike functions.

