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THE MEASURE OF NONCOMPACTNESS OF MATRIX
TRANSFORMATIONS ON THE SPACES

cp(Λ) AND cp∞(Λ) (1 < p < ∞)

Ivana Stanojević

Abstract. We study linear operators between certain sequence spaces X and Y when X
is Cp(Λ) or Cp∞(Λ) and Y is one of the spaces: c, c0, l∞, c(µ), c0(µ), c∞(µ), that is, we give
necessary and sufficient conditions for A to map X into Y and after that necessary and sufficient
conditions for A to be a compact operator. These last conditions are obtained by means of the
Hausdorff measure of noncompactness and given in the form of conditions for the entries of an
infinite matrix A.

1. Introduction

Let ω be the set of all complex sequences, Φ be the set of all finite sequences
and X and Y be subsets of ω. We write l∞, c and c0 for the sets of all bounded,
convergent and null sequences, respectively. By e and e(n) (n ∈ N0) we denote the

sequences such that: ek = 1 for all k and e
(n)
k =

{
1, k = n

0, k 6= n.
A sequence (bn)∞n=0

in a linear metric space X is called Schauder basis if for each x ∈ X, there is a
unique sequence (λn)n of scalars with

∑∞
n=0 λnbn, that is limm→∞

∑m
n=0 λnbn = x.

As mentioned in the abstract, the aim of this paper is the characterization of
matrix transformations between some sequence spaces and the main tool in this is
the theory of FK and BK spaces.

An FK space is a complete metric sequence space with the property that
convergence implies coordinatewise convergence; a BK space is a normed FK space.
An FK space X ⊃ Φ is said to have AK if every sequence x = (xk)∞k=0 ∈ X has a
unique representation x =

∑∞
k=0 xke(k), that is limn→∞

∑n
k=0 xke(k) = x.
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Let x and y be sequences, X and Y be subsets of ω and A = (ank)∞n,k=0 be an
infinite matrix of complex entries. We write

An(x) =
∞∑

k=0

ankxk and A(x) = (An(x))∞n=0;

then

A ∈ (X, Y ) if and only if An(x) converges for all x ∈ X and all n and A(x) ∈ Y.

Furthermore,

Xβ = { a ∈ ω | ∑
k

akxk converges for all x ∈ X }

denotes the β-dual of X. The set XA = {a ∈ ω | Ax ∈ X} is called the matrix
domain of A in X. We also write

xy = (xkyk)∞k=0, x−1 ∗ Y = {a ∈ ω | ax ∈ Y }
and

M(X,Y ) =
⋂

x∈X

x−1 ∗ Y = { a ∈ ω | ax ∈ Y for all x ∈ X }

is called the multiplier space of X and Y .
If X ⊃ Φ is a BK space and a ∈ ω we write

‖a‖∗X = sup{ |
∞∑

k=0

akxk| | ‖x‖ = 1 }.

2. The spaces cp(Λ) and cp∞(Λ) (1 < p < ∞) and their β-duals

The case when p = 1 was investigated by E.Malkowsky and V.Rakočević (see
[3]).

Let 1 ≤ p and Λ = (λk)∞k=0 be a non-decreasing sequence of positive reals
tending to infinity. We write

cp
∞(Λ) = {x ∈ ω | sup

n

1
λp

n

n∑
k=0

|λkxk − λk−1xk−1|p < ∞},

cp
0(Λ) = {x ∈ ω | lim

n→∞
1
λp

n

n∑
k=0

|λkxk − λk−1xk−1|p = 0 },

and

cp(Λ) = {x ∈ ω | x− le ∈ cp
0(Λ) for some l ∈ C }

for the sets of sequences that are Λ-strongly bounded, Λ-strongly convergent to
zero and Λ-strongly convergent, respectively.

We say that a non-decreasing sequence Λ = (λk)∞k=0 of positive reals tending
to infinity is exponentially bounded if there are reals s and t with 0 < s ≤ t < 1
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such that for some subsequence (λk(ν))∞ν=0 of Λ, we have s ≤ λk(ν)

λk(ν+1)
≤ t for all ν;

such a subsequence (λk(ν))∞ν=0 is called an associated subsequence. If (k(ν))∞ν=0 is
a strictly increasing sequence of nonnegative integers, then we write K〈ν〉 for the
set of all integers k with k(ν) ≤ k ≤ k(ν + 1) − 1, and

∑
ν and maxν for the sum

and maximum taken over all k in K〈ν〉.
In our further consideration, let Λ = (λk)∞k=0 be an exponentially bounded

sequence of positive reals and (λk(ν))∞ν=0 be an associated subsequence.

Proposition 2.1.([4]) The spaces cp(Λ) and cp
∞(Λ) are BK spaces. The space

cp
0(Λ) is also a BK space with a Schauder basis (c(k))∞k=0 where c(k) = ( 1

Λ )b(k), and

b(k) is defined by b
(k)
j =

{
0, j < k

1, j ≤ k.
What is the main reason to obtain the β-dual of an arbitrary sequence space

X? β-duals are very important in the characterization of matrix classes (X,Y ) since
A ∈ (X, Y ) can only hold if An(x) converges for all x ∈ X and for each n, that is
An ∈ Xβ .

We write E for the matrix with entries enk =
{

1, n ≥ k

0, n < k
and put

W p(Λ) = { a ∈ ω |
∞∑

ν=0
λk(ν+1)(

∑
ν
|ak|q)

1
q < ∞}

and ‖a‖W p(Λ) =
∑∞

ν=0 λk(ν+1)(
∑

ν |ak|q)
1
q for 1 < p < ∞ and q = p

p−1 .

Theorem 2.2. ([1, Theorem 3]) Let 1 < p < ∞, q = p
p−1 and the sequence

b = (bn)n be defined by:

bn =
ν(n)−1∑

ν=0
λk(ν+1)(k(ν + 1)− k(ν))

1
q + λk(ν(n)+1)(n− k(ν(n)) + 1)

1
q .

Then
(cp
∞(Λ))β = (

1
Λ

)−1 ∗ (W p(Λ) ∩ (b−1 ∗ c0))E ,

that is a = (ak)∞k=0 ∈ (cp
∞(Λ))β if and only if

∑∞
ν=0 λk(ν+1)(

∑
ν |

∑∞
j=k

aj

λj
|q) 1

q < ∞
and b(

∑∞
j=k

aj

λj
)k ∈ c0. Furthermore, (cp

0(Λ))β = (cp(Λ))β = ( 1
Λ )−1 ∗ (W p(Λ) ∩

(b−1 ∗ `∞))E .

3. Matrix transformations on the spaces cp(Λ) and cp∞(Λ)

We need the following known results.

Theorem 3.1. ([2, Theorem 1.23]) Let X and Y be FK spaces. Then (X,Y ) ⊂
B(X, Y ), that is, every A ∈ (X, Y ) defines a linear operator LA ∈ B(X, Y ) where
LAx = Ax, x ∈ X. If (b(k))∞k=0 is a Schauder basis for X, and Y1 a closed FK
space in Y , then A ∈ (X,Y1) if and only if A ∈ (X, Y ) and A(b(k)) ∈ Y1 for all k.
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Theorem 3.2. ([4, Proposition 3.2]) Let X ⊃ Φ and Y be BK spaces. Then
we have A ∈ (X, l∞) if and only if

‖A‖∗X = sup
n
‖An‖∗X < ∞.

Furthermore, if A ∈ (X, l∞) then it follows that ‖LA‖ = ‖A‖∗X .

Now, let us consider the classes (cp
∞(Λ), `∞), (cp(Λ), `∞), (cp(Λ), c), and

(cp(Λ), c0). Since cp(Λ) has a Schauder basis, we can apply Theorem 3.1 and
obtain conditions for their characterization. ({e} ∪ {c(k)}k is a Schauder basis for
cp(Λ)). Hence, we have

A ∈ (cp(Λ), c0) ⇔ A ∈ (cp(Λ), `∞) ∧A(c(k)) ∈ c0 ∧A(e) ∈ c0,

A ∈ (cp(Λ), c) ⇔ A ∈ (cp(Λ), `∞) ∧A(c(k)) ∈ c ∧A(e) ∈ c.

What are necessary and sufficient conditions for A to be an element of
(cp(Λ), `∞)? We give one more useful result.

Theorem 3.3. ([1, Theorem 4]) Let Y ⊂ ω be a linear space.

(a) Then A ∈ (cp
∞(Λ), Y ) if and only if

{
RA(Λ) ∈ (ωp

∞(Λ), Y )
RA

n (Λ) ∈ b−1 ∗ c0 for all n
, where

rA
nk(Λ) =

∑∞
j=k

anj

λj
for all n, k and

ωp
∞(Λ) = {x ∈ ω | sup

n

1
λp

n

n∑
k=0

|xk|p < ∞}.

(b) Let limn→∞
λn+1
λn

> 1. Then A ∈ (cp(Λ), Y ) if and only if




RA(Λ) ∈ (ωp
0(Λ), Y )

RA
n (Λ) ∈ b−1 ∗ `∞ for all n

A(e) ∈ Y,

where ωp
0(Λ) = {x ∈ ω | limn→∞ 1

λp
n

∑n
k=0 |xk|p = 0}.

Proposition 3.4. Let Y denote any of the spaces c, c0, `∞. If A ∈ (cp(Λ), Y ),
then ‖LA‖ = ‖A‖(cp(Λ),`∞) and

‖A‖(cp(Λ),`∞) = sup
n

(
∞∑

ν=0
λk(ν+1)(

∑
ν
|
∞∑

j=k

aj

λj
|q)

1
q ), q =

p

p− 1
.

Now we have

Corollary 3.5.

A ∈ (cp
∞(Λ), `∞) ⇔





supn

n∑
ν=0

λk(ν+1)(
∑
ν
|
∞∑

j=k

anj

λj
|q) 1

q } < ∞

limk→∞ bk

∞∑
j=k

anj

λj
= 0.
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Corollary 3.6.

A ∈ (cp(Λ), `∞) ⇔





supn

∑n
ν=0 λk(ν+1)(

∑
ν |

∑∞
j=k

anj

λj
|q) 1

q } < ∞
supk |bk

∑∞
j=k

anj

λj
| < ∞

supn |
∑∞

k=0 ank| < ∞.

Corollary 3.7.

A ∈ (cp(Λ), c) ⇔





supn

∑n
ν=0 λk(ν+1)(

∑
ν |

∑∞
j=k

anj

λj
|q) 1

q } < ∞
supk |bk

∑∞
j=k

anj

λj
| < ∞

limn→∞
∑∞

k=0 ank = α for some α

limn→∞
∑∞

j=k
anj

λj
= αk for each k.

Corollary 3.8.

A ∈ (cp(Λ), c0) ⇔





supn

∑n
ν=0 λk(ν+1)(

∑
ν |

∑∞
j=k

anj

λj
|q) 1

q } < ∞
supk |bk

∑∞
j=k

anj

λj
| < ∞

limn→∞
∑∞

k=0 ank = 0
limn→∞

∑∞
j=k

anj

λj
= 0.

We have seen transformations (X, Y ) and their necessary and sufficient condi-
tions but in the cases when Y is one of the classical sequence spaces, i.e. `∞, c, c0.
In our further studies, we will find necessary and sufficient conditions for classes:
(cp(Λ), c∞(µ)), (cp(Λ), c0(µ)), (cp(Λ), c(µ)), (cp

∞(Λ), c∞(µ)).
Let us put

‖A‖(X,c∞(µ)) = sup
m≥0

( max
Nm⊂{0,...,m}

‖ 1
µm

∑
n∈Nm

(µnAn − µn−1An−1)‖∗D)

where X is an arbitrary FK space and µ = (µn)∞n=0 is a nondecreasing sequence of
positive reals tending to infinity.

Theorem 3.9. ([3, Corollary]) A ∈ (X, c∞(µ)) if and only if ‖A‖(X,c∞(µ)) <

∞ for some D > 0. Further, if {b(k)}k is basis of X, then

A ∈ (X, c0(µ)) ⇔





‖A‖(X,c∞(µ)) < ∞ for some D > 0

limm→∞( 1
µm

∑m
n=0 |µnAn(b(k))− µn−1An−1(b(k))|) = 0

for all k.

A ∈ (X, c(µ)) if and only if




‖A‖(X,c∞(µ)) < ∞ for some D > 0

(∃lk ∈ C) limm→∞( 1
µm

∑m
n=0 |µnAn(b(k) − lk)− µn−1An−1(b(k) − lk)|) = 0

for all k.
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Finally, if X is p-normed and A ∈ (X,Y ) for Y ∈ {c∞(µ), c0(µ), c(µ)}, then,
for

‖A‖∗(X,c∞(µ)) = sup
m≥0

( max
Nm⊂{0,...,m}

‖ 1
µm

∑
n∈Nm

(µnAn − µn−1An−1)‖∗)

we have ‖A‖∗(X,c∞(µ)) ≤ ‖LA‖ ≤ 4‖A‖∗(X,c∞(µ)).

Corollary 3.10. A ∈ (cp
∞(Λ), c∞(µ)) if and only if ‖A‖(cp∞(Λ),c∞(µ)) < ∞,

where

‖A‖(cp∞(Λ),c∞(µ)) =

sup
m≥0

{ max
Nm⊂{0,...,m}

∞∑
ν=0

λk(ν+1)(
∑
ν
| 1
µm

∑
n∈Nm

(µn

∞∑
j=k

anj

λj
− µn−1

∞∑
j=k

an−1,j

λj
)|q) 1

q }.

As we said before, if X is a BK space and a ∈ ω then we put

‖a‖∗ = sup{|
∞∑

k=0

akxk| | ‖x‖ = 1},

provided the term on the right side exists and is finite. This is the case whenever
a ∈ Xβ . Hence, we have one more condition for An ∈ cp

∞(Λ))β , namely

lim
k→∞

(bk

∞∑
j=k

anj

λj
) = 0.

Let us mention that we could obtain the same conditions also by means of Theorem
3.3.

Corollary 3.11. A ∈ (cp(Λ), c∞(µ)) if and only if ‖A‖(cp∞(Λ),c∞(µ)) < ∞,
i.e.

sup
m≥0

{ max
Nm⊂{0,...,m}

∞∑
ν=0

λk(ν+1)(Σν | 1
µm

∑
n∈Nm

(µn

∞∑
j=k

anj

λj
− µn−1

∞∑
j=k

an−1,j

λj
)|q) 1

q } < ∞

and supk |bk

∑∞
j=k

anj

λj
| = 0 and

sup
m

1
µm

m∑
n=0

|µn

∑
k

ank − µn−1

∑
k

an−1,k| < ∞.

Corollary 3.12. A ∈ (cp(Λ), c0(µ)) if and only if ‖A‖(cp∞(Λ),c∞(µ)) < ∞ and
supk |bk

∑∞
j=k

anj

λj
| = 0 and

sup
m

1
µm

m∑
n=0

|µn

∑
k

ank − µn−1

∑
k

an−1,k| < ∞,

lim
m→∞

(
1

µm

m∑
n=0

|µn

∞∑
j=k

anj

λj
− µn−1

∞∑
j=k

an−1,j

λj
|) = 0,

lim
m→∞

(
1

µm

m∑
n=0

|µn

∞∑
j=0

anj − µn−1

∞∑
j=0

an−1,j |) = 0.



The measure of noncompactness of matrix transformations 71

Corollary 3.13. A ∈ (cp(Λ), c(µ)) if and only if ‖A‖(cp∞(Λ),c∞(µ)) < ∞ and
supk |bk

∑∞
j=k

anj

λj
| = 0 and

sup
m

1
µm

m∑
n=0

|µn

∑
k

ank − µn−1

∑
k

an−1,k| < ∞,

lim
m→∞

(
1

µm

m∑
n=0

(µn(
∞∑

j=k

anj

λj
− lk)− µn−1(

∞∑
j=k

an−1,j

λj
− lk))) = 0 for some lk,

lim
m→∞

(
1

µm

m∑
n=0

(µn(
∞∑

j=0

anj − l)− µn−1(
∞∑

j=0

an−1,j − l)) = 0 for some l.

4. The Hausdorff measure of noncompactness and
matrix transformations

Let X and Y be metric spaces and f : X −→ Y . We say that f is a compact
map if f(Q) is a relatively compact subset of Y for each bounded subset Q of X.
(A set K is said to be relatively compact if K is a compact set). In this section, we
will consider an operator LA with the aim to find conditions for A to be a compact
operator. For this purpose we will use the Hausdorff measure of noncompactness.
Recall that if Q is a bounded subset of a metric space X, then the Hausdorff
measure of noncompactness of Q is denoted by χ(Q) where

χ(Q) = inf{ ε > 0 | Q has a finite ε-net in X }
(For properties of χ see [5]).

If Q, Q1 and Q2 are bounded subsets of a metric space (X, d), then we have

χ(Q) = 0 if and only if Q is a totally bounded set,

χ(Q) = χ(Q),

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2),

χ(Q1 ∪Q2) = max{χ(Q1), χ(Q2)}
and

χ(Q1 ∩Q2) ≤ min{χ(Q1), χ(Q2)}.
If Q, Q1 and Q2 are bounded subsets of a normed space X, then we have

χ(Q1 + Q2) ≤ χ(Q1) + χ(Q2),

χ(Q + x) = χ(Q) (x ∈ X)

and
χ(λQ) = |λ|χ(Q) for all λ ∈ C.

As we can measure the noncompactness of a bounded subset of a metric space,
we can also measure the noncompactness of an operator. Let X and Y be normed
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spaces and A ∈ B(X, Y ). The Hausdorff measure of noncompactness of A is defined
by

‖A‖χ = χ(AK),

where K = {x ∈ X | ‖x‖ ≤ 1} is the unit ball in X (see [5]). Further, A is compact
if and only if ‖A‖χ = 0. It holds: ‖A‖χ ≤ ‖A‖. Let us recall some well-known
results(see [2]) which will be useful for our investigation.

Theorem 4.1. [Goldenstein, Gohberg, Markus] ([2, Theorem 2.23]) Let X be
a Banach space with Schauder basis {e1, e2, . . . }, Q be a bounded subset of X, and
Pn : X → X be the projector onto the linear span of {e1, e2, . . . , en}. Then we have

1
a

lim sup
n→∞

(sup
x∈Q

‖(I − Pn)x‖) ≤ χ(Q) ≤ lim sup
n→∞

(sup
x∈Q

‖(I − Pn)x‖),

where a = lim supn→∞ ‖I − Pn‖.
Theorem 4.2. Let A be an infinite matrix, 1 < p < ∞, q = p

p−1 and for any
integers n, r, n > r we write

‖A‖(r)(cp(Λ),`∞) = sup
n>r

(
∞∑

ν=0
λk(ν+1)(

∑
ν
|
∞∑

j=k

anj

λj
|q) 1

q ).

a) If A ∈ (cp(Λ), c0) , then ‖LA‖χ = limr→∞ ‖A‖(r)(cp(Λ),`∞).

b) If A ∈ (cp(Λ), c), then 1
2 limr→∞ ‖A‖(r)(cp(Λ),`∞) ≤ ‖LA‖χ ≤ limr→∞ ‖A‖(r)(cp(Λ),`∞).

c) If A ∈ (cp(Λ), `∞), then 0 ≤ ‖LA‖χ ≤ limr→∞ ‖A‖(r)(cp(Λ),`∞).

d) If A ∈ (cp
∞(Λ), `∞), then 0 ≤ ‖LA‖χ ≤ limr→∞ ‖A‖(r)(cp(Λ),`∞).

Proof. Let us remark that the limits in a), b) and c) exist. Set K = {x ∈
cp(Λ) | ‖x‖ ≤ 1}.

a) By Theorem 4.1, we have

‖LA‖χ = χ(AK) = lim
r→∞

(sup
x∈K

‖(I − Pr)Ax‖),

(Pr : c0 −→ c0, Pr(x) = (x0, x1, . . . , xr, 0, 0, . . . ), a = 1). By Proposition 3.4, we
have ‖LA‖ = ‖A‖(cp(Λ),`∞). Now, let A(r) = (ãnk) be the infinite matrix defined
by

ãnk =
{

0, 0 ≤ n ≤ r

ank, n > r.

We have ‖A‖(r)(cp(Λ),`∞) = ‖A(r)‖(cp(Λ),`∞) = ‖LA(r)‖ and

LA(r)(x) = A(r)(x) = (I − Pr)Ax.

Hence, we have ‖LA(r)‖ = supx∈K ‖(I − Pr)Ax‖ and therefore

‖LA‖χ = χ(AK) = lim
r→∞

‖A‖(r)(cp(Λ),`∞).
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b) Let x ∈ c (that means that x has a unique representation x = le+
∑∞

k=0(xk−
l)e(k) where l is such that x− le ∈ c0), and let us define the projector Pr : c −→ c
by Pr(x) = le +

∑r
k=0(xk − l)e(k) (let us remark that a = 2 for Pr : c −→ c). Now

we have
1
2

lim sup
r→∞

(sup
x∈K

‖(I − Pr)Ax‖) ≤ ‖LA‖χ ≤ lim sup
r→∞

(sup
x∈K

‖(I − Pr)Ax‖).

As in (a), we can prove that ‖A‖(r)(cp(Λ),`∞) = supx∈K ‖(I − Pr)Ax‖ and therefore
we have

1
2

lim
r→∞

‖A‖(r)(cp(Λ),`∞) ≤ ‖LA‖χ ≤ lim
r→∞

‖A‖(r)(cp(Λ),`∞).

c) (We can prove (d) in the same way.) Let us define Pr : `∞ −→ `∞ by
Pr(x) = (x0, x1, . . . , xr, 0, 0, , . . . ). It is obvious that we cannot use Theorem 4.1
because `∞ has no Schauder basis.

We have AK ⊂ Pr(AK) + (I − Pr)AK ( in case (d), in the definition of K,
cp(Λ) is replaced by cp

∞(Λ) ). Applying the properties of χ, we have

χ(AK) ≤ χ(Pr(AK)) + χ((I − Pr)AK) = χ((I − Pr)AK)

= ‖(I − Pr)A‖χ ≤ ‖(I − Pr)A‖ ≤ sup
x∈K

‖(I − Pr)Ax‖.

Therefore, by (a):

χ(AK) ≤ sup
x∈K

‖(I −Pr)Ax‖ = ‖LA(r)‖ and 0 ≤ ‖LA‖χ ≤ lim
r→∞

‖A‖(r)(cp(Λ),`∞).

Corollary 4.3. (i) If either A ∈ (cp(Λ), c0) or A ∈ (cp(Λ), c), then LA is
compact if and only if

lim
r→∞

‖A‖(r)(cp(Λ),`∞) = 0.

(ii) If A ∈ (cp
∞(Λ), `∞) or A ∈ (cp(Λ), `∞), then LA is compact if

lim
r→∞

‖A‖(r)
(cp∞(Λ),`∞)

= 0.

We wonder if the equivalence holds. The following example will give the an-
swer: it is possible for LA in Theorem 4.2(c) to be compact but
limr→∞ ‖A‖(r)(cp∞(Λ),`∞)

6= 0.

Example 4.4. Let A = (ank)∞n,k=0 be an infinite matrix such that An = ek(0),
i.e.

ank =
{

1, k = k(0)
0, k 6= k(0).

By Corollary 3.5, A ∈ (cp
∞(Λ), `∞) and by Corollary 3.6, A ∈ (cp(Λ), `∞). Further-

more, we obtain

‖A‖(r)
(cp∞(Λ),`∞)

= sup
n>r

∞∑
ν=0

λk(ν+1)(
∑
ν
|
∞∑

j=k

anj

λj
|q) 1

q )

= sup
n>r

λk(1)(
k(1)−1∑
k=k(0)

|
∞∑

j=k

anj

λj
|q) 1

q =
λk(1)

λk(0)
6= 0.
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Also, putting x = e = (1, 1, . . . ), we see that LA is a compact operator. Hence, the
equivalence in (ii) does not hold.

It remains to “measure” the noncompactness of operators A ∈ (X, Y ) where X
is cp(Λ) or cp

∞(Λ) and Y is one of the spaces c∞(µ), c0(µ), c(µ). The next theorem
is of great importance for the mentioned task.

Theorem 4.5. Let A be an infinite matrix, 1 < p < ∞, q = p
p−1 and for any

integers m, r ∈ N , m > r, we put

‖A‖(r)c∞ = sup
m>r

{ max
Nr,m⊂{r+1,...,m}

∞∑
ν=0

λk(ν+1)×

× (
∑
ν
| 1
µm

∑
n∈Nm

(µn

∞∑
j=k

anj

λj
− µn−1

∞∑
j=k

an−1,j

λj
)|q) 1

q }.

(a) If A ∈ (cp(Λ), c0(µ)), then limr→∞ ‖A‖(r)c∞ ≤ ‖LA‖χ ≤ 4 limr→∞ ‖A‖(r)c∞ .

(b) If A ∈ (cp(Λ), c(µ)), then 1
2 limr→∞ ‖A‖(r)c∞ ≤ ‖LA‖χ ≤ 4 limr→∞ ‖A‖(r)c∞ .

(c) If A ∈ (cp(Λ), c∞(µ)), then 0 ≤ ‖LA‖χ ≤ 4 limr→∞ ‖A‖(r)c∞ .

(d) If A ∈ (cp
∞(Λ), c∞(µ)), then 0 ≤ ‖LA‖χ ≤ 4 limr→∞ ‖A‖(r)c∞ .

Proof. (a) Let Pr : c0(µ) → c0(µ) be defined by Pr(x) = (x0, x1, . . . , xr, 0, 0, . . . )
(this is possible because c0(µ) has AK and every x = (xk)k ∈ c0(µ) has a unique
representation x =

∑∞
k=0(xk)e(k)). We have (see [4])

‖(I − Pr)x‖ = ‖(0, 0, . . . , 0, xr+1, xr+2, . . . )‖ = {(I − Pr)x ∈ c0(µ), p = 1}

= sup
k

(
1
µk

k∑
j=0

|µjxj − µj−1xj−1|) = supk(
1

µr+k

r+k∑
j=r+1

|µjxj − µj−1xj−1|)

= sup
k

(
1

µr+k
(|µr+1xr+1 − 0|+

r+k∑
j=r+2

|µjxj − µj−1xj−1|))

= sup
k

(
1

µr+k
(|µr+1xr+1|+

r+k∑
j=r+2

|µjxj − µj−1xj−1|)).

Since

|µr+1xr+1| ≤ |µr+1xr+1 − µrxr|+
+ |µrxr − µr−1xr−1|+ · · ·+ |µ1x1 − µ0x0|+ |µ0x0|

it follows

|µr+1xr+1|+
r+k∑

j=r+2

|µjxj − µj−1xj−1| ≤
r+k∑
j=0

|µjxj − µj−1xj−1|,

(µ−1 = 0) and

‖(I − Pr)x‖ ≤ sup
k

1
µr+k

r+k∑
j=0

|µjxj − µj−1xj−1|.
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As we know, ‖x‖ = supk
1

µk

∑k
j=0 |µjxj − µj−1xj−1| for x = (xk)k ∈ c0(µ) and

therefore we have
‖(I − Pr)x‖ ≤ ‖x‖.

That implies ‖I − Pr‖ ≤ 1. Since I − Pr is a projector, ‖I − Pr‖ ≥ 1 and finally,
‖I − Pr‖ = 1. Let K be defined as in Theorem 4.2. By Theorem 4.1, we have

‖LA‖χ = χ(AK) = lim sup
r→∞

(sup
x∈K

‖(I − Pr)Ax‖).

For given ε > 0, there is x ∈ K such that

‖(I − Pr)Ax‖ ≥ ‖(I − Pr)A‖ − ε

2
,

i.e.
sup

n

1
µn

n∑
i=r+1

|µiAix− µi−1Ai−1x| ≥ ‖(I − Pr)A‖ − ε
2 . (∗)

In the proof, we need the next lemma.

Lemma ([2]) Let a0, a1, . . . an ∈ C. Then,
n∑

k=0

|ak| ≤ 4 max
N⊂{0,...,n}

|
∑

k∈N

ak|.

By (∗), there is an integer k(x) > r such that

1
µk(x)

k(x)∑
i=r+1

|µiAix− µi−1Ai−1x| ≥ ‖(I − Pr)A‖ − ε

2
.

By the lemma, we have
k(x)∑

i=r+1

|µiAix− µi−1Ai−1x| ≤ 4 max
N⊂{r+1,...,k(x)}

| ∑
i∈N

µiAix− µi−1Ai−1x|

and therefore

4 max
N⊂{r+1,...,k(x)}

1
µk(x)

| ∑
i∈N

µiAix− µi−1Ai−1x| ≥

≥ 1
µk(x)

k(x)∑
i=r+1

|µiAix− µi−1Ai−1x| ≥ ‖(I − Pr)A‖ − ε. (∗∗)

So, for arbitrary ε > 0 and x ∈ K we obtain that (∗∗) holds. Hence, (∗∗) holds for
each r and we have

‖(I − Pr)A‖ ≤ 4 sup
k>r

( max
Nr,k⊂{r+1,...,k}

‖ 1
µk

∑
i∈Nr,k

µiAi − µi−1Ai−1‖). (∗ ∗ ∗)

By (∗ ∗ ∗) and the definition of ‖LA‖χ, we have

‖LA‖χ ≤ 4 lim
r→∞

(sup
k>r

( max
Nr,k⊂{r+1,...,k}

‖ 1
µk

∑
i∈Nr,k

µiAi − µi−1Ai−1‖)),

i.e. ‖LA‖χ ≤ 4 limr→∞ ‖A‖(r)c∞ .
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We have proved the righthand side in (a). It remains to prove the lefthand
one. Suppose that x ∈ K, r ∈ N , k > r and Nr,k ⊂ {r + 1, . . . , k}. Then we have

| 1
µk

∑
i∈Nr,k

µiAix− µi−1Ai−1x| ≤ 1
µk

∑
i∈Nr,k

|µiAix− µi−1Ai−1x|

≤ 1
µk

k∑
i=r+1

|µiAix− µi−1Ai−1x| ≤ ‖(I − Pr)Ax‖.

Since x ∈ K, r ∈ N , k > r were arbitrary, we conclude that for each r and k > r
we have

‖ 1
µk

∑
i∈Nr,k

µiAix− µi−1Ai−1‖ ≤ ‖(I − Pr)Ax‖.

Hence , limr→∞ ‖A‖(r)c∞ ≤ ‖LA‖χ. Thus we have proved Part (a).
(b) Let x ∈ c(µ) (that means that x has a unique representation x = le +

∞∑
k=0

(xk − l)e(k) where l is such that x − le ∈ c0(µ)). Let us define the projector

Pr : c(µ) → c(µ) by Pr(x) = le+
r∑

k=0

(xk−l)e(k), i.e. Pr(x) = (x0, x1, . . . , xr, l, l, . . . ).

Similarly as in the case (a) we conclude

‖(I − Pr)x‖ = ‖(0, 0, . . . , 0, xr+1 − l, xr+2 − l, . . . )‖

= sup
k

(
1

µr+k

r+k∑
j=r+1

|µj(xj − l)− µj−1(xj−1 − l)|)

= sup
k

(
1

µr+k
(|µr+1(xr+1 − l)|+

r+k∑
j=r+2

|µjxj − µj−1xj−1 − l(µj − µj−1)|))

≤ |l|+ sup
k
{ 1
µr+k

(|µr+1xr+1|+
r+k∑

j=r+2

|µjxj − µj−1xj−1|)}.

By (a), we have
‖(I − Pr)x‖ ≤ |l|+ ‖x‖. (¦)

We apply a result from [6] and obtain

0 ≤
∣∣∣|l| − 1

µn

n∑
k=0

|µkxk − µk−1xk−1|
∣∣∣ ≤ 1

µn

n∑
k=0

|µk(xk − l)− µk−1(xk−1 − l)|.

If n tends to infinity, the righthand side tends to zero (since x− le ∈ c0(µ)) and we
obtain

|l| = lim
n→∞

1
µn

n∑
k=0

|µkxk − µk−1xk−1|.

Hence, |l| ≤ ‖x‖ and from (¦) we have ‖I − Pr‖ ≤ 2. Applying Theorem 4.2, we
obtain (b).

(c) This part is proved similarly as Theorem 4.2(c), because the space c∞(µ)
does not have a Schauder basis either.
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Corollary 4.6. (i) If either A ∈ (cp(Λ), c0(µ)) or A ∈ (cp(Λ), c(µ)) then

LA is compact if and only if lim
r→∞

‖A‖(r)c∞ = 0.

(ii) If either A ∈ (cp
∞(Λ), c∞(µ)) or A ∈ (cp(Λ), c∞(µ)) then

LA is compact if lim
r→∞

‖A‖(r)c∞ = 0.

Let us remark that the converse of (ii) does not hold in general. The next
example illustrates this.

Example 4.7. Let A = (ank)∞n,k=0 be an infinite matrix as in Example 4.4.
By Corollary 3.10, A ∈ (cp

∞(Λ), c∞(µ)) and by Corollary 3.11, A ∈ (cp(Λ), c∞(µ)).
Putting x = e = (1, 1, . . . ), we see that LA is a compact operator. On the other
side, we have

‖A‖(r)c∞ = sup
m>r

max
Nr,m⊂{r+1,...,m}

{
∞∑

ν=0
λk(ν+1)×

× (
∑
ν
| 1
µm

∑
n∈Nm

(µn

∞∑
j=k

anj

λj
− µn−1

∞∑
j=k

an−1,j

λj
)|q) 1

q }

= sup
m>r

max
Nr,m⊂{r+1,...,m}

{λk(1)(|
1

µm

∑
n∈Nm

(µn
1

λk(0)
− µn−1

1
λk(0)

)|q) 1
q }

= sup
m>r

max
Nr,m⊂{r+1,...,m}

{λk(1)
1

λk(0)

1
µm

∑
n∈Nm

(µn − µn−1)}

=
λk(1)

λk(0)
sup
m>r

max
Nr,m⊂{r+1,...,m}

(
1

µm

∑
n∈Nm

(µn − µn−1))

=
λk(1)

λk(0)
sup
m>r

1
µm

(µm − µr+1) =
λk(1)

λk(0)
sup
m>r

(1− µr+1

µm
) =

λk(1)

λk(0)
> 0.

We have limr→∞ ‖A‖(r)c∞ 6= 0 and LA is a compact operator. Hence, the equivalence
in (ii) does not hold.
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