ON REFLEXIVITY AND HYPERREFLEXIVITY OF SOME SPACES OF INTERTWINING OPERATORS

Michal Zajac, Bratislava

(Received July 24, 2006)

Abstract

Let T, T^{\prime} be weak contractions (in the sense of Sz.-Nagy and Foiaş), m, m^{\prime} the minimal functions of their C_{0} parts and let d be the greatest common inner divisor of m, m^{\prime}. It is proved that the space $I\left(T, T^{\prime}\right)$ of all operators intertwining T, T^{\prime} is reflexive if and only if the model operator $S(d)$ is reflexive. Here $S(d)$ means the compression of the unilateral shift onto the space $H^{2} \ominus d H^{2}$. In particular, in finite-dimensional spaces the space $I\left(T, T^{\prime}\right)$ is reflexive if and only if all roots of the greatest common divisor of minimal polynomials of T, T^{\prime} are simple. The paper is concluded by an example showing that quasisimilarity does not preserve hyperreflexivity of $I\left(T, T^{\prime}\right)$.

Keywords: intertwining operator, reflexivity, C_{0} contraction, weak contraction, hyperreflexivity

MSC 2000: 47A10, 47A15

1. Introduction

Let H, H^{\prime} be complex separable Hilbert spaces, let $\mathcal{B}\left(H, H^{\prime}\right)$ denote the space of all bounded linear operators $H \rightarrow H^{\prime}$. If $H=H^{\prime}$ then $\mathcal{B}(H, H)=\mathcal{B}(H)$ is the algebra of all bounded linear operators on H. By a subspace we mean a closed linear subspace. For a subset $A \subset H$, we denote by $\bigvee A$ the closed linear span of A. A subspace $L \subset H$ is called invariant for $T \in \mathcal{B}(H)$ if $T L \subset L$. As usual, $T \mid L$ means the restriction of the operator T to L. If $\mathcal{A} \subset \mathcal{B}(H)$ then $\operatorname{Alg} \mathcal{A}$ denotes the smallest weakly closed subalgebra of $\mathcal{B}(H)$ containing \mathcal{A} and the identity. Lat \mathcal{A} denotes the set of all subspaces of H that are invariant for each $A \in \mathcal{A}$. If \mathcal{L} is a set of subspaces

The author was supported by the grant G-1/3025/06 of MŠ SR and project No. SK79/CZ89 of bilateral research cooperation between Czech and Slovak Republics.
of H, then $\operatorname{Alg} \mathcal{L}=\{T \in \mathcal{B}(H): \mathcal{L} \subset$ Lat $T\}$. A (unital weakly closed) subalgebra $\mathcal{A} \subset \mathcal{B}(H)$ is called reflexive if $\mathcal{A}=\operatorname{Alg} \operatorname{Lat} \mathcal{A}$. An operator $T \in \mathcal{B}(H)$ is called reflexive if $\operatorname{Alg}\{T\}$ is reflexive.
H. Bercovici, C. Foiaş and B. Sz.-Nagy [3] studied reflexivity of C_{0} contractions and their commutants. They showed also that if the commutant of a C_{0} contraction T is reflexive then T is also reflexive. Generally, the reflexivity of $\{T\}^{\prime}$ does not imply the reflexivity of the operator T [6].

The reflexivity of subalgebras was studied for the first time in [12]. The notion of reflexivity of algebras of operators was generalized to subspaces of operators by V. S. Shul'man [13]:

Definition 1.1. Let \mathcal{M} be a subset of $\mathcal{B}\left(H, H^{\prime}\right)$. Then the reflexive closure of \mathcal{M} is

$$
\operatorname{ref} \mathcal{M}=\bigcap_{x \in H}\left\{T \in \mathcal{B}\left(H, H^{\prime}\right): T x \in \bigvee\{M x: M \in \mathcal{M}\}\right\}
$$

A (closed linear) subspace $\mathcal{M} \subset \mathcal{B}\left(H, H^{\prime}\right)$ is called reflexive if $\mathcal{M}=\operatorname{ref} \mathcal{M}$.
Clearly, in Definition 1.1 the Hilbert spaces H, H^{\prime} can be replaced by arbitrary Banach spaces. A stronger concept of hyperreflexivity was introduced for algebras in [1] and extended to subspaces in [10].

Definition 1.2. Let X, X^{\prime} be complex Banach spaces and let \mathcal{M} be a normclosed subspace of $\mathcal{B}\left(X, X^{\prime}\right)$. \mathcal{M} is called hyperreflexive if there exists $c>0$ such that for all $T \in \mathcal{B}\left(X, X^{\prime}\right)$

$$
\operatorname{dist}(T, \mathcal{M}) \leqslant c \alpha(T, \mathcal{M}), \text { where } \alpha(T, M)=\sup \{\operatorname{dist}(T x, \mathcal{M} x): x \in H,\|x\|=1\}
$$

$\inf \{c>0: \operatorname{dist}(T, \mathcal{M}) \leqslant c \alpha(T, \mathcal{M})\}$ is called the hyperreflexivity constant of \mathcal{M}.
Note that if \mathcal{M} is hyperreflexive then it is reflexive. It is well-known that if both H and H^{\prime} are finite-dimensional then reflexivity and hyperreflexivity coincide. In [11, Theorem 2.5] V. Müller and M. Ptak have shown that if X, X^{\prime} are arbitrary Banach spaces and \mathcal{M} is a finite dimensional subspace of $\mathcal{B}\left(X, X^{\prime}\right)$ then \mathcal{M} is reflexive if and only if it is hyperreflexive. Clearly, if \mathcal{M} is a subalgebra of $\mathcal{B}(H)$ then ref $\mathcal{M}=$ Alg Lat M.

In [13] reflexivity of the space

$$
I\left(T, T^{\prime}\right)=\left\{A \in \mathcal{B}\left(H, H^{\prime}\right): A T=T^{\prime} A\right\}
$$

of operators intertwining $T \in \mathcal{B}(H)$ and $T^{\prime} \in \mathcal{B}\left(H^{\prime}\right)$ was studied and a characterization of reflexive spaces $I\left(T, T^{\prime}\right)$ was given in the case of isometries T, T^{\prime}. Moreover, it was stated that if $\operatorname{dim} H<\infty, \operatorname{dim} H^{\prime}<\infty$ then $I\left(T, T^{\prime}\right)$ is reflexive if T or T^{\prime}
is similar to a normal operator. In [5] $\operatorname{Alg}\{T\}^{\prime}$ was described if $\operatorname{dim} H<\infty$ and this showed that $\{T\}^{\prime}$ is reflexive if and only if T is similar to a normal operator or equivalently, if all roots of the minimal polynomial of T are simple.

In [20] we described (using the Jordan forms of $\left.T \in \mathcal{B}(H), T^{\prime} \in \mathcal{B}\left(H^{\prime}\right)\right) I\left(T, T^{\prime}\right)$ and ref $I\left(T, T^{\prime}\right)$ in finite-dimensional spaces and we showed that $I\left(T, T^{\prime}\right)$ is reflexive if all roots of the greatest common divisor of the minimal polynomials of T and T^{\prime} are simple. The purpose of this paper is to extend this result to pairs of weak contractions. To prove our results we use the fact that quasi-similarity preserves reflexivity of $I\left(T, T^{\prime}\right)$. We give an example showing that quasi-similarity does not preserve hyperreflexivity of $I\left(T, T^{\prime}\right)$.

2. Compressions of the unilateral shift

We will use the terminology and results of Sz.-Nagy-Foiaş dilation theory [14]. In particular, H^{2}, H^{∞} mean the Hardy spaces of analytic functions in the unit disc, $S(\Theta)$ means the compression of the unilateral shift S onto the space $H(\Theta)=H^{2} \ominus$ ΘH^{2}. For $f, g \in H^{\infty}$ we write $f \mid g(f$ divides $g)$ if there exists $\varphi \in H^{\infty}$ such that $g=\varphi f$. The orthogonal projection onto a subspace K of a Hilbert space H is denoted by P_{K}. For $f_{1}, f_{2} \in H^{\infty}$ we denote by $f_{1} \wedge f_{2}$ the greatest common inner divisor of f_{1} and f_{2}.

The following result is an easy consequence of [2, Theorem III.1.16].
Theorem 2.1. Let v_{1}, v_{2}, d be inner functions, $v_{1} \wedge v_{2}=1$. Put $\Theta_{1}=v_{1} d$, $\Theta_{2}=v_{2} d$. Then
(i) $X \in I\left(S\left(\Theta_{1}\right), S\left(\Theta_{2}\right)\right)$ if and only if there exists a function $\varphi \in H^{\infty}$ such that

$$
X=P_{H\left(\Theta_{2}\right)} u(S) \mid H\left(\Theta_{1}\right), \quad \text { where } \quad u=v_{2} \varphi
$$

Moreover, $X=0$ if and only if $d \mid \varphi$.
(ii) An operator $A \in \operatorname{ref} I\left(S\left(\Theta_{1}\right), S\left(\Theta_{2}\right)\right)$ if and only if

$$
\begin{aligned}
& A \mid H^{2} \ominus d H^{2} \in \operatorname{ref} I\left(S(d), S\left(\Theta_{2}\right) \mid v_{2}\left(H^{2} \ominus d H^{2}\right)\right), \\
\text { and } \quad & A \mid d\left(H^{2} \ominus v_{1} H^{2}\right)=0
\end{aligned}
$$

(iii) $I\left(S\left(\Theta_{1}\right), S\left(\Theta_{2}\right)\right)$ is reflexive if and only if $S(d)$ is reflexive.

Proof. (i) According to [2, Theorem III.1.16], $X \in I\left(S\left(\Theta_{1}\right), S\left(\Theta_{2}\right)\right)$ if and only if there exists an inner function u such that $X=P_{H\left(\Theta_{2}\right)} u(S) \mid H\left(\Theta_{1}\right)$ and $\Theta_{2} \mid u \Theta_{1}$. Since $v_{1} \wedge v_{2}=1$, we have $v_{2} d\left|u v_{1} d \Longleftrightarrow v_{2}\right| u$ and consequently there exists
$\varphi \in H^{\infty}$ such that $u=\varphi v_{2}$. Moreover, $X=0$ if and only if $\Theta_{2} \mid u$, i.e. if and only if $d \mid \varphi$.
(ii) $H\left(\Theta_{1}\right)$ and $H\left(\Theta_{2}\right)$ can be written as orthogonal sums

$$
H\left(\Theta_{1}\right)=\left(H^{2} \ominus d H^{2}\right) \oplus d\left(H^{2} \ominus v_{1} H^{2}\right), \quad H\left(\Theta_{2}\right)=\left(H_{2} \ominus v_{2} H^{2}\right) \oplus v_{2}\left(H^{2} \ominus d H^{2}\right)
$$

It is well-known that $v_{2}\left(H^{2} \ominus d H^{2}\right) \in$ Lat $S\left(\Theta_{2}\right)$. Using (i) we obtain for any $f \in$ $H\left(\Theta_{1}\right)$

$$
\bigvee_{X \in I\left(S\left(\Theta_{1}\right), S\left(\Theta_{2}\right)\right)} X f=\bigvee_{\varphi \in H^{\infty}} P_{H\left(\Theta_{2}\right)} v_{2} \varphi f \subset v_{2}\left(H^{2} \ominus d H^{2}\right)
$$

If $f \in d\left(H^{2} \ominus v_{1} H^{2}\right)$ then $v_{2} \varphi f \in d v_{2} H^{2} \perp H\left(\Theta_{2}\right)$, consequently

$$
\bigvee_{x \in I\left(S\left(\Theta_{1}\right), S\left(\Theta_{2}\right)\right)} X f=0 .
$$

Herefrom (ii) follows easily.
(iii) $S\left(\Theta_{2}\right) \mid v_{2} H(d)$ is unitarily equivalent to $S(d)$. So the reflexivity of $I\left(S\left(\Theta_{1}\right)\right.$, $S\left(\Theta_{2}\right)$) implies that the commutant of $S(d)$ is reflexive. Since $\{S(d)\}^{\prime}=\operatorname{Alg} S(d)$, this proves (iii).

3. General C_{0} contractions

To prove a characterization of pairs T, T^{\prime} of C_{0} contractions having reflexive $I\left(T, T^{\prime}\right)$ we need two simple lemmas.

Lemma 3.1. Let $T, X \in \mathcal{B}(H), T^{\prime}, Y \in \mathcal{B}\left(H^{\prime}\right)$ and $T X=X T, T^{\prime} Y=Y T^{\prime}$. Put $T_{X}=T\left|(X H)^{-}, T_{Y}^{\prime}=T^{\prime}\right|\left(Y H^{\prime}\right)^{-}$.

If $I\left(T, T^{\prime}\right)$ is reflexive then $I\left(T_{X}, T_{Y}^{\prime}\right)$ is reflexive as well.
Proof. Suppose that $A \in \operatorname{ref} I\left(T_{X}, T_{Y}^{\prime}\right)$. If $B \in I\left(T_{X}, T_{Y}^{\prime}\right)$ then $B X \in I\left(T, T^{\prime}\right)$. Therefore for all $h \in H$ we have

$$
A X h \in \bigvee_{B \in I\left(T_{X}, T_{Y}^{\prime}\right)} B X h \subset \bigvee_{C \in I\left(T, T^{\prime}\right)} C h \text {, i.e. } A X \in \operatorname{ref} I\left(T, T^{\prime}\right)
$$

and so $A T X=A X T=T^{\prime} A X=T_{Y}^{\prime} A X$, i.e. $A \in I\left(T_{X}, T_{Y}^{\prime}\right)$.

Lemma 3.2. Let $\vartheta_{1}, \Theta_{1}, \vartheta_{2}, \Theta_{2}$ be inner functions such that $\vartheta_{1} \mid \Theta_{1}$ and $\vartheta_{2} \mid \Theta_{2}$. If $I\left(S\left(\Theta_{1}\right), S\left(\Theta_{2}\right)\right)$ is reflexive then $I\left(S\left(\vartheta_{1}\right), S\left(\vartheta_{2}\right)\right)$ is reflexive as well.

Proof. Put $\varphi_{k}=\Theta_{k} / \vartheta_{k}, k=1,2$. Since $S\left(\vartheta_{k}\right)$ is unitarily equivalent to $S\left(\Theta_{i}\right) \mid\left(\varphi_{k}\left(S\left(\Theta_{k}\right)\right) H\left(\Theta_{k}\right)\right)^{-}$, Lemma 3.2 is a consequence of Lemma 3.1.

Now we are ready to state one of our main results.
Theorem 3.3. Let $T \in \mathcal{B}(H), T^{\prime} \in \mathcal{B}\left(H^{\prime}\right)$ be C_{0} contractions having minimal functions m, m^{\prime}, respectively. Let $d=m \wedge m^{\prime}$. Then $I\left(T, T^{\prime}\right)$ is reflexive if and only if the operator $S(d)$ is reflexive.

Proof. If $T_{1} \in \mathcal{B}\left(H_{1}\right)$ and $T_{1}^{\prime} \in \mathcal{B}\left(H_{1}^{\prime}\right)$ are quasisimilar to $T_{2} \in \mathcal{B}\left(H_{2}\right)$ and $T_{2}^{\prime} \in \mathcal{B}\left(H_{2}^{\prime}\right)$, respectively, then $I\left(T_{1}, T_{1}^{\prime}\right)$ is reflexive if and only if $I\left(T_{2}, T_{2}^{\prime}\right)$ is reflexive. This was first stated (without proof which is easy) in [13, Proposition 1]. Since any C_{0} contraction is quasisimilar to its Jordan model it is enough to prove the theorem for Jordan models

$$
T=\bigoplus_{\alpha} S\left(m_{\alpha}\right), \quad T^{\prime}=\bigoplus_{\beta} S\left(m_{\beta}^{\prime}\right)
$$

where \oplus means the direct orthogonal sum. According to [13, Proposition 2], $I\left(T, T^{\prime}\right)$ is reflexive if and only if each of the spaces $I\left(S\left(m_{\alpha}\right), S\left(m_{\beta}^{\prime}\right)\right)$ is reflexive. For all indices α, β, we have $m_{\alpha}\left|m, m_{\beta}^{\prime}\right| m^{\prime}$. Therefore, by Lemma 3.2, $I\left(T, T^{\prime}\right)$ is reflexive if and only if $I\left(S(m), S\left(m^{\prime}\right)\right)$ is reflexive. According to assertion (iii) of Theorem 2.1 this completes the proof.

Theorem 3.3 generalizes [3, Theorem B]. In finite-dimensional spaces we obtain the following corollary (a generalization of [5, Theorem 3]).

Corollary 3.4. Let H, H^{\prime} be finite-dimensional. Then $I\left(T, T^{\prime}\right)$ is reflexive if and only if all roots of the greatest common divisor of the minimal polynomials m_{T} and $m_{T^{\prime}}$ of T and T^{\prime}, respectively, are simple.

Proof. Replacing T and T^{\prime} by $\|T\|^{-1} T$ and $\left\|T^{\prime}\right\|^{-1} T^{\prime}$ we obtain a pair of contractions the minimal functions m, m^{\prime} of which are finite Blaschke products whose numerators are m_{T} and $m_{T^{\prime}}$, respectively. Then d is also a finite Blaschke product and its numerator is the greatest common inner divisor of the minimal polynomials m_{T} and $m_{T^{\prime}}$. It is well-known (see e.g. [7]) that then $S(d)$ is reflexive if and only if all zeroes of d are simple.

Note that in [20] Corollary 3.4 was proved more directly by describing $I\left(T, T^{\prime}\right)$ and ref $I\left(T, T^{\prime}\right)$ for nilpotent T and T^{\prime}. In the case $T=T^{\prime}$ this was done in [5].

4. Weak contractions

Now, let $T \in \mathcal{B}(H), T^{\prime} \in \mathcal{B}\left(H^{\prime}\right)$ be weak contractions. (For the definition of weak contractions and basic results we refer to [14, Chapter VIII]). It is well-known (see, e.g., [18]) that T and T^{\prime} can be splitted into orthogonal sums $T=T_{a c} \oplus T_{s u}$, $T^{\prime}=T_{a c}^{\prime} \oplus T_{s u}^{\prime}$ of their absolutely continuous and singular unitary parts and that

$$
I\left(T, T^{\prime}\right)=I\left(T_{a c}, T_{a c}^{\prime}\right) \oplus I\left(T_{s u}, T_{s u}^{\prime}\right)
$$

It follows that

$$
\operatorname{ref} I\left(T, T^{\prime}\right)=\operatorname{ref} I\left(T_{a c}, T_{a c}^{\prime}\right) \oplus \operatorname{ref} I\left(T_{s u}, T_{s u}^{\prime}\right)
$$

Since for normal operators A, B the space $I(A, B)$ is reflexive [13], $I\left(T, T^{\prime}\right)$ is reflexive if and only if so is $I\left(T_{a c}, T_{a c}^{\prime}\right)$. According to [17, Lemma 3] any absolutely continuous weak contraction S is similar to a completely non-unitary (c.n.u.) weak contraction S^{\prime} and, moreover, the C_{0} parts of S and S^{\prime} coincide. Since similarity (even quasisimilarity [13, Proposition 1]) preserves reflexivity of $I\left(T, T^{\prime}\right)$, it does not restrict generality if we suppose that T, T^{\prime} are c.n.u.

Theorem 4.1. Let $T \in \mathcal{B}(H), T^{\prime} \in \mathcal{B}\left(H^{\prime}\right)$ be c.n.u. weak contractions and let $T_{0} \in \mathcal{B}\left(H_{0}\right), T_{0}^{\prime} \in \mathcal{B}\left(H_{0}^{\prime}\right)$ be their C_{0} parts and $T_{1} \in \mathcal{B}\left(H_{1}\right), T_{1}^{\prime} \in \mathcal{B}\left(H_{1}^{\prime}\right)$ their C_{11} parts. Then
(i) if $X \in I\left(T, T^{\prime}\right)$ then $X H_{0} \subset H_{0}^{\prime}$ and $X H_{1} \subset H_{1}^{\prime}$;
(ii) if $A \in \operatorname{ref} I\left(T, T^{\prime}\right)$ then its restrictions to subspaces H_{0}, H_{1} satisfy $A_{0}=A \mid H_{0} \in$ $\operatorname{ref} I\left(T_{0}, T_{0}^{\prime}\right), A_{1}=A \mid H_{1} \in \operatorname{ref} I\left(T_{1}, T_{1}^{\prime}\right)$;
(iii) $I\left(T, T^{\prime}\right)$ is reflexive if and only if $I\left(T_{0}, T_{0}^{\prime}\right)$ is reflexive.

Proof. (i) According to [14, Chapters II. 4 and VIII.2]

$$
\begin{array}{rlrl}
H_{0} & =\left\{h \in H: T^{n} h \rightarrow 0\right\}, & H_{0}^{\prime} & =\left\{h^{\prime} \in H^{\prime}: T^{\prime n} h^{\prime} \rightarrow 0\right\} \\
\text { and } \quad H_{1}^{\perp} & =\left\{h \in H: T^{* n} h \rightarrow 0\right\}, \quad H_{1}^{\prime \perp} & =\left\{h^{\prime} \in H^{\prime}: T^{\prime * n} h^{\prime} \rightarrow 0\right\} .
\end{array}
$$

$X T=T^{\prime} X$ implies $X T^{n}=T^{\prime n} X$ for all positive integers n. Therefore $h_{0} \in H_{0} \Longrightarrow$ $\lim T^{\prime n} X h_{0}=\lim X T^{n} h_{0}=0$, i.e. $X h_{0} \in H_{0}^{\prime}$. By taking adjoints we obtain $X T=$ $T^{\prime} X \Longrightarrow T^{*} X^{*}=X^{*} T^{*}$ and so $X^{*} H_{1}^{\prime \perp} \subset H_{1}^{\perp}$, which is equivalent to $X H_{1} \subset H_{1}^{\prime}$.
(ii) This is an obvious consequence of (i).
(iii) There are operators $R, S \in\{T\}^{\prime \prime}, R^{\prime}, S^{\prime} \in\left\{T^{\prime}\right\}^{\prime \prime}$ such that

$$
\begin{array}{ll}
H_{0}=\operatorname{ker} R=(S H)^{-}, & H_{1}=(R H)^{-}=\operatorname{ker} S \\
H_{0}^{\prime}=\operatorname{ker} R^{\prime}=\left(S^{\prime} H\right)^{-}, & H_{1}=\left(R^{\prime} H\right)^{-}=\operatorname{ker} S^{\prime}
\end{array}
$$

([14], [15], [16, Theorem 1]). Suppose that $I\left(T, T^{\prime}\right)$ is reflexive. Then, by Lemma 3.1, $I\left(T_{0}, T_{0}^{\prime}\right)$ is reflexive. Conversely, if $I\left(T_{0}, T_{0}^{\prime}\right)$ is reflexive and $A \in \operatorname{ref} I\left(T, T^{\prime}\right)$ then by (ii) $A \mid H_{0} \in \operatorname{ref} I\left(T_{0}, T_{0}^{\prime}\right)$ and $A \mid H_{1} \in \operatorname{ref} I\left(T_{1}, T_{1}^{\prime}\right)$. The operators T_{1}, T_{1}^{\prime} are quasisimilar to unitary operators and so $I\left(T_{1}, T_{1}^{\prime}\right)$ is reflexive. Therefore $A \mid H_{0} \in I\left(T_{0}, T_{0}^{\prime}\right)$ and $A \mid H_{1} \in I\left(T_{1}, T_{1}^{\prime}\right)$. Since $H_{0} \vee H_{1}=H$, this shows that $I\left(T, T^{\prime}\right)$ is reflexive.

Theorem 4.2. Let T, T^{\prime} be weak contractions and let their C_{0} parts T_{0}, T_{0}^{\prime} have minimal functions m, m^{\prime}, respectively. Let $d=m \wedge m^{\prime}$ be the greatest common inner divisor of m, m^{\prime}. Then the space $I\left(T, T^{\prime}\right)$ is reflexive if and only if the operator $S(d)$ is reflexive.

Proof. This is an obvious consequence of Theorems 3.3 and 4.1.
Remarks.

1. Theorems 4.1 and 4.2 are generalizations of [19, Theorem 5.1].
2. Inner functions m for which $S(m)$ is a reflexive operator were characterized in [7, Theorem 3.1].

5. Quasisimilarity does not preserve hyperreflexivity

First, let us recall the definition of quasisimilarity:
Definition 5.1. $T \in B(H), S \in B(K)$ are quasi-similar (we write $T \stackrel{\text { q.s. }}{\sim} S$) if there are quasi-affinities (injective operators with dense range) $X \in I(T, S), Y \in$ $I(S, T)$.

Example 5.2. Put $H_{n}=H_{n}^{\prime}=C^{2}, H=H^{\prime}=\bigoplus_{n=1}^{\infty} H_{n}$,

$$
\begin{gathered}
T_{n}=\frac{1}{n}\left(\begin{array}{cc}
2 n & n \\
0 & 2 n+1
\end{array}\right), \quad T_{n}^{\prime}=\frac{1}{n}\left(\begin{array}{cc}
2 n & 0 \\
-n & 2 n+1
\end{array}\right), \\
S_{n}=S_{n}^{\prime}=\frac{1}{n}\left(\begin{array}{cc}
2 n+1 & 0 \\
0 & 2 n
\end{array}\right), \\
T=\bigoplus_{n=1}^{\infty} T_{n}, \quad T^{\prime}=\bigoplus_{n=1}^{\infty} T_{n}^{\prime}, \quad S=S^{\prime}=\bigoplus_{n=1}^{\infty} S_{n} .
\end{gathered}
$$

Then, obviously, $T \in \mathcal{B}(H), T^{\prime} \in \mathcal{B}\left(H^{\prime}\right), S=S^{\prime} \in \mathcal{B}(H)$.
The following assertions hold.
(a) $T \stackrel{\text { q.s. }}{\sim} S=S^{\prime} \stackrel{\text { q.s. }}{\sim} T^{\prime}$,
(b) all $I\left(T_{m}, T_{n}^{\prime}\right)$ are hyperreflexive,
(c) $I\left(T, T^{\prime}\right)$ is not hyperreflexive,
(d) $I\left(S, S^{\prime}\right)$ is hyperreflexive.

Proof. The common minimal polynomial $(\lambda-2 n)(\lambda-2 n-1)$ of $T_{n}, T_{n}^{\prime}, S_{n}$ has simple roots, which implies that all $I\left(T_{m}, T_{n}^{\prime}\right)$ are reflexive. In finite dimension this implies that they are also hyperreflexive and this proves (b).

Putting $A_{n}=\left(\begin{array}{ll}0 & n \\ 0 & 1\end{array}\right), B_{n}=\left(\begin{array}{cc}0 & 0 \\ -n & 1\end{array}\right), C_{n}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ we obtain

$$
T_{n}=\frac{1}{n}\left(2 n I+A_{n}\right), T_{n}^{\prime}=\frac{1}{n}\left(2 n I+B_{n}\right), S_{n}=S_{n}^{\prime}=\frac{1}{n}\left(2 n I+C_{n}\right)
$$

and if $P_{n}=\left(\begin{array}{cc}n & 1 \\ 1 & 0\end{array}\right)$ then $P_{n}^{-1}=\left(\begin{array}{cc}0 & 1 \\ 1 & -n\end{array}\right)$ and $A_{n}=P_{n} C_{n} P_{n}^{-1}$.
Hence $A_{n} P_{n}=P_{n} C_{n}, P_{n}^{-1} A_{n}=C_{n} P_{n}^{-1}$ and after perturbation by $2 n I, T_{n} P_{n}=$ $P_{n} S_{n}, P_{n}^{-1} T_{n}=S_{n} P_{n}^{-1}$.

Now, it is easy to compute $\left\|P_{n}\right\|$ and $\left\|P_{n}^{-1}\right\|$:

$$
P_{n}^{\top}=P_{n} \Longrightarrow\left\|P_{n}\right\|=\varrho\left(P_{n}\right)=\frac{n+\sqrt{n^{2}+4}}{2}=\varrho\left(P_{n}^{-1}\right)=\left\|P_{n}^{-1}\right\|
$$

Putting $Y=\bigoplus_{n=1}^{\infty} n^{-1} P_{n}, X=\bigoplus_{n=1}^{\infty} n^{-1} P_{n}^{-1}$ we obtain quasiaffinities $X \in I(T, S)$, $Y \in I(S, T)$, i.e., $T \sim$ q.S. S. Similarly, it can be proved that $T \sim \stackrel{\text { q.s.s. }}{\sim} S$. This completes the proof of (a).
(c): $m \neq n \Longrightarrow I\left(T_{n}, T_{m}^{\prime}\right)=\{0\}$ because their minimal polynomials are relatively prime. Therefore $I\left(T, T^{\prime}\right)=\bigoplus_{n=1}^{\infty} I\left(T_{n}, T_{n}^{\prime}\right)$ and similarly $I\left(S, S^{\prime}\right)=\bigoplus_{n=1}^{\infty} I\left(S_{n}, S_{n}^{\prime}\right)$ By a simple direct computation we obtain $X_{n} \in I\left(T_{n}, T_{n}^{\prime}\right)=I\left(A_{n}, B_{n}\right)$ if and only if $X_{n}=\left(\begin{array}{cc}0 & \alpha \\ \beta & -n(\alpha+\beta)\end{array}\right)$ for some $\alpha, \beta \in C . S I\left(T_{n}, T_{n}^{\prime}\right)=\mathcal{S}_{n}$ from an example due to Kraus and Larson [9] (see also [4, Example 58.9]) who proved that \mathcal{S}_{n} is hyperreflexive with $\kappa_{\mathcal{S}_{n}} \geqslant \frac{1}{3} n$. So $I\left(T, T^{\prime}\right)=\bigoplus_{n=1}^{\infty} \mathcal{S}_{n}$ is not hyperreflexive.
(d): Observe that $I\left(S_{n}, S_{n}\right)=I\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right)$ for all n, i.e. its hyperreflexivity constant does not depend on n. Using a recent result of K. Kliś and M. Ptak [8, Theorem 5.1] we obtain that $I\left(S, S^{\prime}\right)$ is hyperreflexive.

It easy to show that if $T=\bigoplus_{n=1}^{\infty} T_{n}, \quad T^{\prime}=\bigoplus_{n=1}^{\infty} T_{n}^{\prime}$ and $I\left(T, T^{\prime}\right)$ is hyperreflexive, then all $I\left(T_{n}, T_{m}^{\prime}\right)$ are hyperreflexive. From Example 5.2 it follows that the converse implication does not hold.

References

[1] W. B. Arveson: Ten Lectures in Operator Algebras. C.B.M.S. Regional Conf. Ser. in Math, Amer. Math. Soc., Providence, 1984.
[2] H. Bercovici: Operator Theory and Arithmetic in H^{∞}. Mathematical surveys and monographs 26, A.M.S. Providence, Rhode Island, 1988.
zbl
[3] H. Bercovici, C. Foiaş, B. Sz.-Nagy: Reflexive and hyper-reflexive operators of class C_{0}. Acta Sci. Math. (Szeged) 43 (1981), 5-13.
[4] J. B. Conway: A Course in Operator Theory. American Mathematical Society, Providence RI, 2000.
[5] S. Drahovský, M. Zajac: Hyperreflexive operators on finite dimensional Hilbert spaces. Math. Bohem. 118 (1993), 249-254.
[6] S. Drahovský, M. Zajac: Hyperinvariant subspaces of operators on Hilbert spaces. Functional Analysis and Operator Theory, Banach Center Publications, vol 30. Institute of Mathematics, Warszawa, 1994, pp. 117-126.
[7] V. V. Kapustin: Reflexivity of operators: general methods and a criterion for almost isometric contractions. Algebra i Analiz 4 (1992), 141-160 (In Russian.) ;2biglish transl.: St.Petersburg Math. J. 4 (1993), 319-335.
[8] K. Kliś, M. Ptak: k-hyperreflexive subspaces. Houston J. Math. l32 (2006), 299-313.
zbl
[9] J. Kraus, D. Larson: Some applications of technique for constructing reflexive operator algebras. J. Operator Theory 13 (1985), 227-236.
[10] J. Kraus, D. Larson: Reflexivity and distance formulae. Proc. London Math. Soc. 53 (1986), 340-356.
zbl
[11] V. Müller, M. Ptak: Hyperreflexivity of finite-dimensional subspaces. J. Funct. Anal. 218 (2005), 395-408.
[12] D. Sarason: Invariant subspaces and unstarred operator algebras. Pacific J. Math. 17 (1966), 511-517.
zbl
[13] V.S. Shul'man: The Fuglede-Putnam theorem and reflexivity. Dokl. Akad. Nauk SSSR 210 (1973), 543-544 (In Russian.); English transl.: Soviet Math. Dokl. 14 (1973), 783-786.
[14] B. Sz.-Nagy, C. Foiaş: Harmonic Analysis of Operators on Hilbert Space. North-Holland, Akadémiai kiadó, Budapest, 1970.
[15] P. Y. Wu: Hyperinvariant subspaces of weak contractions. Acta Sci. Math. (Szeged) 41 (1979), 259-266.
[16] M. Zajac: Hyperinvariant subspaces of weak contractions. Operator Theory: Advances and Applications. vol. 14, Birkhäuser, Basel, 1984, pp. 291-299.
[17] M. Zajac: Hyperinvariant subspaces of weak contractions. II. Operator Theory: Advances and Applications. vol. 28, Birkhäuser, Basel, 1988, pp. 317-322.
[18] M. Zajac: On the singular unitary part of a contraction. Revue Roum. Math. Pures Appl. 35 (1990), 379-384.
[19] M. Zajac: Hyper-reflexivity of isometries and weak contractions. J. Operator Theory 25 (1991), 43-51.
[20] M. Zajac: Reflexivity of intertwining operators in finite dimensional spaces. Proc. 2nd Workshop Functional Analysis and its Applications, Sept. 16-18, 1999, Nemecká, Slovakia, 75-78.

Author's address: Michal Zajac, Department of Mathematics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava 1, Slovak Republic, e-mail: michal.zajac@stuba.sk.

