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LIMIT THEOREM FOR HIGH LEVEL
A-UPCROSSINGS BY χ-FIELD

Sinǐsa Stamatović and Biljana Stamatović

Abstract. A Poisson limit theorem for A-points of upcrossings of a high level by trajectories
of the random field χ(t) is established. Kallenberg theorem, standard results from asymptotic
methods of Gaussian process and fields and Piterbarg result of high level intersection of χ-field
are exploited.

1. Introduction. Definitions. Result

Properties of high level intersection sets by trajectories of Gaussian random
processes on infinitely increasing time horizon are well elaborated, see [3], [4] and
references therein. Many important results in this direction have been obtained for
Gaussian fields, [4]. In contrast, there are only few results about limit behavior
of the number of large excursions of Gaussian vector processes and fields. First
Poisson limit theorem for a-exit points over level u, where Gaussian vector pro-
cess of arbitrary dimension was investigated, was established in [5]. The present
paper deals with A-upcrossing (A-exit) points over high level u. We consider the
stationary random field

χ(t) =
(
X2

1 (t) + X2
2 (t) + · · ·+ X2

n(t)
)1/2

= ‖X(t)‖, t ∈ Rm,

where X(t) = (X1(t), X2(t), . . . , Xn(t)) is a Gaussian vector field which compo-
nents are independent copies of a Gaussian stationary field X(t) with mean zero
and covariance function r(t).

Let the collection α = {α1, α2, . . . , αk} of positive numbers be given, as well as
the collection E = {e1, e2, . . . , ek} of positive integers such that

∑k
i=1 ei = m. We

set e0 = 0. The pair (E, α) is called a structure. For any vector t = (t1, t2, . . . , tm)
the structural modulus is defined by

|t|E,α =
k∑

i=1

( E(i)∑

j=E(i−1)+1

t2j

)αi
2

,
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where E(i) =
∑i

j=0 ej , i = 1, 2, . . . , k. We also denote

ti = (tE(i−1)+1, . . . , tE(i)), i = 1, 2, . . . , k,

then |t|E,α =
∑k

i=1 |ti|αi , where the norm is taken in a Euclidean space of appro-
priate dimension. For simplicity we will use notation |t|E,α = |t|α.

We assume that

r(t) = 1− |t|α + o(|t|α) as t → 0, for some α, 0 < α1 ≤ 2, . . . , 0 < αk ≤ 2, (1)

and
r(t) log ‖t‖ → 0 as ‖t‖ → ∞. (2)

From (2) it follows that

for any δ > 0, sup
‖t‖>δ

|r(t)| < 1. (3)

The aim of this paper is to prove a Poisson limit theorem for A-points of
upcrossings of a high level by trajectories of the field χ(t). Following definitions
are needed for the sequel.

Definition 1. A pair (A, ρA), A ⊂ Rm, where A is a bounded Borel set and
ρA > 0, is called a trap if
(a) relations t /∈ A, 0 /∈ A + t imply |t| > ρA;
(b) one can find a point t in any non-empty closed bounded set B ⊂ Rm such that

(A + t) ∩B = {t}.
Definition 2. Suppose a set S ⊂ Rm and a trap (A, ρA) are given. A point

t ∈ S is called an A-point of the set S if (A + t) ∩ S = {t}.
Definition 3. Let a trap (A, ρA) is given. A point t is called an A-upcrossing

of the level u by the field χ(t), t ∈ Rm, if it is an A-point of the set {t : χ(t) > u}.
For simplicity we will use the following notations for maximum distributions,

PX(u,W ) = P
(
max
t∈W

X(t) ≤ u
)

and PX(u,W ) = 1− PX(u,W ),

where X(t) is a random field.
Let ν(t), t ∈ Rm, be a Gaussian field with continuous trajectories, the expected

value given by Eν(t) = −|t|α and the covariance function cov(ν(t), ν(s)) = |t|α +
|s|α − |t− s|α. Let Υ be a compact set, Υ ⊂ Rm. Denote

Hα(Υ) = E exp(max
Υ

ν(t)).

It is proven in [4] that for any T > 0 there exists

lim
T→∞

Hα([0, T ]m)
Tm

= Hα, 0 < Hα < ∞,

Hα is called a Pickands’ constant.



Limit theorem for high level A-upcrossings 101

Denote

µ(u) =
2(3−n)/2

√
πHα

Γ(n/2)
un−1Ψ(u),

µi(u) = u
2

α∗
i (µ(u))

1
m , i = 1, . . . , m, M(u) = µ1(u) · · ·µm(u),

where Γ is the gamma function, Ψ(u) = 1√
2π

u−1e−u2/2 and α∗i is the number from
the collection {α1, α2, . . . , αk} corresponding to i-th coordinate of the vector t. It
follows from Corollary 7.3 [4], that for any T > 0,

Pχ(u, [0, T ]m) = TmM(u)(1 + o(1)) as u →∞. (4)

Let us introduce a transformation of the space Rm,

hu(t) = (t1(µ1(u))−1, . . . , tm(µm(u))−1), t ∈ Rm, u > 0.

By B denote the σ-algebra of Borel sets on Rm. Let ηA,u(B), B ∈ B, be the point
field of A-upcrossings of the level u by the field χ(t). Consider the normalized point
field

Φu(B) := ηA,u(huB).

Let Φ(·) be the standard Poisson point field on B, that is, stationary with intensity
one. Our main result is

Theorem 1. Let assumptions (1, 2) be fulfilled for the stationary random field
χ(t). For any trap (A, ρA) the random point field Φu(B), B ∈ B, converges weakly
as u →∞ to the standard Poisson point field Φ(B), B ∈ B.

Let L be a sub-ring of B, generated by rectangles
∏m

i=1[ti, ti + si), si > 0. Let
an infinitely divisible point field Φ(B) on B be given such that Φ(∂L) = 0 with
probability one for all L ∈ L. By Kallenberg theorem (Theorem 4.7 [1]), if for any
L ∈ L,

lim
u→∞

P(Φu(L) = 0) = P(Φ(L) = 0) and lim sup
u→∞

EΦu(L) ≤ EΦ(L), (5)

then the weak convergence
Φu(B) ⇒ Φ(B)

takes place. We prove in section 2 the relations of (5) for the Poisson point field
Φ(B).

2. Proofs

Lemma 1. For the intensity µA(u) of the random point process ηA,u(B) we
have limu→∞ µA(u)/M(u) = 1.

Proof. It is sufficient to evaluate the asymptotic behavior of the probability
P (ηA,u(I) > 0) as u →∞, where I = [0, 1]m. Note that

{ηA,u(I) > 0} ⊂
{

max
t∈I

χ(t) > u
}

.
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On the other hand,

{ηA,u(I) > 0} ⊃
{

max
t∈((I⊕A)\I)

χ(t) 6 u, max
t∈I

χ(t) > u
}

, (6)

where ⊕ is the Minkovsky sum of sets, that is A ⊕ B = {t + s : t ∈ A, s ∈ B}.
Further,

P
{

max
t∈((I⊕A)\I)

χ(t) 6 u, max
t∈I

χ(t) > u
}

= P̄χ(u, I)−P
{

max
t∈((I⊕A)\I)

χ(t) > u, max
t∈I

χ(t) > u
}

= P̄χ(u, I)− [
P̄χ(u, I)− P̄χ(u, I ⊕A) + P̄χ(u, (I ⊕A)\I)

]
.

The expression in square brackets is infinitely smaller then P̄χ(u, I) so Lemma
follows.

Lemma 2. For any L ∈ L, P (Φu(L) = 0) = Pχ(u, huL) + o(1) as u →∞.

Proof. Denote Lu = huL, L ∈ L. We have, Pχ(u, Lu) ≤ P (Φu(L) = 0).
Further, similarly to (6) we have,

P (Φu(L) = 0) ≤ Pχ(u, Lu) + P
(
max
t∈Lu

χ(t) > u, max
(Lu⊕A)\Lu

χ(t) > u
)
.

We can split the set (Lu ⊕ A) \ Lu into sets of diameter between 1/2diam A and
diam A. The number of such sets is equal to O(V ((Lu⊕A)\Lu) = O(Vm−1(∂Lu)),
where Vm−1 is an (m− 1)-dimensional volume. We get

P
(
max
Lu

χ(t) > u, max
(Lu⊕A)\Lu

χ(t) > u
)
≤ P

(
max

(Lu⊕A)\Lu

χ(t) > u
)

= o(1),

as u →∞. The Lemma is proven.
Introduce a Gaussian random field Y (t,v) = (X(t),v) =

∑n
j=1 Xj(t)vj , where

t ∈ Rm,v = (v1, . . . , vn) ∈ Sn−1 := {(x1, x2, . . . , xn) : x2
1 + x2

2 + · · ·+ x2
n = 1}.

By duality, for any closed W ⊂ Rm,

max
t∈W

χ(t) = max
(t,v)∈W×Sn−1

Y (t,v),

in particular, χ(t) = maxv∈Sn−1 Y (t,v). By Bunyakovsky, it is easy to see that the
last maximum is attained at a unique point of the sphere Sn−1, which corresponds
to a unit vector directed as X(t). Random field Y (t,v), (t,v) ∈ Rm × Sn−1 is
homogeneous according to the group of rotations on the sphere.

Lemma 3. For every L ∈ L and any ε > 0 one can find such b > 0, u0 > 0,
K = K(ε) > 0 and a grid Rb,u,ε on the manifold Lu × Sn−1, that for all u ≥ u0,

PY (u, (Lu × Sn−1) ∩Rb)− PY (u, (Lu × Sn−1)) ≤ Kε.
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Proof. We show that the assertion holds true for L = [0, T ]m. Since in general
L consists of finite number of rectangles, the proof for general L will obviously
follow. First we partition the sphere Sn−1 onto N(ε) parts A1, . . . , AN(ε) in the
following way. Consider polar coordinates on the sphere Sn−1,

(x1, x2, . . . , xn) = S(ϕ1, ϕ2, . . . ϕn−1),

ϕ1, ϕ2, . . . ϕn−2 ∈ [0, π), ϕn−1 ∈ [0, 2π) and divide the interval [0, π] to intervals of
length ε (or less for the last interval), do the same for the interval [0, 2π]. This parti-
tion of the parallelepiped [0, π]n−2× [0, 2π] generates the partition A1, . . . , AN(ε) of
the sphere. Now we construct the grid Rb,u,ε. Choose in any Aj an inner point Bj

and consider the tangent plane to the manifold [0, T ]m×Sn−1 at the point O×Bj ,
where O is origin in Rm. Introduce in the tangent plane rectangular coordinates,
with origin at the tangent point, the first coordinates are according to vector t, so
that the plane becomes Rm+n−1, and consider the grid

Rj(b) := Rb,u,εj,P := (bk1u
−2/α∗1 , bk2u

−2/α∗2 , . . . , bkmu−2/α∗m , bl1u
−1, . . . , bln−1u

−1),

j = 1, 2, . . . , N(ε), (k1, k2, . . . , km, l1, l2, . . . , ln−1) ∈ Zm
+ × Zn−1.

Suppose that ε is so small that the orthogonal projection of all Aj onto corre-
sponding tangent planes are one-to-one. Denote byRj

b,u,ε, the prototype ofRj,P
b,u,ε(b)

under this projection. We show that the grid

Rb := Rb,u,ε :=
N(ε)⋃

j=1

Rj
b,u,ε,

with appropriate choice of its parameters, satisfies the assertion of the lemma.

We have,

PY (u, (Lu × Sn−1) ∩Rb)− PY (u, Lu × Sn−1)

= P
(N(ε)⋂

j=1

(
max

(Lu×Aj)∩Rb

Y (t,v) ≤ u
)
∩

N(ε)⋃

j=1

(
max

Lu×Aj

Y (t,v) > u
))

≤
N(ε)∑

j=1

P
(

max
(Lu×Aj)∩Rb

Y (t,v) ≤ u, max
Lu×Aj

Y (t,v) > u
)
. (7)

Denote by AP
j projection of part Ajat the tangent plane, and denote by w projection

of the point v from Aj at the tangent plane. (We shall use same notation for
corresponding vectors.) From the geometry of sphere, it follows that

sup
v1,v2∈Aj

j=1,2,...,N(ε)

‖w1 −w2‖
‖v1 − v2‖ > 1− 2ε.
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So, from (1) it follows that for all sufficiently small ε there exist δ(ε) > 0 such
that for every j = 1, 2, . . . , N(ε) for the covariance function rj((t,w1), (s,w2)) of
the Gaussian field Zj(t,w) =Y (t,v), v ∈ Aj the following holds true,

(1− 2ε)
(
|t− s|α +

1
2
‖w1 −w2‖2

)
≤ 1− rj((t,w1), (s,w2))

≤ (1 + 2ε)
(
|t− s|α +

1
2
‖w1 −w2‖2

)
,

where t, s ∈ [0, δ(ε)]m, w1,w2 ∈ AP
j . Partitioning the rectangle Lu = hu[0, T ]m

onto cubes of the length δ(ε) and using that Y is stationary with respect to t, we
get that the last sum in (7) does not exceed

2M(u)−1Tm

δm(ε)

N(ε)∑

j=1

P
(

max
([0,δ(ε)]m×Aj)∩Rb

Y (t,v) ≤ u, max
[0,δ(ε)]m×Aj

Y (t,v) > u
)

=
2M(u)−1T

δm(ε)

N(ε)∑

j=1

P
(

max
([0,δ(ε)]m×Ap

j )∩Rj(b)
Zj(t,w) ≤ u, max

[0,δ(ε)]m×Ap
j

Zj(t,w) > u
)
.

(8)

Let ξ(t,w), t ∈ R, w ∈ Rm+n−1, be a stationary Gaussian field with zero
mean and covariance function ρ(t,w) = e−|t|α−

1
2‖w‖2 . Below we use the following

operation of multiplication of a vector by a set. Let A be a set in Rm+n−1and b be a
vector in Rn with positive coordinates. Then we set bA := (x = (x1, . . . , xm+n−1) :
(x1/b1, . . . , xm+n−1/bm+n−1) ∈ A). Further, by Slepian’s inequality, (8) can be
estimated from above by

2M(u)−1Tm

δm(ε)

N(ε)∑

j=1

{
P

(
max

c(−ε)[([0,δ(ε)]m×AP
j )∩Rj(b)]

ξ(t,w) ≤ u,

max
c(−ε)[([0,δ(ε)]m×AP

j )]
ξ(t,w) > u

)
+

[
P

(
max

c(−ε)[([0,δ(ε)]m×AP
j )]

ξ(t,w) ≤ u

)
−P

(
max

c(ε)[([0,δ(ε)]m×AP
j )]

ξ(t,w) ≤ u

)]}
(9)

where c(±ε) = ((1± 2ε)1/α∗1 , . . . , (1± 2ε)1/α∗m , (1± 2ε)1/2, . . . , (1± 2ε)1/2) and ε is
sufficiently small. First we estimate the second sum in the right-hand part of (9).
By Lemma 6.1 [4], for sufficiently large u, one can find constants C1 = C1(ε) and
C2 = C2(ε) such that the sum can be estimated by

2M(u)−1Tm

δm(ε)
C1u

n−1
m∏

i=1

u2/α∗i Ψ(u)δm(ε) · ε
N(ε)∑

j=1

V (AP
j ) ≤ C2ε,

where V denotes the volume in corresponding dimension. Turn to the first sum in
the right-hand part of (9). Denote

gu = ((1− 2ε)1/α∗1u−2/α∗1 , (1− 2ε)1/α∗mu−2/α∗m , (1− 2ε)1/2u−1, . . . , (1− 2ε)1/2u−1),
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S = bN , N is an integer, K = [0, S]m+n−1. Since ξ is stationary, we have, par-
titioning the set c(−ε)[([0, δ(ε)]m × AP

j )] onto parallelepipeds, equal to guK, that
the first sum can be estimated by

2Tm
m∏

i=1

u2/α∗i

M(u)Sm+n−1u1−n

N(ε)∑

j=1

P
(

max
gu[K∩Rj(b)]

ξ(t,w) ≤ u, max
guK

ξ(t,w) > u

)
V (AP

j ). (10)

Let θ(t,w), t ∈ Rm, w ∈Rn−1 be a Gaussian separable field with parameters

Eθ(t,w) = (1− 2ε)(|t|α +
1
2
‖w‖2),

Var(θ(t,w1)− θ(s,w2)) = 2(1− 2ε)(|t− s|α +
1
2
‖w1 −w2‖2).

Following evaluations in the proof of Lemma 6.1 from [4] one can show that

lim
u→∞

√
2πueu2/2P

(
max

gu[K∩Rj(b)]
ξ(t,w) ≤ u, max

guK
ξ(t,w) > u

)

=
∫ ∞

0

esP
(

max
K

θ(t,w) > s, max
K∩bZn

θ(t,w) ≤ s

)
ds.

Since trajectories of θ are a.s. continuous, the probability under the integral tends
to zero as b → 0, for any s (for a fixed S = Nb). By Theorem of dominated
convergence, the last integral tends to zero when b → 0. Thus for sufficiently
large u and sufficiently small b, the first sum in the right-hand part of (10) can be
bounded by ε, so Lemma follows.

Let L ∈ L and T is as large as L ⊂ [0, T ]m = Π. Let δ be a positive number
less then one. Let us divide each edge of the rectangle Πu onto “large” segments
of length one alternated by the “small” ones of length δ. This partition induces a
partition of Πu on the union πu of cubes with edges of length one and with distance
between them not less than δ, and on the complement of this union. Denote also by
λu, the union of all the cubes which are contained in Lu, denote by N , the number
of all the cubes in the Lu. We will use the notation

R(b) = {bu−2/α∗1Z} × · · · × {bu−2/α∗mZ}
in m-dimension case as well.

Lemma 4. For any L ∈ L with µ(L) > 0 and every ε > 0 one can find δ > 0
such that for all sufficiently large u, Pχ(u, λu ∩R(b))− Pχ(u, Lu ∩R(b)) ≤ ε.

Proof. Let L ⊂ [0, T ]m, using (4) for all sufficiently large u, we have,

Pχ(u, λu ∩R(b))− Pχ(u, Lu ∩R(b)) = P
(

max
λu∩R(b)

χ(t) ≤ u, max
Lu∩R(b)

χ(t) > u
)

≤ Pχ(u, Lu \ λu) ≤ 2
M(u)−1Tm

(1 + δ)m
Pχ(u, [0, δ]m) ≤ δmTm

(1 + δ)m
≤ ε,

by obvious appropriate choice of δ. The Lemma is proven.
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Denote by Kj , j = 1, 2, . . . , the cubes with edges of length one from the
πu. Consider infinitely many independent copies Yj(t,v) of the Gaussian field
Y (t,v), (t,v) ∈Kj × Sn−1, j = 1, 2, . . . , and introduce the Gaussian random field
Y0(t,v) =Yj(t,v) for (t,v) ∈ Kj × Sn−1. By standard technics, using Berman
inequality, we can establish the following

Lemma 5. For any L ∈ L,

PY (u, (λu × Sn−1) ∩Rb)− PY0(u, (λu × Sn−1) ∩Rb) → 0 as u →∞.

Proof. By Berman’s inequality, we have,

|PY (u, (λu × Sn−1) ∩Rb)− PY0(u, (λu × Sn−1) ∩Rb)|
≤ 1

π

∑

(t,v1),(s,v2)∈(λu×Sn−1)∩Rb

(t,v1)6=(s,v2)

|rY ((t,v1), (s,v2))− rY0((t,v1), (s,v2))|

×
∫ 1

0

(1− rh((t,v1), (s,v2))−1/2 exp
(
− u2

1 + rh((t,v1), (s,v2))

)
dh

=
1
π

∑

i 6=j

∑

(t,v1)∈(Ki×Sn−1)∩Rb

(s,v2)∈(Kj×Sn−1)∩Rb

|rY ((t,v1), (s,v2)|

×
∫ 1

0

(1− hrY ((t,v1), (s,v2))−1/2 exp
(
− u2

1 + hrY ((t,v1), (s,v2))

)
dh,

where

rh((t,v1), (s,v2)) = hrY ((t,v1), (s,v2)) + (1− h)rY0((t,v1), (s,v2)),

t, s ∈ Rm, v1,v2 ∈ Sn−1, rY is the covariance function of the field Y , rY0 is the
covariance function of the field Y0. Now we are in a position to estimate the last
sum to show that it tends to zero. To begin with, note that from the equality

rY ((t,v1), (s,v2)) = r(t− s)
(
1− 1

2
‖v1 − v2‖2

)

and (3) it follows that there is γ2, 0 < γ2 < 1 such that

|rY ((t,v1), (s,v2))| ≤ 1− γ2

as ‖t − s‖ ≥ δ. Further, consider first “not too outstanding” t and s, that is,
t ∈ Ki, s ∈ Kj , and d(Ki,Kj) ≤ M(u)−γ1 , where γ1 ∈ (0, 1 + 1

2γ2). (We define
d(Ki,Kj) := sup{‖t − s‖ : t ∈ Ki, s ∈ Kj}.) Denoting by Σ1 the part of the sum
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over such t, s,v1,v2 we get,

Σ1 ≤ C1

∑

i 6=j
d(Ki,Kj)≤M(u)−γ1

∑

(t,v1)∈(Ki×Sn−1)∩Rb

(s,v2)∈(Kj×Sn−1)∩Rb

exp
(
− u2

1 + |rY ((t,v1), (s,v2))|
)

≤ C2

∑

i 6=j
d(Ki,Kj)≤M(u)−γ1

∑

(t,v1)∈(Ki×Sn−1)∩Rb

(s,v2)∈(Kj×Sn−1)∩Rb

exp
(
−u2

2
(1 +

γ2

2
)
)

= O
(
µ(u)−1ε

n(n−1)
2 un−1+2/αµ(u)−γ1un−1+2/αε

n(n−1)
2 e−

u2
2 (1+

γ2
2 )

)

= o(1)

as u → ∞, where C1 and C2 are constants. We have used above that the volume
of every Aj has order ε

n(n−1)
2 , for small ε.

Turn now to those t, s,v1,v2 for which d(Ki,Kj) ≥ M(u)−γ1 , t ∈ Ki, s ∈ Kj .
Denote the corresponding part of the sum by Σ2. From (2) we get in this case,

sup
‖t−s‖≥M(u)−γ1 ,v1,v2∈Sn−1

rY ((t,v1), (s,v2)) := κ(u) = o(u−2)

as u →∞, so that

Σ2 ≤ C3κ(u)
∑

i 6=j
d(Ki,Kj)≥M(u)−γ1

∑

(t,v1)∈(Ki×Sn−1)∩Rb

(s,v2)∈(Kj×Sn−1)∩Rb

exp
(
− u2

1 + |rY ((t,v1), (s,v2))|
)

≤ C4κ(u)e−u2 ∑

i 6=j
d(Ki,Kj)≥M(u)−γ1

∑

(t,v1)∈(Ki×Sn−1)∩Rb

(t,v2)∈(Kj×Sn−1)∩Rb

exp
(
− |rY ((t,v1), (s,v2))|u2

1 + |rY ((t,v1), (s,v2))|
)

= O

((
M(u)−1ε

n(n−1)
2 un−1+2/α

)2

κ(u)e−u2
)

= O(u2κ(u)) = o(1)

as u →∞, where C3 and C4 are constants. Thus the lemma is proven.

Proof of Theorem 1. Note that Lemma 3 holds true also for the field Y0, with
the same grid. It is easy to see that for any ε > 0 one can chose δ sufficiently small
in order to have |N ·M(u)−V (L)| ≤ ε, V (·) is a propriety measure. From here we
get,

PY0(u, λu × Sn−1) = (1− PY0(u, λu × Sn−1))N → e−V (L), as u −→∞.

Taking into account Lemma 2, Lemma 3, Lemma 4, Lemma 5, we obtain the first
relation in (5). It is easy to see that the second assertion of the (5) follows from
the equivalence of M(u) and µA(u). Now the proof of Theorem 1 is completed.
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