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Abstract. Let T, T ′ be weak contractions (in the sense of Sz.-Nagy and Foiaş), m, m′ the
minimal functions of their C0 parts and let d be the greatest common inner divisor of m, m′.
It is proved that the space I(T, T ′) of all operators intertwining T, T ′ is reflexive if and only
if the model operator S(d) is reflexive. Here S(d) means the compression of the unilateral
shift onto the space H2⊖dH2. In particular, in finite-dimensional spaces the space I(T, T ′)
is reflexive if and only if all roots of the greatest common divisor of minimal polynomials of
T, T ′ are simple. The paper is concluded by an example showing that quasisimilarity does
not preserve hyperreflexivity of I(T, T ′).
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1. Introduction

Let H , H ′ be complex separable Hilbert spaces, let B(H, H ′) denote the space

of all bounded linear operators H → H ′. If H = H ′ then B(H, H) = B(H) is the

algebra of all bounded linear operators on H . By a subspace we mean a closed linear

subspace. For a subset A ⊂ H , we denote by
∨

A the closed linear span of A. A

subspace L ⊂ H is called invariant for T ∈ B(H) if TL ⊂ L. As usual, T |L means
the restriction of the operator T to L. If A ⊂ B(H) then AlgA denotes the smallest
weakly closed subalgebra of B(H) containing A and the identity. LatA denotes the
set of all subspaces of H that are invariant for each A ∈ A. If L is a set of subspaces
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of H , then AlgL = {T ∈ B(H) : L ⊂ LatT }. A (unital weakly closed) subalgebra
A ⊂ B(H) is called reflexive if A = Alg LatA. An operator T ∈ B(H) is called

reflexive if Alg{T } is reflexive.
H.Bercovici, C.Foiaş and B. Sz.-Nagy [3] studied reflexivity of C0 contractions and

their commutants. They showed also that if the commutant of a C0 contraction T

is reflexive then T is also reflexive. Generally, the reflexivity of {T }′ does not imply
the reflexivity of the operator T [6].

The reflexivity of subalgebras was studied for the first time in [12]. The notion

of reflexivity of algebras of operators was generalized to subspaces of operators by

V. S. Shul’man [13]:

Definition 1.1. Let M be a subset of B(H, H ′). Then the reflexive closure of

M is

ref M =
⋂

x∈H

{

T ∈ B(H, H ′) : Tx ∈
∨

{Mx : M ∈ M}
}

.

A (closed linear) subspaceM ⊂ B(H, H ′) is called reflexive ifM = ref M.

Clearly, in Definition 1.1 the Hilbert spaces H, H ′ can be replaced by arbitrary

Banach spaces. A stronger concept of hyperreflexivity was introduced for algebras

in [1] and extended to subspaces in [10].

Definition 1.2. Let X, X ′ be complex Banach spaces and let M be a norm-

closed subspace of B(X, X ′). M is called hyperreflexive if there exists c > 0 such

that for all T ∈ B(X, X ′)

dist(T,M) 6 cα(T,M), where α(T, M) = sup{dist(Tx,Mx) : x ∈ H, ‖x‖ = 1}.

inf
{

c > 0: dist(T,M) 6 cα(T,M)
}

is called the hyperreflexivity constant ofM.

Note that ifM is hyperreflexive then it is reflexive. It is well-known that if both H

and H ′ are finite-dimensional then reflexivity and hyperreflexivity coincide. In [11,

Theorem 2.5] V. Müller and M. Ptak have shown that if X, X ′ are arbitrary Banach

spaces and M is a finite dimensional subspace of B(X, X ′) then M is reflexive if

and only if it is hyperreflexive. Clearly, ifM is a subalgebra of B(H) then ref M =

Alg LatM .

In [13] reflexivity of the space

I(T, T ′) = {A ∈ B(H, H ′) : AT = T ′A}

of operators intertwining T ∈ B(H) and T ′ ∈ B(H ′) was studied and a characteriza-

tion of reflexive spaces I(T, T ′) was given in the case of isometries T, T ′. Moreover,

it was stated that if dimH < ∞, dim H ′ < ∞ then I(T, T ′) is reflexive if T or T ′
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is similar to a normal operator. In [5] Alg{T }′ was described if dimH < ∞ and

this showed that {T }′ is reflexive if and only if T is similar to a normal operator or
equivalently, if all roots of the minimal polynomial of T are simple.

In [20] we described (using the Jordan forms of T ∈ B(H), T ′ ∈ B(H ′)) I(T, T ′)

and ref I(T, T ′) in finite-dimensional spaces and we showed that I(T, T ′) is reflexive

if all roots of the greatest common divisor of the minimal polynomials of T and

T ′ are simple. The purpose of this paper is to extend this result to pairs of weak

contractions. To prove our results we use the fact that quasi-similarity preserves

reflexivity of I(T, T ′). We give an example showing that quasi-similarity does not

preserve hyperreflexivity of I(T, T ′).

2. Compressions of the unilateral shift

We will use the terminology and results of Sz.-Nagy-Foiaş dilation theory [14]. In

particular, H2, H∞ mean the Hardy spaces of analytic functions in the unit disc,

S(Θ) means the compression of the unilateral shift S onto the space H(Θ) = H2 ⊖
ΘH2. For f, g ∈ H∞ we write f | g (f divides g) if there exists ϕ ∈ H∞ such

that g = ϕf . The orthogonal projection onto a subspace K of a Hilbert space H is

denoted by PK . For f1, f2 ∈ H∞ we denote by f1 ∧ f2 the greatest common inner

divisor of f1 and f2.

The following result is an easy consequence of [2, Theorem III.1.16].

Theorem 2.1. Let v1, v2, d be inner functions, v1 ∧ v2 = 1. Put Θ1 = v1d,

Θ2 = v2d. Then

(i) X ∈ I(S(Θ1), S(Θ2)) if and only if there exists a function ϕ ∈ H∞ such that

X = PH(Θ2)u(S)|H(Θ1), where u = v2ϕ.

Moreover, X = 0 if and only if d | ϕ.

(ii) An operator A ∈ ref I(S(Θ1), S(Θ2)) if and only if

A|H2 ⊖ dH2 ∈ ref I
(

S(d), S(Θ2)|v2(H
2 ⊖ dH2)

)

,

and A|d(H2 ⊖ v1H
2) = 0.

(iii) I(S(Θ1), S(Θ2)) is reflexive if and only if S(d) is reflexive.

P r o o f. (i) According to [2, Theorem III.1.16], X ∈ I
(

S(Θ1), S(Θ2)
)

if and only

if there exists an inner function u such that X = PH(Θ2)u(S)
∣

∣H(Θ1) and Θ2 | uΘ1.

Since v1 ∧ v2 = 1, we have v2d | uv1d ⇐⇒ v2 | u and consequently there exists
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ϕ ∈ H∞ such that u = ϕv2. Moreover, X = 0 if and only if Θ2 | u, i.e. if and only if

d | ϕ.

(ii) H(Θ1) and H(Θ2) can be written as orthogonal sums

H(Θ1) = (H2 ⊖ dH2) ⊕ d(H2 ⊖ v1H
2), H(Θ2) = (H2 ⊖ v2H

2) ⊕ v2(H
2 ⊖ dH2).

It is well-known that v2(H
2 ⊖ dH2) ∈ LatS(Θ2). Using (i) we obtain for any f ∈

H(Θ1)
∨

X∈I(S(Θ1),S(Θ2))

Xf =
∨

ϕ∈H∞

PH(Θ2)v2ϕf ⊂ v2(H
2 ⊖ dH2).

If f ∈ d(H2 ⊖ v1H
2) then v2ϕf ∈ dv2H

2 ⊥ H(Θ2), consequently

∨

X∈I(S(Θ1),S(Θ2))

Xf = 0.

Herefrom (ii) follows easily.

(iii) S(Θ2)|v2H(d) is unitarily equivalent to S(d). So the reflexivity of I(S(Θ1),

S(Θ2)) implies that the commutant of S(d) is reflexive. Since {S(d)}′ = Alg S(d),

this proves (iii). �

3. General C0 contractions

To prove a characterization of pairs T , T ′ of C0 contractions having reflexive

I(T, T ′) we need two simple lemmas.

Lemma 3.1. Let T, X ∈ B(H), T ′, Y ∈ B(H ′) and TX = XT , T ′Y = Y T ′. Put

TX = T |(XH)−, T ′
Y = T ′|(Y H ′)−.

If I(T, T ′) is reflexive then I(TX , T ′
Y ) is reflexive as well.

P r o o f. Suppose that A ∈ ref I(TX , T ′
Y ). If B ∈ I(TX , T ′

Y ) then BX ∈ I(T, T ′).

Therefore for all h ∈ H we have

AXh ∈
∨

B∈I(TX ,T ′

Y
)

BXh ⊂
∨

C∈I(T,T ′)

Ch, i.e. AX ∈ ref I(T, T ′)

and so ATX = AXT = T ′AX = T ′
Y AX , i.e. A ∈ I(TX , T ′

Y ). �
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Lemma 3.2. Let ϑ1, Θ1, ϑ2, Θ2 be inner functions such that ϑ1 | Θ1 and ϑ2 | Θ2.

If I(S(Θ1), S(Θ2)) is reflexive then I(S(ϑ1), S(ϑ2)) is reflexive as well.

P r o o f. Put ϕk = Θk/ϑk, k = 1, 2. Since S(ϑk) is unitarily equivalent to

S(Θi)|
(

ϕk(S(Θk))H(Θk)
)−
, Lemma 3.2 is a consequence of Lemma 3.1. �

Now we are ready to state one of our main results.

Theorem 3.3. Let T ∈ B(H), T ′ ∈ B(H ′) be C0 contractions having minimal

functions m, m′, respectively. Let d = m ∧ m′. Then I(T, T ′) is reflexive if and only

if the operator S(d) is reflexive.

P r o o f. If T1 ∈ B(H1) and T ′
1 ∈ B(H ′

1) are quasisimilar to T2 ∈ B(H2) and

T ′
2 ∈ B(H ′

2), respectively, then I(T1, T
′
1) is reflexive if and only if I(T2, T

′
2) is reflexive.

This was first stated (without proof which is easy) in [13, Proposition 1]. Since any

C0 contraction is quasisimilar to its Jordan model it is enough to prove the theorem

for Jordan models

T =
⊕

α

S(mα), T ′ =
⊕

β

S(m′
β),

where ⊕ means the direct orthogonal sum. According to [13, Proposition 2], I(T, T ′)

is reflexive if and only if each of the spaces I(S(mα), S(m′
β)) is reflexive. For all

indices α, β, we have mα | m, m′
β | m′. Therefore, by Lemma 3.2, I(T, T ′) is

reflexive if and only if I(S(m), S(m′)) is reflexive. According to assertion (iii) of

Theorem 2.1 this completes the proof. �

Theorem 3.3 generalizes [3, Theorem B]. In finite-dimensional spaces we obtain

the following corollary (a generalization of [5, Theorem 3]).

Corollary 3.4. Let H , H ′ be finite-dimensional. Then I(T, T ′) is reflexive if

and only if all roots of the greatest common divisor of the minimal polynomials mT

and mT ′ of T and T ′, respectively, are simple.

P r o o f. Replacing T and T ′ by ‖T ‖−1T and ‖T ′‖−1T ′ we obtain a pair of

contractions the minimal functionsm, m′ of which are finite Blaschke products whose

numerators are mT and mT ′ , respectively. Then d is also a finite Blaschke product

and its numerator is the greatest common inner divisor of the minimal polynomials

mT and mT ′ . It is well-known (see e.g. [7]) that then S(d) is reflexive if and only if

all zeroes of d are simple. �

Note that in [20] Corollary 3.4 was proved more directly by describing I(T, T ′)

and ref I(T, T ′) for nilpotent T and T ′. In the case T = T ′ this was done in [5].
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4. Weak contractions

Now, let T ∈ B(H), T ′ ∈ B(H ′) be weak contractions. (For the definition of

weak contractions and basic results we refer to [14, Chapter VIII]). It is well-known

(see, e.g., [18]) that T and T ′ can be splitted into orthogonal sums T = Tac ⊕ Tsu,

T ′ = T ′
ac ⊕ T ′

su of their absolutely continuous and singular unitary parts and that

I(T, T ′) = I(Tac, T
′
ac) ⊕ I(Tsu, T ′

su).

It follows that

ref I(T, T ′) = ref I(Tac, T
′
ac) ⊕ ref I(Tsu, T ′

su).

Since for normal operatorsA, B the space I(A, B) is reflexive [13], I(T, T ′) is reflexive

if and only if so is I(Tac, T
′
ac). According to [17, Lemma 3] any absolutely continuous

weak contraction S is similar to a completely non-unitary (c.n.u.) weak contraction

S′ and, moreover, the C0 parts of S and S′ coincide. Since similarity (even quasi-

similarity [13, Proposition 1]) preserves reflexivity of I(T, T ′), it does not restrict

generality if we suppose that T , T ′ are c.n.u.

Theorem 4.1. Let T ∈ B(H), T ′ ∈ B(H ′) be c.n.u. weak contractions and let

T0 ∈ B(H0), T ′
0 ∈ B(H ′

0) be their C0 parts and T1 ∈ B(H1), T ′
1 ∈ B(H ′

1) their C11

parts. Then

(i) if X ∈ I(T, T ′) then XH0 ⊂ H ′
0 and XH1 ⊂ H ′

1;

(ii) if A ∈ ref I(T, T ′) then its restrictions to subspaces H0, H1 satisfy A0 = A|H0 ∈
ref I(T0, T

′
0), A1 = A|H1 ∈ ref I(T1, T

′
1);

(iii) I(T, T ′) is reflexive if and only if I(T0, T
′
0) is reflexive.

P r o o f. (i) According to [14, Chapters II.4 and VIII.2]

H0 = {h ∈ H : T nh → 0}, H ′
0 = {h′ ∈ H ′ : T ′nh′ → 0}

and H⊥
1 = {h ∈ H : T ∗nh → 0}, H ′

1
⊥

= {h′ ∈ H ′ : T ′∗n
h′ → 0}.

XT = T ′X implies XT n = T ′nX for all positive integers n. Therefore h0 ∈ H0 =⇒
limT ′nXh0 = limXT nh0 = 0, i.e. Xh0 ∈ H ′

0. By taking adjoints we obtain XT =

T ′X =⇒ T ∗X∗ = X∗T ′∗ and so X∗H ′⊥
1 ⊂ H⊥

1 , which is equivalent to XH1 ⊂ H ′
1.

(ii) This is an obvious consequence of (i).

(iii) There are operators R, S ∈ {T }′′, R′, S′ ∈ {T ′}′′ such that

H0 = kerR = (SH)−, H1 = (RH)− = kerS,

H ′
0 = kerR′ = (S′H)−, H1 = (R′H)− = kerS′
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([14], [15], [16, Theorem 1]). Suppose that I(T, T ′) is reflexive. Then, by Lemma 3.1,

I(T0, T
′
0) is reflexive. Conversely, if I(T0, T

′
0) is reflexive and A ∈ ref I(T, T ′) then by

(ii) A|H0 ∈ ref I(T0, T
′
0) and A|H1 ∈ ref I(T1, T

′
1). The operators T1, T

′
1 are quasi-

similar to unitary operators and so I(T1, T
′
1) is reflexive. Therefore A|H0 ∈ I(T0, T

′
0)

and A|H1 ∈ I(T1, T
′
1). Since H0 ∨ H1 = H , this shows that I(T, T ′) is reflexive. �

Theorem 4.2. Let T , T ′ be weak contractions and let their C0 parts T0, T ′
0

have minimal functions m, m′, respectively. Let d = m∧m′ be the greatest common

inner divisor of m, m′. Then the space I(T, T ′) is reflexive if and only if the operator

S(d) is reflexive.

P r o o f. This is an obvious consequence of Theorems 3.3 and 4.1. �

R em a r k s.

1. Theorems 4.1 and 4.2 are generalizations of [19, Theorem 5.1].

2. Inner functions m for which S(m) is a reflexive operator were characterized in

[7, Theorem 3.1].

5. Quasisimilarity does not preserve hyperreflexivity

First, let us recall the definition of quasisimilarity:

Definition 5.1. T ∈ B(H), S ∈ B(K) are quasi-similar (we write T
q.s.∼ S) if

there are quasi-affinities (injective operators with dense range) X ∈ I(T, S), Y ∈
I(S, T ).

E x am p l e 5.2. Put Hn = H ′
n = C2, H = H ′ =

∞
⊕

n=1
Hn,

Tn =
1

n

(

2n n

0 2n + 1

)

, T ′
n =

1

n

(

2n 0

−n 2n + 1

)

,

Sn = S′
n =

1

n

(

2n + 1 0

0 2n

)

,

T =

∞
⊕

n=1

Tn, T ′ =

∞
⊕

n=1

T ′
n, S = S′ =

∞
⊕

n=1

Sn.

Then, obviously, T ∈ B(H), T ′ ∈ B(H ′), S = S′ ∈ B(H).

The following assertions hold.

(a) T
q.s.∼ S = S′q.s.∼ T ′,

(b) all I(Tm, T ′
n) are hyperreflexive,

(c) I(T, T ′) is not hyperreflexive,

(d) I(S, S′) is hyperreflexive.
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P r o o f. The common minimal polynomial (λ − 2n)(λ − 2n − 1) of Tn, T
′
n, Sn

has simple roots, which implies that all I(Tm, T ′
n) are reflexive. In finite dimension

this implies that they are also hyperreflexive and this proves (b).

Putting An =

(

0 n

0 1

)

, Bn =

(

0 0

−n 1

)

, Cn =

(

1 0

0 0

)

we obtain

Tn =
1

n
(2nI + An), T ′

n =
1

n
(2nI + Bn), Sn = S′

n =
1

n
(2nI + Cn)

and if Pn =

(

n 1

1 0

)

then P−1
n =

(

0 1

1 −n

)

and An = PnCnP−1
n .

Hence AnPn = PnCn, P
−1
n An = CnP−1

n and after perturbation by 2nI, TnPn =

PnSn, P
−1
n Tn = SnP−1

n .

Now, it is easy to compute ‖Pn‖ and ‖P−1
n ‖:

P⊤
n = Pn =⇒ ‖Pn‖ = ̺(Pn) =

n +
√

n2 + 4

2
= ̺(P−1

n ) = ‖P−1
n ‖.

Putting Y =
∞
⊕

n=1

n−1Pn, X =
∞
⊕

n=1

n−1P−1
n we obtain quasiaffinities X ∈ I(T, S),

Y ∈ I(S, T ), i.e., T
q.s.∼ S. Similarly, it can be proved that T ′q.s.∼ S. This completes the

proof of (a).

(c): m 6= n =⇒ I(Tn, T ′
m) = {0} because their minimal polynomials are relatively

prime. Therefore I(T, T ′) =
∞
⊕

n=1
I(Tn, T ′

n) and similarly I(S, S′) =
∞
⊕

n=1
I(Sn, S′

n) By

a simple direct computation we obtain Xn ∈ I(Tn, T ′
n) = I(An, Bn) if and only if

Xn =

(

0 α

β −n(α + β)

)

for some α, β ∈ C. So I(Tn, T ′
n) = Sn from an example

due to Kraus and Larson [9] (see also [4, Example 58.9]) who proved that Sn is

hyperreflexive with κSn
> 1

3n. So I(T, T ′) =
∞
⊕

n=1
Sn is not hyperreflexive.

(d): Observe that I(Sn, Sn) = I

([

1 0

0 0

]

,

[

1 0

0 0

])

for all n, i.e. its hyperreflex-

ivity constant does not depend on n. Using a recent result of K.Klís and M.Ptak

[8, Theorem 5.1] we obtain that I(S, S′) is hyperreflexive. �

It easy to show that if T =
∞
⊕

n=1
Tn, T ′ =

∞
⊕

n=1
T ′

n and I(T, T ′) is hyperreflexive,

then all I(Tn, T ′
m) are hyperreflexive. From Example 5.2 it follows that the converse

implication does not hold.
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http://www.emis.de/MATH-item?0819.47058

