## COMPACT COMPOSITION OPERATORS ON LORENTZ SPACES

## **Rajeev Kumar and Romesh Kumar**

**Abstract.** We give a necessary and sufficient condition for the compactness of composition operators on the Lorentz spaces.

Let  $X = (X, \Sigma, \mu)$  be a  $\sigma$ -finite measure space. By  $L(\mu)$ , we denote the linear space of all equivalence classes of  $\Sigma$ -measurable functions on X. Let  $T: X \to X$  be a non-singular measurable transformation. Then T induces a composition transformation  $C_T$  from  $L(\mu)$  into itself defined by

$$C_T f(x) = f(T(x)), \quad x \in X, \quad f \in L(\mu).$$

Here, the non-singularity of T guarantees that the operator  $C_T$  is well defined as a mapping of equivalence classes of functions into itself. If  $C_T$  maps a Lorentz space  $L(pq, \mu)$  into itself, then we call  $C_T$  a composition operator on  $L(pq, \mu)$  induced by T.

Composition operators are simple operators, but have wide range of applications in ergodic theory, dynamical systems etc., see [7]. Composition operators have been studied mostly on  $H^2$ -spaces,  $L^p$ -spaces and Orlicz spaces (cf. [2–7]). So, it is natural to extend the study of composition operators to other measurable function spaces. In this paper, we have initiated the study of composition operators on Lorentz spaces, which generalize  $L^p$  spaces. See [1] for details on Lorentz spaces.

For  $f \in L(\mu)$ , we define the distribution function of |f| on  $0 < \lambda < \infty$  by

$$\mu_f(\lambda) = \mu\{x \in X : |f(x)| > \lambda\}$$

and the non-increasing rearrangement of f on  $(0, \infty)$  by

$$f^*(t) = \inf\{\lambda > 0 : \mu_f(\lambda) \le t\} = \sup\{\lambda > 0 : \mu_f(\lambda) > t\}.$$

AMS Subject Classification: Primary 47B33, 46E30; Secondary 47B07, 46B70.

 $Keywords\ and\ phrases:$  Compact operator, composition operators, Lorentz spaces, measurable transformation.

First named author is supported by CSIR–grant (sanction no.  $9/100~(96)/2002\text{-}\mathrm{EMR-I},$  dated–13-5-2002).

The Lorentz spaces  $L(pq, \mu)$  are defined by

$$L(pq, \mu) = \{ f \in L(\mu) : \|f\|_{L(pq)} < \infty \},\$$

where

$$||f||_{L(pq)} = \begin{cases} \left[ \int_0^\infty (t^{1/p} f^*(t))^q dt/t \right]^{1/q}, & \text{if } 1$$

The Lorentz spaces  $(L(pq, \mu, \|.\|_{L(pq)}))$  are Banach spaces for  $1 \le q \le p < \infty$ , or  $p = q = \infty$ .

The following theorem is easy to prove.

THEOREM 1. Let  $T: X \to X$  be a non-singular measurable transformation. Then T induces a composition operator  $C_T$  on  $L(pq, \mu)$ ,  $1 \le q \le p < \infty$  if and only if there exists some M > 0 such that

$$\mu \circ T^{-1}(A) \le M\mu(A), \quad for \ each \ A \in \Sigma.$$

Moreover,

$$||C_T|| = \sup_{A \in \Sigma, 0 < \mu(A) < \infty} \left(\frac{\mu \circ T^{-1}(A)}{\mu(A)}\right)^{1/p}.$$

Compact composition operators on  $L^p$ -spaces were studied in [4], [5], [6] and [8]. For the compactness of these operators on Orlicz spaces, see [2]. Now we give a necessary and sufficient condition for the compactness of composition operators on  $L^{pq}(\mu), 1 \le q \le p < \infty$ .

THEOREM 2. Let  $(X, \Sigma, \mu)$  be a  $\sigma$ -finite measure space and  $T: X \to X$  be a non-singular measurable transformation. Let  $\{A_n\}$  be all the atoms of X and assume that  $\mu(A_n) = a_n > 0$ , for each n. Then  $C_T$  is a compact composition operator on Lorentz spaces  $L(pq, \mu)$ ,  $1 \le q \le p < \infty$  if and only if the measure space  $(X, \Sigma, \mu)$  is purely atomic and

$$b_n = \frac{\mu T^{-1}(A_n)}{\mu(A_n)} \to 0.$$

*Proof.* Suppose  $C_T$  is compact. Then, using the similar techniques as in [6], it is easy to show that  $\mu$  is purely atomic.

Next, we claim that  $b_n \to 0$ . Suppose the contrary. Then there exists some  $\epsilon > 0$  and a subsequence  $\{b_{n_k}\}_{k \ge 1}$  of the sequence  $\{b_n\}_{n \ge 1}$  such that  $b_{n_k} \ge \epsilon$ , for all  $k \in \mathbf{N}$ .

Let  $X = \bigcup_{n=1}^{\infty} A_n$ , where  $A_n$ 's are atoms. For each  $n \in \mathbb{N}$ , define

$$f_n = \frac{\chi_{A_n}}{\|\chi_{T^{-1}(A_n)}\|_{L(pq)}}.$$

110

So, for  $1 \leq q \leq p < \infty$ , we have

$$\|f_{n_k}\|_{L(pq)} = \frac{\|\chi_{A_{n_k}}\|_{L(pq)}}{\|\chi_{T^{-1}(A_{n_k})}\|_{L(pq)}} = \left(\frac{\mu(A_{n_k})}{\mu(T^{-1}(A_{n_k}))}\right)^{1/p} = 1/b_{n_k}^{1/p} \le 1/\epsilon^p$$

for each  $k \in \mathbf{N}$ .

Let  $g_{nm} = C_T f_{k_n} - C_T f_{k_m}$ , where  $\{f_{k_n}\}_{n \ge 1}$  is the subsequence of the sequence  $\{f_k\}_{k \ge 1}$ . For  $n \ne m$ , three cases arise: either  $\mu(T^{-1}(A_{k_n})) < \mu(T^{-1}(A_{k_m}))$  or  $\mu(T^{-1}(A_{k_n})) = \mu(T^{-1}(A_{k_m}))$ ; the third case is similar to the first one, with m and n interchanging places.

In the first case, we have  $\|\chi_{T^{-1}(A_{k_n})}\|_{L(pq)} < \|\chi_{T^{-1}(A_{k_m})}\|_{L(pq)}$  and

$$\begin{split} \mu_{g_{nm}}(\lambda) &= \mu \left\{ x \in X : \left| \frac{\chi_{T^{-1}(A_{k_n})(x)}}{\|\chi_{T^{-1}(A_{k_n})}\|_{L(pq)}} - \frac{\chi_{T^{-1}(A_{k_m})(x)}}{\|\chi_{T^{-1}(A_{k_m})}\|_{L(pq)}} \right| > \lambda \right\} \\ &= \left\{ \begin{array}{l} \mu T^{-1}(A_{k_m}) + \mu T^{-1}(A_{k_n}), & \text{if } 0 < \lambda < \frac{1}{\|\chi_{T^{-1}(A_{k_m})}\|_{L(pq)}}, \\ \mu T^{-1}(A_{k_n}), & \text{if } \frac{1}{\|\chi_{T^{-1}(A_{k_m})}\|_{L(pq)}} \le \lambda < \frac{1}{\|\chi_{T^{-1}(A_{k_n})}\|_{L(pq)}}, \\ 0, & \text{if } \lambda \ge \frac{1}{\|\chi_{T^{-1}(A_{k_n})}\|_{L(pq)}}. \end{array} \right. \end{split}$$

So, we have

$$g_{nm}^{*}(t) = \inf\{\lambda > 0 : \mu_{g_{nm}}(\lambda) \leq t\}$$

$$= \begin{cases} \frac{1}{\|\chi_{T^{-1}(A_{k_n})}\|_{L(pq)}}, & \text{if } 0 \leq t < \mu T^{-1}(A_{k_n}), \\ \frac{1}{\|\chi_{T^{-1}(A_{k_m})}\|_{L(pq)}}, & \text{if } \mu T^{-1}(A_{k_n}) \leq t < \mu T^{-1}(A_{k_n}) + \mu T^{-1}(A_{k_m}), \\ 0, & \text{if } t \geq \mu T^{-1}(A_{k_m}) + \mu T^{-1}(A_{k_n}). \end{cases}$$

Thus,

$$\|g_{nm}\|_{L(pq)}^{q} = 1 + \left(\frac{(\mu T^{-1}(A_{k_{m}}) + \mu T^{-1}(A_{k_{n}}))^{q/p} - (\mu T^{-1}(A_{k_{n}}))^{q/p}}{(\mu T^{-1}(A_{k_{m}}))^{q/p}}\right) > 1,$$

which contradicts the compactness of  $C_T$ .

In the second case,  $1/c = \|\chi_{T^{-1}(A_{k_n})}\|_{L(pq)} = \|\chi_{T^{-1}(A_{k_m})}\|_{L(pq)}$ , we have

$$||g_{nm}||_{L(pq)} = c(p/q)^{1/q} (2\mu T^{-1}(A_{k_n}))^{1/p} = 2^{1/p} > 0$$

which contradicts the compactness of  $C_T$ . Hence  $b_n \to 0$ .

Conversely, let  $(X, \Sigma, \mu)$  be atomic with atoms  $A_n$  and  $b_n \to 0$ . Note that f and  $\sum f(A_n)\chi_{A_n}$  are equal  $\mu$ -a.e. For each  $N \in \mathbf{N}$ , define  $C_T^{(N)}$  by  $C_T^{(N)}f = \sum_{n \leq N} f(A_n)\chi_{T^{-1}(A_n)}$ . Then for each  $\lambda > 0$ , we have

$$\mu_{(C_T - C_T^{(N)})f}(\lambda) \le \sum_{n > N, |f(A_n)| > \lambda} \mu(T^{-1}(A_n))$$
  
$$\le (\sup_{n > N} b_n) \sum_{|f(A_n)| > \lambda} \mu(A_n) = (\sup_{n > N} b_n) \mu_f(\lambda)$$

Therefore

$$||C_T - C_T^{(N)}||_{L(pq) \mapsto L(pq)} \le (\sup_{n > N} b_n)^{1/p} \to 0$$

as  $N \to \infty$ . Since  $C_T$  is the limit of finite rank operators  $C_T^{(N)}$ , it is compact.

ACKNOWLEDGEMENTS. The authors are grateful to the referee for the valuable suggestions and comments.

## REFERENCES

- C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics 129, Academic Press, London 1988.
- [2] Y. Cui, H. Hudzik, R. Kumar and L. Maligranda, Composition operators in Orlicz spaces, J. Austral. Math. Soc. 76, no.2, (2004), 189–206.
- [3] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II. Function Spaces, Springer Verlag, Berlin-New York 1979.
- [4] S. Petrović, A note on composition operators, Mat. Vestnik, 40 (1988), 147-151.
- [5] R. K. Singh, Compact and quasinormal composition operators, Proc. Amer. Math. Soc., 45 (1974), 80–82.
- [6] R. K. Singh and A. Kumar, Compact composition operators, J. Austral. Math. Soc., 28 (1979), 309–314.
- [7] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces, North Holland Math. Studies 179, Amsterdam 1993.
- [8] X. M. Xu, Compact composition operators on  $L^p(X, \Sigma, \mu)$ , Adv. in Math. (China), **20** (1991), 221–225 (in Chinese).

(received 06.08.2004, in revised form 17.08.2005)

Rajeev Kumar, Department of Mathematics, University of Jammu, Jammu-180 006, INDIA. *E-mail*: raj1k2@yahoo.co.in

Romesh Kumar, Department of Mathematics, University of Jammu, Jammu-180 006, INDIA. *E-mail*: romesh\_jammu@yahoo.com

112