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Zlatko Udovičić

Abstract. In this article we consider stability of nonlinear equations which have the fol-
lowing form:

Ax + F (x) = b, (1)

where F is any function, A is a linear operator, b is given and x is an unknown vector. We give
(under some assumptions about function F and operator A) a generalization of inequality:

‖X1 − X2‖
‖X1‖

≤ ‖A‖ ∥∥A−1
∥∥ ‖b1 − b2‖

‖b1‖
(2)

(equation (2) estimates the relative error of the solution when the linear equation Ax = b1 becomes
the equation Ax = b2) and a generalization of inequality:

‖X1 − X2‖
‖X1‖

≤
∥∥∥A−1

1

∥∥∥ ‖A1‖
(‖b1 − b2‖

‖b1‖
+ ‖A1‖

∥∥∥A−1
2

∥∥∥ ‖b2‖
‖b1‖

· ‖A1 − A2‖
‖A1‖

)
(3)

(equation (3) estimates the relative error of the solution when the linear equation A1x = b1
becomes the equation A2x = b2).

1. Basic results

Teorem 1. Let V be a normed space, let the linear operator A : V → V be
invertible and bounded, let the inverse operator of the operator A be also bounded,
let b1, b2 ∈ V and let the functions F1, F2 : V → V and the set S ⊆ V have the
following properties:
1. the function F1 is Lipschitz on S, i.e.,

(∃L > 0) (∀x1, x2 ∈ S) ‖F1 (x1) − F1 (x2)‖ ≤ L ‖x1 − x2‖ ,

and the constant L is such that the inequality 1 − L
∥∥A−1

∥∥ > 0, holds;
2. (∃M > 0) (∀x ∈ S) ‖F1 (x)‖ ≤ M ‖x‖; and
3. (∃ε ≥ 0) (∀x ∈ S) ‖F1 (x) − F2 (x)‖ ≤ ε.
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If X1 ∈ S is a solution of the equation Ax + F1(x) = b1 and X2 ∈ S is a solution
of the equation Ax + F2(x) = b2, then the following inequality holds:

‖X1 − X2‖
‖X1‖ ≤

∥∥A−1
∥∥ (‖A‖ + M)

1 − L ‖A−1‖
(‖b1 − b2‖

‖b1‖ +
ε

‖b1‖
)

Proof. Since AX1 + F1 (X1) = b1, we have

‖b1‖ = ‖AX1 + F1 (X1)‖ ≤ ‖AX1‖ + ‖F1 (X1)‖ ≤ (‖A‖ + M) ‖X1‖
and we can conclude that

1
‖X1‖ ≤ (‖A‖ + M)

‖b1‖ . (4)

On the other hand, from X1−X2 = A−1 ((b1 − b2) − (F1 (X1) − F2 (X2))) it follows
that

‖X1 − X2‖ ≤ ∥∥A−1
∥∥ (‖b1 − b2‖ + ‖F1 (X1) − F1 (X2)‖ + ‖F1 (X2) − F2 (X2)‖)

≤ ∥∥A−1
∥∥ (‖b1 − b2‖ + L ‖X1 − X2‖ + ε) ,

and that

‖X1 − X2‖ ≤
∥∥A−1

∥∥ (‖b1 − b2‖ + ε)
1 − L ‖A−1‖ . (5)

Finally, from (4) and (5) we have

‖X1 − X2‖
‖X1‖ ≤

∥∥A−1
∥∥ (‖A‖ + M)

1 − L ‖A−1‖
(‖b1 − b2‖

‖b1‖ +
ε

‖b1‖
)

which proves the theorem.
If F1 ≡ 0 and F2 ≡ 0 (in this case we have L = M = ε = 0), then the proved

inequality becomes (2).

Theorem 2. Let V be a normed space, let the linear operators A1, A2 : V → V
be invertible and bounded, let their inverse operators be also bounded, let b1, b2 ∈ V
and let the function F : V → V and the set S ⊆ V have the following properties:
1. the function F is Lipschitz on S, i.e.,

(∃L > 0) (∀x1, x2 ∈ S) ‖F (x1) − F (x2)‖ ≤ L ‖x1 − x2‖ ,

and the constant L is such that the inequality 1 − L
∥∥A−1

1

∥∥ > 0 holds;
2. (∃M > 0) (∀x ∈ S) ‖F (x)‖ ≤ M ‖x‖ ;
3. the function F is bounded on the set S, i.e.,

(∃B ≥ 0) (∀x ∈ S) ‖F (x)‖ ≤ B.

If X1 ∈ S is a solution of the equation A1x + F (x) = b1 and X2 ∈ S is a solution
of the equation A2x + F (x) = b2, then the following inequality holds:

‖X1 − X2‖
‖X1‖ ≤

∥∥A−1
1

∥∥ (‖A1‖ + M)
1 − L

∥∥A−1
1

∥∥
(‖b1 − b2‖

‖b1‖ + ‖A1‖
∥∥A−1

2

∥∥×

×‖b2‖
‖b1‖ · ‖A1 − A2‖

‖A1‖ +
B

∥∥I − A1 · A−1
2

∥∥
‖b1‖

)
.
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Proof. Since X2 = A−1
2 · (b2 − F (X2)), we have

A1X2 = A1X2 + b2 − A2X2 − F (X2)

= (A1 − A2) X2 + b2 − F (X2)

= (A1 − A2) A−1
2 (b2 − F (X2)) + b2 − F (X2)

= (A1 − A2) A−1
2 b2 − (A1 − A2) A−1

2 F (X2) + b2 − F (X2)

= (A1 − A2) A−1
2 b2 + b2 − A1A

−1
2 F (X2) ,

and we can apply the previous theorem to the equations

A1x + F (x) = b1

and
A1x + A1A

−1
2 F (x) = (A1 − A2) A−1

2 b2 + b2.

Condition 3. of the theorem is satisfied since for every x ∈ S the inequality∥∥F (x) − A1A
−1
2 F (x)

∥∥ ≤ ‖F (x)‖∥∥I − A1A
−1
2

∥∥ ≤ B
∥∥I − A1A

−1
2

∥∥
holds. So,

‖X1 − X2‖
‖X1‖ ≤

∥∥A−1
1

∥∥ (‖A1‖ + M)
1 − L

∥∥A−1
1

∥∥
(∥∥b1 − b2 − (A1 − A2) A−1

2 b2

∥∥
‖b1‖ +

+
B

∥∥I − A1A
−1
2

∥∥
‖b1‖

)

≤
∥∥A−1

1

∥∥ (‖A1‖ + M)
1 − L

∥∥A−1
1

∥∥
(‖b1 − b2‖

‖b1‖ + ‖A1‖
∥∥A−1

2

∥∥×

×‖b2‖
‖b1‖ · ‖A1 − A2‖

‖A1‖ +
B

∥∥I − A1 · A−1
2

∥∥
‖b1‖

)
.

The theorem has been proved.
If F ≡ 0 (in this case we have L = M = B = 0), then the inequality just

proved becomes (3).
From the theorems just proved we can conclude that relatively small changes

(of operator A, function F or vector b) in the equation (1) may cause relatively big
changes in the solution if the number∥∥A−1

∥∥ (‖A‖ + M)
1 − L ‖A−1‖ (6)

is big enough, so we can take this number as a measure of stability of equation
(1). It is obvious that the equation (1) gets more badly conditioned as the number
(6) increases. Since the inequality ‖A‖‖A−1‖ > 1 always holds, the number (6) is
greater than one whenever inequality 1 − L‖A−1‖ > 0 holds.
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2. A note

If the normed space X is complete and the subset S ⊆ X is closed, if the
function F satisfies the condition 1. of Theorem 1 (Theorem 2) and if ϕ (S) ⊆ S
where ϕ (x) = A−1 (b − F (x)), then the array generated by the recursive formula

xn+1 = A−1 (b − F (xn)) , n ∈ N (7)

converges to the unique solution of the equation (1) for every x0 ∈ S.
Indeed, the function ϕ is a contraction since for every x, y ∈ S we have

‖ϕ (x) − ϕ (y)‖ ≤ ∥∥A−1
∥∥ ‖b − F (x) − b + F (y)‖ ≤ L

∥∥A−1
∥∥ ‖x − y‖ ,

while from the condition 1. of Theorem 1 (Theorem 2) we have that L
∥∥A−1

∥∥ < 1,
and therefore in accordance with Banach fixed point theorem, the array defined by
formula (7) will converge to the unique solution of the equation (1).

3. Examples

The first example will give (under certain assumptions) a sufficient condition
for stability of polynomial with real coefficients. We thoroughly considered poly-
nomials of the third degree.

Example 1. Let a polynomial with real coefficients P (x) = ax3+bx2+cx+d,
(a, c 
= 0) have at least one zero in the segment [α, β]. Furthermore, let F (x) =
ax3 + bx2 and let Λ = max {|α| , |β|}. Then we have that (∀x ∈ [α, β]) |F (x)| ≤(|a|Λ2 + |b|Λ) |x| and maxx∈[α,β] |F ′ (x)| = max

{|F ′ (α)| , |F ′ (β)| , ∣∣F ′ (− b
3a

)∣∣}
and in Theorems 1 and 2 we can put that

M = |a|Λ2 + |b|Λ,

and that

L = max
{
|F ′ (α)| , |F ′ (β)| ,

∣∣∣∣F ′
(
− b

3a

)∣∣∣∣
}

.

If the condition 1 − L
|c| > 0 ⇐⇒ L < |c| is satisfied then, in accordance with The-

orems 1 and 2 we can say that if the number |c|+M
|c|−L = 1+M/|c|

1−L/|c| (which is always
greater than one) is close enough to one, then relatively small changes in coeffi-
cients of the polynomial P will not cause relatively great changes in roots of the
polynomial. So, if linear term in polynomial P is more dominant (|c|  M and
|c|  L), the polynomial P is better conditioned.

We can do the same thing with polynomial of the fourth degree P (x) = ax4 +
bx3 + cx2 + dx + e, (a, d 
= 0) and conclude that the number |d|+M

|d|−L (the numbers
M and L have the same meaning) can be used as a measure of stability of the
polynomial P . So, the polynomial P is in this case also better conditioned if the
number |d|+M

|d|−L is closer to one. Of course, we can use the same technics for the
polynomials of higher degrees, but in that case the problem of effective finding of
number L is much more complex.
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Example 2. Let V be a normed space, let d ∈ V be a fixed vector, and let
the function F : V → V be defined by

(∀x ∈ V ) F (x) = ‖x‖ d.

We shall consider the relative error of solution when the equation A1x + F (x) = b
becomes the equation A2x + F (x) = b. Since for every x, x1, x2 ∈ V inequality

‖F (x1) − F (x2)‖ ≤ ‖x1 − x2‖ ‖d‖
and equality

‖F (x)‖ = ‖x‖ ‖d‖ ,

hold, we can put L = M = ‖d‖. So, if the condition 1 − ‖d‖∥∥A−1
1

∥∥ > 0, is

satisfied we can take the number

∥∥A−1
1

∥∥ (‖A1‖ + ‖d‖)
1 − ‖d‖∥∥A−1

1

∥∥ as a measure of stability for
the considered equation.

The following example is a numerical realization of Example 2.

Example 3. The solution of the system

max {x, y} + 2.01x − 1000y = 1000

max {x, y} − 0.01x − 1000y = −1000

is X1 =
(

990.099
1.98020

)
, while the solution of the system

max {x, y} + 2.02x − 1000y = 1000

max {x, y} − 0.01x − 1000y = −1000,

is the vector X2 =
(

985.222
1.97537

)
.

Stability of the considered system can be estimated by using the previous

example (V = R
2, d =

(
1
1

)
, and the norm is the uniform norm of the space

R
2). The relative error of the matrix A1 =

[
2.01 −1000
−0.01 −1000

]
when this matrix

becomes the matrix A2 =
[

2.02 −1000
−0.01 −1000

]
is

‖A1 − A2‖∞
‖A1‖∞

≈ 10−5 (10−3%),

while the relative error of the solution when the first system becomes the sec-

ond one is
‖X1 − X2‖∞

‖X1‖∞
≈ 0.5 · 10−2 (0.5%). So, the relative error of the so-

lution is approximately 500 times bigger then the relative error of the matrix
A. According to the proved theorems our system is badly conditioned since∥∥A−1

1

∥∥
∞ (‖A1‖∞ + ‖d‖∞)

1 − ‖d‖∞
∥∥A−1

1

∥∥
∞

= 100301.
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It should be noted that the influence of nonlinear term in this example is

irrelevant. The relative error of solution, when linear system A1x = b =
(

1000
−1000

)
becomes the system A2x = b is approximately 0.5%, too.

We would like to point out that this system may also be solved by using the
Banach fixed-point theorem (see Section 2).

The first one of the following examples has a theoretical character, while the
second one is its numerical realization.

Example 4. Let V be a normed space, let d ∈ V and r > 0 be a fixed vector
and a real number, let S = {x ∈ V |‖x‖ ≤ r} and let the function F : V → V be
defined by

(∀x ∈ V ) F (x) = ‖x‖2
d.

We shall estimate the relative error of the solution when equation A1x + F (x) = b
becomes equation A2x + F (x) = b. Since for every x, x1, x2 ∈ S inequalities

‖F (x1) − F (x2)‖ =
∥∥∥‖x1‖2

d − ‖x2‖2
d
∥∥∥

= (‖x1‖ + ‖x2‖) · |‖x1‖ − ‖x2‖| · ‖d‖
≤ 2r · ‖d‖ · ‖x1 − x2‖

and
‖F (x)‖ = ‖x‖2 ‖d‖ ≤ r ‖d‖ ‖x‖ ,

hold, we can put M = r ‖d‖ and L = 2r ‖d‖. So, if the condition 1−2r ‖d‖∥∥A−1
1

∥∥ >

0 is satisfied then the number

∥∥A−1
1

∥∥ (‖A1‖ + r ‖d‖)
1 − 2r ‖d‖∥∥A−1

1

∥∥ can be taken as a measure of

stability of the considered equation.

Example 5. The solution of the system

x2 + y2 + 750x + 50y = −1

x2 + y2 + 2x − 3y = −1

which belongs to the set S =
{(

x
y

)
∈ R

2 | x2 + y2 ≤ 1
}

is X1 =
(−0.0254856

0.359684

)
,

while the solution of the system

x2 + y2 + 750x + 50y = −1

x2 + y2 + 2x − 2y = −1

which belongs to the set S =
{(

x
y

)
∈ R

2 | x2 + y2 ≤ 1
}

is the vector X2 =(−0.0481967
0.693291

)
.

Stability of the considered system can be estimated by using Example 4 (V =

R
2, S =

{(
x
y

)
∈ R

2 | x2 + y2 ≤ 1
}

, d =
(

1
1

)
, while the norm is the Euclidean
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norm of the space R
2). Relative error of the matrix A1 =

[
750 50
2 −3

]
when this

matrix becomes the matrix A2 =
[

750 50
2 −2

]
is

‖A1 − A2‖2

‖A1‖2

≈ 0.13 ·10−2 (0.13%),

while the relative error of the solution when the first system becomes the second one

is
‖X1 − X2‖2

‖X1‖2

≈ 0.93 (93%). So, the relative error of the solution is approximately

700 times bigger than the relative error of matrix A. According to the proved

theorems the system is badly conditioned since

∥∥A−1
1

∥∥
2
(‖A1‖2 + ‖d‖2)

1 − 2 ‖d‖2

∥∥A−1
1

∥∥
2

= 2527.

Contrary to Example 3, the influence of nonlinear term is important now. In

this example, the relative error of solution when linear system A1x = b =
(−1
−1

)
becomes the system A2x = b is approximately 47% .
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