G-SPACE OF ISOTROPIC DIRECTIONS AND G-SPACES OF φ -SCALARS WITH $G=O(n,1,\mathbb{R})$

Aleksander Misiak, Eugeniusz Stasiak, Szczecin

(Received March 3, 2007)

Abstract. There exist exactly four homomorphisms φ from the pseudo-orthogonal group of index one $G = O(n, 1, \mathbb{R})$ into the group of real numbers \mathbb{R}_0 . Thus we have four G-spaces of φ -scalars $(\mathbb{R}, G, h_{\varphi})$ in the geometry of the group G. The group G operates also on the sphere S^{n-2} forming a G-space of isotropic directions $(S^{n-2}, G, *)$. In this note, we have solved the functional equation $F(A*q_1, A*q_2, \ldots, A*q_m) = \varphi(A) \cdot F(q_1, q_2, \ldots, q_m)$ for given independent points $q_1, q_2, \ldots, q_m \in S^{n-2}$ with $1 \leq m \leq n$ and an arbitrary matrix $A \in G$ considering each of all four homomorphisms. Thereby we have determined all equivariant mappings $F \colon (S^{n-2})^m \to \mathbb{R}$.

Keywords: G-space, equivariant map, pseudo-Euclidean geometry

MSC 2000: 53A55

1. Introduction

For $n \ge 2$ consider the matrix $E_1 = \operatorname{diag}(+1, \dots, +1, -1) \in GL(n, \mathbb{R})$.

Definition 1. A pseudo-orthogonal group of index one is a subgroup of the group $GL(n, \mathbb{R})$ satisfying the condition

$$G = O(n, 1, \mathbb{R}) = \{A \colon A \in GL(n, \mathbb{R}) \land A^T \cdot E_1 \cdot A = E_1\}.$$

It is known that there exist exactly four homomorphisms φ from the group G into the group \mathbb{R}_0 . Denoting $A = [A_i^j]_1^n \in G$ we can specify these homomorphisms, namely $1(A) = 1, \varepsilon(A) = \det A = \operatorname{sign}(\det A), \eta(A) = \operatorname{sign}(A_n^n)$ and $\varepsilon(A) \cdot \eta(A)$.

Definition 2. A G-space is the triple (M, G, f), where f is an operation of the group G on the set M.

Definition 3. By a G-space of φ -scalars we understand the triple $(\mathbb{R}, G, h_{\varphi})$, where the mappings $\varphi \colon G \longrightarrow \mathbb{R}_0$ and $h_{\varphi} \colon \mathbb{R} \times G \longrightarrow \mathbb{R}$ fulfil the conditions

a)
$$\bigwedge_{A,B \in G} \varphi(A \cdot B) = \varphi(A) \cdot \varphi(B),$$

b)
$$\bigwedge_{x \in \mathbb{R}} \bigwedge_{A \in G} h_{\varphi}(x,A) = \varphi(A) \cdot x.$$

b)
$$\bigwedge_{x \in \mathbb{R}} \bigwedge_{A \in G} h_{\varphi}(x, A) = \varphi(A) \cdot x$$

Let two G-spaces $(M_{\alpha}, G, f_{\alpha})$ and $(M_{\beta}, G, f_{\beta})$ be given.

Definition 4. A mapping $F_{\alpha\beta}: M_{\alpha} \longrightarrow M_{\beta}$ is called equivariant if the condition

(1)
$$\bigwedge_{x \in M_{\alpha}} \bigwedge_{A \in G} F_{\alpha\beta}(f_{\alpha}(x, A)) = f_{\beta}(F_{\alpha\beta}(x), A)$$

is fulfilled.

The class of G-spaces with equivariant maps as morphisms constitutes a category which is called a pseudo-Euclidean geometry of index one. In particular, there exist in this geometry the G-space of contravariant vectors

(2)
$$(\mathbb{R}^n, G, f), \quad \text{where } \bigwedge_{u \in \mathbb{R}^n} \bigwedge_{A \in G} f(u, A) = A \cdot u,$$

and four G-spaces of objects with one component and linear transformation rule

(3)
$$(\mathbb{R}, G, h), \text{ where } \bigwedge_{x \in \mathbb{R}} \bigwedge_{A \in G} h(x, A) = \begin{cases} 1 \cdot x & \text{for -scalars,} \\ \varepsilon(A) \cdot x & \text{for } \varepsilon\text{-scalars,} \\ \eta(A) \cdot x & \text{for } \eta\text{-scalars,} \\ \varepsilon(A) \cdot \eta(A) \cdot x & \text{for } \varepsilon \eta\text{-scalars,} \end{cases}$$

All equivariant maps from the product of linearly independent contravariant vectors into G-spaces of φ -scalars were determined in [4], [5] and [6]. In particular, the equivariant in the G-space of 1-scalars of a pair of vectors u and v is the invariant $p(u,v) = u^T \cdot E_1 \cdot v$. In fact, for an arbitrary matrix $A \in G$ we have $p(Au, Av) = (Au)^T \cdot E_1 \cdot (Av) = u^T \cdot (A^T \cdot E_1 \cdot A) \cdot v = u^T \cdot E_1 \cdot v = p(u, v).$ The invariant p enables us to determine an invariant subset of isotropic vectors, namely the transitive, isotropic cone $\overset{0}{V}=\{u\colon\,u\in\mathbb{R}^n\,\wedge\,p(u,u)=0\,\wedge\,u\neq0\}.$ Let us introduce in addition the sphere S^{n-2} included in the hyperplane $q^n = 1$ and immersed in the space \mathbb{R}^n , namely

$$S^{n-2} = \left\{ q \colon q = [q^1, q^2, \dots, q^{n-1}, 1]^T, \text{ where } \sum_{i=1}^{n-1} (q^i)^2 = 1 = q^n \right\}.$$

Let $q \in S^{n-2}$ and $A \in G$. For brevity let us denote $W(q, A) = \sum_{i=1}^{n} A_i^n q^i$. Let us recall (see [5]) that

(4)
$$\bigwedge_{q \in S^{n-2}} \bigwedge_{A \in G} \operatorname{sign} W(q, A) = \operatorname{sign}(A_n^n) = \eta(A).$$

Because of $u^n \neq 0$ we can write every isotropic vector $u \in \overset{0}{V}$ in the form

$$u = [u^1, u^2, \dots, u^n]^T = u^n \cdot \left[\frac{u^1}{u^n}, \dots, \frac{u^{n-1}}{u^n}, 1\right]^T = u^n \cdot [q^1, q^2, \dots, q^{n-1}, 1]^T = u^n \cdot q,$$

where $q \in S^{n-2}$. Let us call $u^n = u^n(u)$ the parameter and q = q(u) the direction of the isotropic vector u. For an arbitrary matrix $A \in G$ we have $A \cdot u \in V$ and applying the transformation rule for the vector (2) we get

$$A \cdot u = \left[\sum_{i=1}^{n} A_{i}^{1} u^{i}, \dots, \sum_{i=1}^{n} A_{i}^{n} u^{i} \right]^{T} = \left(\sum_{i=1}^{n} A_{i}^{n} u^{i} \right) \cdot \left[\frac{\sum_{i=1}^{n} A_{i}^{1} u^{i}}{\sum_{i=1}^{n} A_{i}^{n} u^{i}}, \dots, \frac{\sum_{i=1}^{n} A_{i}^{n-1} u^{i}}{\sum_{i=1}^{n} A_{i}^{n} u^{i}}, 1 \right]^{T}$$

$$= (u^{n} \cdot W(q, A)) \cdot \left(\frac{1}{W(q, A)} \cdot A \cdot q \right).$$

So, we have obtained the transformation rules for the parameter and the direction of the isotropic vector u:

(5)
$$u^n(A \cdot u) = u^n(u) \cdot W(q, A) \text{ and } q(A \cdot u) = \frac{1}{W(q, A)} \cdot A \cdot q(u) = A * q.$$

Let us observe that $B*(A*q)=(B\cdot A)*q$ holds for $A,B\in G$ and E*q=q for the unit matrix E. In what follows the group G operates on the sphere S^{n-2} .

Definition 5. The G-space

(6)
$$(S^{n-2}, G, *), \text{ where } \bigwedge_{q \in S^{n-2}} \bigwedge_{A \in G} *(q, A) = A * q = \frac{A \cdot q}{W(q, A)},$$

is called a G-space of isotropic directions.

Definition 6. The system of directions $q_i = q(\underbrace{u}_i) \in S^{n-2}$ for $i = 1, 2, \dots, m$ is called independent if the system of vectors $\underbrace{u}_1, \underbrace{u}_2, \dots, \underbrace{u}_m \in V$ is linearly independent.

In this paper we determine all equivariant mappings from the product of isotropic directions into φ -scalars. More accurately, having in mind (1), (3) and (6) we solve the functional equations

(7)
$$F(A * q_1, A * q_2, \dots, A * q_m) = 1 \cdot F(q_1, q_2, \dots, q_m),$$

(8)
$$F(A * q_1, A * q_2, \dots, A * q_m) = \varepsilon(A) \cdot F(q_1, q_2, \dots, q_m),$$

(9)
$$F(A * q_1, A * q_2, \dots, A * q_m) = \eta(A) \cdot F(q_1, q_2, \dots, q_m),$$

(10)
$$F(A * q_1, A * q_2, \dots, A * q_m) = \varepsilon(A) \cdot \eta(A) \cdot F(q_1, q_2, \dots, q_m)$$

for an arbitrary matrix $A \in G$ and the given system of independent points $q_1, q_2, \ldots, q_m \in S^{n-2}$ with $1 \leq m \leq n$.

2. Certain particular solutions

For the pair of points $q_i, q_j \in S^{n-2}$ let us denote $1 - \sum_{k=1}^{n-1} q_i^k q_j^k = Q(q_i, q_j) = Q_{ij}$ for brevity. The Euclidean distance between these points

$$||q_i, q_j|| = \sqrt{\sum_{k=1}^{n-1} (q_j^k - q_i^k)^2} = \sqrt{2 \cdot \left(1 - \sum_{k=1}^{n-1} q_i^k q_j^k\right)} = \sqrt{2 \cdot Q(q_i, q_j)} = \sqrt{2 \cdot Q_{ij}}$$

is not an invariant under the operation of the group G. Let the isotropic vectors u, u correspond to the directions q_i, q_j , respectively. Since we have p(Au, Au) = p(u, u) for an arbitrary matrix $A \in G$, according to (5) we get

(11)
$$Q(A * q_i, A * q_j) = \frac{Q(q_i, q_j)}{W(q_i, A) \cdot W(q_i, A)},$$

which means

$$||A * q_i, A * q_j|| = \frac{||q_i, q_j||}{\sqrt{W(q_i, A) \cdot W(q_j, A)}}.$$

For different points $q_1, q_2, q_3, q_4 \in S^{n-2}$, which is possible if n > 2, we can construct easily two simple but nontrivial invariants

$$\frac{Q_{13}Q_{24}}{Q_{12}Q_{34}}, \frac{Q_{14}Q_{23}}{Q_{12}Q_{34}} \text{ or equivalently } \frac{\|q_1, q_3\| \cdot \|q_2, q_4\|}{\|q_1, q_2\| \cdot \|q_3, q_4\|}, \frac{\|q_1, q_4\| \cdot \|q_2, q_3\|}{\|q_1, q_2\| \cdot \|q_3, q_4\|}$$

which can be interpreted in a quadrilateral or tetrahedron with vertices q_1, q_2, q_3, q_4 . In addition we have

$$\det(A_1, A_2, \dots, A_n) = \varepsilon(A) \cdot \det(u, u, \dots, u),$$

so, in particular, for isotropic vectors $\underbrace{u,u,\dots,u}_{1}$ in view of (5) we get

(12)
$$\det(A * q_1, A * q_2, \dots, A * q_n) = \frac{\varepsilon(A) \cdot \det(q_1, q_2, \dots, q_n)}{W(q_1, A) \cdot W(q_2, A) \cdot \dots \cdot W(q_n, A)}.$$

Now (12) together with (4) yields

(13)
$$\operatorname{sign} \det(A * q_1, \dots, A * q_n) = \begin{cases} \varepsilon(A) \cdot \operatorname{sign} \det(q_1, \dots, q_n) \text{ for even } n, \\ \varepsilon(A) \cdot \eta(A) \cdot \operatorname{sign} \det(q_1, \dots, q_n) \text{ for odd } n. \end{cases}$$

Lemma 1. For arbitrary possible m = 1, 2, ... and an arbitrary matrix $A \in G$ the functional equation

$$F(A*q_1,...,A*q_m) = \begin{cases} \eta(A) \cdot F(q_1,...,q_m) & \text{if } n = 2, 3, 4, ..., \\ \varepsilon(A) \cdot F(q_1,...,q_m) & \text{if } n = 3, 5, 7, ..., \\ \varepsilon(A) \cdot \eta(A) \cdot F(q_1,...,q_m) & \text{if } n = 2, 4, 6, ... \end{cases}$$

has only the trivial solution $F(q_1, q_2, \dots, q_m) = 0$.

Proof. If $A \in G$ then obviously $(-A) \in G$ and A * q = (-A) * q. Inserting A and then (-A) into the first equation and having in mind $\eta(-A) = -\eta(A)$ we get simultaneously

$$F(q_1, ..., q_m) = \eta(A) \cdot F(A * q_1, ..., A * q_m) = -\eta(A) \cdot F(A * q_1, ..., A * q_m).$$

An analogous result is obtained for the two remaining equations using $\varepsilon(-A) = -\varepsilon(A)$ in the case of n odd and $\varepsilon(-A) \cdot \eta(-A) = -\varepsilon(A) \cdot \eta(A)$ in the case of n even.

We have to consider the cases n=2 and n=3. If n=2 then the sphere S^0 has only two different points $q_1=[q_1^1,1]^T$ and $q_2=[q_2^1,1]^T=[-q_1^1,1]^T$ where $(q_1^1)^2=1$. An arbitrary pseudo-orthogonal matrix is of the form

$$A(\varepsilon,\eta,x) = \begin{bmatrix} \varepsilon \cdot \eta \cdot \cosh x & \varepsilon \cdot \eta \cdot \sinh x \\ \eta \cdot \sinh x & \eta \cdot \cosh x \end{bmatrix},$$

where $\varepsilon^2 = 1$, $\eta^2 = 1$, $x \in \mathbb{R}$. Since we have $A * q_1 = [\varepsilon q_1^1, 1]^T$, so putting the matrix $A(q_1^1, \eta, x)$ into functional equations (7) and (8) we get solutions

1-scalars)
$$F(q_1)=c$$
 and $F(q_1,q_2)=c$,
$$\varepsilon\text{-scalars})\ F(q_1)=c\cdot q_1^1 \ \text{ and } \ F(q_1,q_2)=2c\cdot q_1^1=-2c\cdot q_2^1=c\cdot \left| \begin{array}{cc} q_1^1 & 1\\ q_2^1 & 1 \end{array} \right|,$$

where c denotes a constant.

In the case n=3 the circle S^1 is an uncountable set. For the given different points $q_1,q_2,q_3\in S^1$ there exists a matrix $A\in G$ such that $\varepsilon(A)=1$, $\eta(A)=\sup_0 \det(q_1,q_2,q_3)$ and $A*q_1=[0,1,1]^T$, $A*q_2=[0,-1,1]^T$ and $A*q_3=[1,0,1]^T$. Inserting this matrix into equations (7) and (10) we get solutions

1-scalars)
$$F(q_1) = c$$
 and $F(q_1, q_2) = c$ and $F(q_1, q_2, q_3) = c$,

 $\varepsilon \eta$ -scalars) $F(q_1) = 0$ and $F(q_1, q_2) = 0$ and $F(q_1, q_2, q_3) = c \cdot \text{sign}[\det(q_1, q_2, q_3)]$, where c again denotes an arbitrary constant.

Just in the case m=4 and $q_4 \notin \{q_1,q_2,q_3\}$ we get two non-trivial invariants and general solutions of the equations:

1-scalars)
$$F(q_1, q_2, q_3, q_4) = \Theta(Q_{13}Q_{24}/Q_{12}Q_{34}, Q_{14}Q_{23}/Q_{12}Q_{34}) = \Theta(x_4, y_4),$$

 $\varepsilon \eta$ -scalars) $F(q_1, q_2, q_3, q_4) = \Theta(x_4, y_4) \cdot \operatorname{sign} \det(q_1, q_2, q_3)$, where Θ is an arbitrary function of two variables.

3. General solution of equation (7)

For $n=4,5,6,\ldots$ let n independent points $q_i=[q_i^1,q_i^2,\ldots,q_i^{n-1},1]^T\in S^{n-2}$ be given, where $i=1,2,\ldots,n$, and let $Q(s)=\det[Q_{ij}]_1^s$ for $s=2,3,\ldots,n$. Let us remark that $[\det(q_1,q_2,\ldots,q_n)]^2=(-1)^{n+1}Q(n)$ and $(-1)^{s+1}Q(s)>0$. We are going to construct a matrix $C=C(q_1,q_2,\ldots,q_n)=[C_i^j]_1^n\in G$ which will enable us to solve equation (7). We start with the last three rows. For $i=1,2,\ldots,n-1$ let

$$\begin{split} C_i^{n-2} &= \frac{Q_{23}q_1^i + Q_{13}q_2^i - Q_{12}q_3^i}{(-1)^n\sqrt{Q(3)}} \quad \text{and} \quad C_n^{n-2} &= \frac{Q_{12} - Q_{13} - Q_{23}}{(-1)^n\sqrt{Q(3)}}, \\ C_i^{n-1} &= \frac{Q_{13}q_2^i - Q_{23}q_1^i}{(-1)^n\sqrt{Q(3)}} \qquad \quad \text{and} \quad C_n^{n-1} &= \frac{Q_{23} - Q_{13}}{(-1)^n\sqrt{Q(3)}}, \\ C_i^n &= \frac{Q_{23}q_1^i + Q_{13}q_2^i}{(-1)^n\sqrt{Q(3)}} \qquad \quad \text{and} \quad C_n^n &= \frac{-Q_{13} - Q_{23}}{(-1)^n\sqrt{Q(3)}}. \end{split}$$

We have formulas for the (n-2)-nd and (n-1)-st components of an arbitrary point $C*q_r$, namely

(14)
$$\begin{cases} (C*q_r)^{n-2} = \frac{Q_{13}Q_{2r} + Q_{23}Q_{1r} - Q_{12}Q_{3r}}{Q_{13}Q_{2r} + Q_{23}Q_{1r}}, \\ (C*q_r)^{n-1} = \frac{Q_{13}Q_{2r} - Q_{23}Q_{1r}}{Q_{13}Q_{2r} + Q_{23}Q_{1r}}. \end{cases}$$

These components in accordance with (11) are 1-scalars. In particular, for r=1,2,3 we get

(15)
$$C * q_1 = [0, \dots, 0, 1, 1]^T, C * q_2 = [0, \dots, 0, -1, 1]^T, C * q_3 = [0, \dots, 0, 1, 0, 1]^T.$$

Let the elements of the first row C_i^1 of the matrix C be coefficients of z_i in the Laplace expansion in terms of elements of the last row of the determinant

$$C^{1} = \frac{\operatorname{sign} \det(q_{1}, \dots, q_{n})}{\sqrt{(-1)^{n} Q(n-1)}} \begin{vmatrix} q_{1}^{1} & q_{1}^{2} & \dots & q_{1}^{n-1} & 1\\ q_{2}^{1} & q_{2}^{2} & \dots & q_{2}^{n-1} & 1\\ \dots & \dots & \dots & \dots\\ q_{n-1}^{1} & q_{n-1}^{2} & \dots & q_{n-1}^{n-1} & 1\\ z_{1} & z_{2} & \dots & z_{n-1} & z_{n} \end{vmatrix}.$$

Then we have $(C * q_r)^1 = 0$ for r = 1, 2, ..., n - 1. Analogously, the coefficients of z_i in the Laplace expansion in terms of elements of the last row of the determinant

$$C^{2} = \frac{1}{\sqrt{(-1)^{n-1}Q(n-2)}} \begin{vmatrix} q_{1}^{1} & q_{1}^{2} & \dots & q_{1}^{n-1} & 1\\ \dots & \dots & \dots & \dots\\ q_{n-2}^{1} & q_{n-2}^{2} & \dots & q_{n-2}^{n-1} & 1\\ C_{1}^{1} & C_{2}^{1} & \dots & C_{n-1}^{1} & -C_{n}^{1}\\ z_{1} & z_{2} & \dots & z_{n-1} & z_{n} \end{vmatrix}$$

are the elements C_i^2 of the second row of the matrix C. Now, $(C*q_r)^2=0$ for $r=1,2,\ldots,n-2$. Proceeding in the same way we can determine (k-1) rows of the matrix C and then the k-th row using the determinant

$$C^{k} = \frac{1}{\sqrt{(-1)^{n-k+1}Q(n-k)}} \begin{vmatrix} q_{1}^{1} & q_{1}^{2} & \dots & q_{1}^{n-1} & 1\\ \dots & \dots & \dots & \dots\\ q_{n-k}^{1} & q_{n-k}^{2} & \dots & q_{n-k}^{n-1} & 1\\ C_{1}^{1} & C_{2}^{1} & \dots & C_{n-1}^{1} & -C_{n}^{1}\\ \dots & \dots & \dots & \dots\\ C_{1}^{k-1} & C_{2}^{k-1} & \dots & C_{n-1}^{k-1} & -C_{n}^{k-1}\\ z_{1} & z_{2} & \dots & z_{n-1} & z_{n} \end{vmatrix}.$$

We get $(C*q_r)^k=0$ only for $r=1,2,\ldots,n-k$. In this way we construct the rows number $k=2,3,\ldots n-3$ and (n-2) again. We describe the k-th coordinate of the point $C*q_r$ by the formula

(16)
$$(C * q_r)^k = \frac{\sqrt{Q(3)} \cdot W_r^k}{(Q_{13}Q_{2r} + Q_{23}Q_{1r})\sqrt{-Q(n-k)Q(n-k+1)}}$$

where

$$W_r^k = \begin{pmatrix} 0 & Q_{12} & Q_{13} & \dots & Q_{1,n-k-1} & Q_{1,n-k} & Q_{1,n-k+1} \\ Q_{21} & 0 & Q_{23} & \dots & Q_{2,n-k-1} & Q_{2,n-k} & Q_{2,n-k+1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ Q_{n-k,1} & Q_{n-k,2} & Q_{n-k,3} & \dots & Q_{n-k,n-k-1} & 0 & Q_{n-k,n-k+1} \\ Q_{r1} & Q_{r2} & Q_{r3} & \dots & Q_{r,n-k-1} & Q_{r,n-k} & Q_{r,n-k+1} \end{pmatrix},$$

which holds true for k = 1, 2, ..., n-2 and arbitrary r. Considering the formulas (14) and (16) we see that $C * q_r$ depends on $q_1, q_2, ..., q_r$ only, in spite of $C = C(q_1, q_2, ..., q_n)$. It allows us to select the lacking points of the sphere and construct the matrix C in the case m < n. Formula (11) implies that $(C * q_r)^k$ is an invariant. Considering the case when n = 2, n = 3 and (15) we have

Lemma 2. In the case $1 \le m < 4$, equation (7) has only the trivial solution $F(q_1) = c$ for $n \ge 2$, $F(q_1, q_2) = c$ for $n \ge 2$ and $F(q_1, q_2, q_3) = c$ for n > 2, where c is an arbitrary constant.

Considering the case n=3 and formulas (14) and (15) and using for m=n=4 simply formula (16) we obtain

Lemma 3. The general solution of equation (7) in the case n > 2 and m = 4 is of the form

$$F(q_1, q_2, q_3, q_4) = \Theta\left(\frac{\|q_1, q_3\| \cdot \|q_2, q_4\|}{\|q_1, q_2\| \cdot \|q_3, q_4\|}, \frac{\|q_1, q_4\| \cdot \|q_2, q_3\|}{\|q_1, q_2\| \cdot \|q_3, q_4\|}\right)$$

where Θ is an arbitrary function of two variables.

We can conclude with

Lemma 4. The general solution of equation (7) for arbitrary $4 \le m \le n$ is of the form

$$F(q_1, q_2, \dots, q_m) = \Theta((C * q_r)^k)$$

where r runs from 4 to m and for every fixed r the index k changes from (n+1-r) to (n-1) and Θ is an arbitrary function of $\frac{1}{2}(m-3)(m+2)$ variables.

Despite omitting in Lemma 4 the trivial 1-scalars -1,0,+1, we have relations $C*q_r \in S^{n-2}$ as a result of the fact that (m-3) arguments of the function Θ are dependent on the others. Analysing formula (16) one can suppose that other kinds of invariants exist, in addition to the arguments of the function Θ in Lemma 3. Because it is easy to find the correct number $\frac{1}{2}m(m-3)$ of simple and independent 1-scalars, we have

Theorem 1. The general solution of the functional equation

$$F(A * q_1, A * q_2, \dots, A * q_m) = F(q_1, q_2, \dots, q_m)$$

for given independent points $q_1, q_2, \dots, q_m \in S^{n-2}$ and an arbitrary matrix $A \in G$ is of the form

$$F(q_1, q_2, \dots, q_m) = \begin{cases} c & \text{if } m = 1, 2, 3, \\ \Theta\left(\frac{Q_{13}Q_{24}}{Q_{12}Q_{34}}, \frac{Q_{14}Q_{23}}{Q_{12}Q_{34}}\right) & \text{if } m = 4, \\ \Theta\left(\frac{Q_{13}Q_{2i}}{Q_{12}Q_{3i}}, \frac{Q_{23}Q_{1i}}{Q_{12}Q_{3i}}, \frac{Q_{1i}Q_{2j}}{Q_{12}Q_{ij}}\right) & \text{if } 4 < m \leqslant n, \end{cases}$$

where $4 \leq j < i = 4, 5, ..., m$, c is an arbitrary constant and Θ is an arbitrary function of $\frac{1}{2}m(m-3)$ variables.

4. General solutions to equations (8) and (10)

Theorem 2. The general solution of the functional equation

$$F(A * q_1, A * q_2, ..., A * q_m) = \varepsilon(A) \cdot F(q_1, q_2, ..., q_m)$$

for given independent points $q_1, q_2, \dots, q_m \in S^{n-2}$ and an arbitrary matrix $A \in G$ is of the form

$$F(q_1,q_2,\ldots,q_m) = \begin{cases} c \cdot q_1^1 & \text{if } n=2 \text{ and } m=1, \\ 0 & \text{if } n \text{ is odd,} \\ 0 & \text{if } n>2 \text{ and } m< n, \\ \Psi \cdot \operatorname{sign} \det(q_1,q_2,\ldots,q_n) & \text{if } n \text{ is even and } m=n \end{cases}$$

where c is an arbitrary constant and Ψ is the general solution of equation (7).

Proof. We have already proved the first two cases. Now, let m < n and n > 2. Then the matrix C in the case $n \ge 4$ (or A in the case n = 3) satisfies $(C*q_r)^1 = 0$ for $r = 1, 2, \ldots, m$. Let \overline{C} denote a matrix obtained from the matrix C by multiplying its elements of the first row by -1. From the relations $\varepsilon(\overline{C}) = -\varepsilon(C)$ and $(C*q_r) = (\overline{C}*q_r)$ we get simultaneously

$$F(q_1, q_2, \dots, q_m) = \varepsilon(C)F(C * q_1, C * q_2, \dots, C * q_m)$$

$$= \varepsilon(\overline{C})F(\overline{C} * q_1, \overline{C} * q_2, \dots, \overline{C} * q_m)$$

$$= -\varepsilon(C)F(C * q_1, C * q_2, \dots, C * q_m).$$

Let $F(q_1, q_2, ..., q_n)$ be the general solution of equation (8) in the case m = n and n even. Then the quotient $F(q_1, q_2, ..., q_n)$: sign $\det(q_1, q_2, ..., q_n)$ is the general solution of equation (7), which proves the assertion of the theorem in the last case.

Theorem 3. The general solution of the functional equation

$$F(A * q_1, A * q_2, \dots, A * q_m) = \varepsilon(A) \cdot \eta(A) \cdot F(q_1, q_2, \dots, q_m)$$

for given independent points $q_1, q_2, \ldots, q_m \in S^{n-2}$ and an arbitrary matrix $A \in G$ is of the form

$$F(q_1, q_2, \dots, q_m) = \begin{cases} 0 & \text{if } n \text{ is even or } m < n, \\ \Psi \cdot \text{sign det}(q_1, q_2, \dots, q_n) & \text{if } n \text{ is odd and } m = n, \end{cases}$$

where Ψ is the general solution of equation (7).

References

[1] J. Aczél, S. Goląb: Functionalgleichungen der Theorie der geometrischen Objekte. P.W.N. Warszawa, 1960.

zbl

- [2] L. Bieszk, E. Stasiak: Sur deux formes équivalents de la notion de (r, s)-orientation de la géometrié de Klein. Publ. Math. Debrecen 35 (1988), 43–50.
- [3] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie. Period. Math. Hungar. 8 (1977), 83–89.
- [4] $\stackrel{\frown}{A}$. $\stackrel{\frown}{M}$ $\stackrel{\frown}{S}$ $\stackrel{\frown}{I}$ $\stackrel{\frown}{S}$ $\stackrel{\frown}{I}$ $\stackrel{\frown}{S}$ $\stackrel{\frown}{I}$ $\stackrel{\frown}{S}$ $\stackrel{\frown}{S}$
- [5] E. Stasiak: On a certain action of the pseudoorthogonal group with index one $O(n, 1, \mathbb{R})$ on the sphere S^{n-2} . Prace Naukowe P.S. 485 (1993). (In Polish.)
- [6] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ. Math. Debrecen 57 (2000), 55–69.

Authors' address: Aleksander Misiak, Eugeniusz Stasiak, Instytut Matematyki, Politechnika Szczecińska, Al. Piastów 17, 70-310 Szczecin, Poland, e-mail: misiak@ps.pl.