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CONTINUITY IN THE ALEXIEWICZ NORM
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Abstract. If f is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz
norm of f is ‖f‖ = sup

I
|
∫
I

f | where the supremum is taken over all intervals I ⊂
�
. Define

the translation τx by τxf(y) = f(y − x). Then ‖τxf − f‖ tends to 0 as x tends to 0, i.e.,
f is continuous in the Alexiewicz norm. For particular functions, ‖τxf − f‖ can tend to 0
arbitrarily slowly. In general, ‖τxf − f‖ > osc f |x| as x → 0, where osc f is the oscillation
of f . It is shown that if F is a primitive of f then ‖τxF − F‖ 6 ‖f‖|x|. An example
shows that the function y 7→ τxF (y) − F (y) need not be in L1. However, if f ∈ L1 then
‖τxF − F‖1 6 ‖f‖1|x|. For a positive weight function w on the real line, necessary and
sufficient conditions on w are given so that ‖(τxf − f)w‖ → 0 as x → 0 whenever fw is
Henstock-Kurzweil integrable. Applications are made to the Poisson integral on the disc and
half-plane. All of the results also hold with the distributional Denjoy integral, which arises
from the completion of the space of Henstock-Kurzweil integrable functions as a subspace
of Schwartz distributions.

Keywords: Henstock-Kurzweil integral, Alexiewicz norm, distributional Denjoy integral,
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1. Introduction

For f : � → � define the translation by τxf(y) = f(y − x) for x, y ∈ � . If
f ∈ Lp (1 6 p <∞) then it is a well known result of Lebesgue integration that f is
continuous in the p-norm, i.e., lim

x→0
‖τxf−f‖p = 0. For example, see [4, Lemma 6.3.5].

In this paper we consider continuity of Henstock-Kurzweil integrable functions in
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Alexiewicz and weighted Alexiewicz norms on the real line. Let HK be the set of
functions f : � → � that are Henstock-Kurzweil integrable. The Alexiewicz norm of
f ∈ HK is defined ‖f‖ = sup

I

|
∫

I
f | where the supremum is over all intervals I ⊂ � .

Identifying functions almost everywhere, HK becomes a normed linear space under
‖·‖ that is barrelled but not complete. See [1] and [5] for a discussion of the Henstock-
Kurzweil integral and the Alexiewicz norm. It is shown below that translations are

continuous in norm and that for f ∈ HK we have ‖τxf − f‖ > osc f |x| where osc f

is the oscillation of f . For particular f ∈ HK the quantity ‖τxf − f‖ can tend to
0 arbitrarily slowly. If F is a primitive of f then ‖τxF − F‖ 6 ‖f‖|x|. An example
shows that if f ∈ HK then the function defined by y 7→ τxF (y)−F (y) need not be in

L1 but if f ∈ L1 then ‖τxF −F‖1 6 ‖f‖1|x|. For a positive weight function w on the
real line, necessary and sufficient conditions on w are given so that ‖(τxf−f)w‖ → 0

as x → 0 whenever fw is Henstock-Kurzweil integrable. The necessary and sufficient

conditions involve properties of the function gx(y) = w(y + x)/w(y). Sufficient

conditions are given on w for ‖(τxf − f)w‖ → 0. Applications to the Dirichlet

problem in the disc and half-plane are given.

All of the results also hold when we use the distributional Denjoy integral. Define

A to be the completion of HK with respect to ‖·‖. Then A is a subspace of the space
of Schwartz distributions. Distribution f is in A if there is function F continuous on
the extended real line such that F ′ = f as a distributional derivative. For details on

this integral see [6].

First we prove continuity in the Alexiewicz norm.

Theorem 1. Let f ∈ HK. For x, y ∈ � define τxf(y) = f(y − x). Then

‖τxf − f‖ → 0 as x → 0.
�������	�

. Let x, α, β ∈ � . Then ∫ β

α
(τxf − f) =

∫ β−x

α−x
f −

∫ β

α
f . Write F (x) =∫ x

−∞
f . Taking the supremum over α and β,

‖τxf − f‖ 6 sup
β∈ 


|F (β − x) − F (β)| + sup
α∈ 


|F (α− x) − F (α)|

→ 0 as x→ 0 since F is uniformly continuous on � .

�

Notice that for each x ∈ � , the translation τx is an isometry on HK, i.e., it is a
homeomorphism such that ‖τxf‖ = ‖f‖. It is also clear that we have continuity at
each point: for each x0 ∈ � , ‖τxf − τx0

f‖ → 0 as x → x0.

The theorem also applies on any interval I ⊂ � . Restrict α and β to lie in I and
extend f to be 0 outside I . Or, one could use a periodic extension. The same results

also hold for the equivalent norm ‖f‖ = sup
x∈ 


|
∫ x

−∞
f |.
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Under the Alexiewicz norm, the space of Henstock-Kurzweil integrable functions

is not complete. Its completion with respect to the norm ‖f‖ = sup
x∈ 


|
∫ x

−∞ f | is
the subspace of distributions that are the distributional derivative of a function in

C̃ := {F : � → � ; F ∈ C0( � ), lim
x→−∞

F (x) = 0, lim
x→∞

F (x) ∈ � }, i.e., they are
distributions of order 1. See [6], where the completion is denoted A. Thus, if f ∈ A
then f ∈ D′ (Schwartz distributions) and there is a function F ∈ C̃ such that

〈F ′, ϕ〉 = −〈F, ϕ′〉 = −
∫ ∞

−∞ Fϕ′ = 〈f, ϕ〉 for all test functions ϕ ∈ D = C∞
c ( � ).

The distributional integral of f is then
∫ b

a
f = F (b) − F (a) for all −∞ 6 a 6 b 6

∞. We can compute the Alexiewicz norm of f via ‖f‖ = sup
x∈ 


|F (x)| = ‖F‖∞. If
f ∈ D′ then τxf is defined by 〈τxf, ϕ〉 := 〈f, τ−xϕ〉 = 〈F ′, τ−xϕ〉 = −〈F, (τ−xϕ)′〉 =

−〈F, τ−xϕ
′〉 = −〈τxF, ϕ′〉 = 〈(τxF )′, ϕ〉. Of course we have L1 ⊂ HK ⊂ A and each

inclusion is strict.

The theorem only depends on uniform continuity of the primitive and not on its

pointwise differentiability properties so it also holds in A. The same is true for the
other theorems in this paper.

Corollary 2. Let f ∈ A. Then ‖τxf − f‖ → 0 as x → 0.

The following theorem gives us more precise information on the decay rate of

‖τxf − f‖.

Theorem 3. (a) Let ψ : (0, 1] → (0,∞) such that lim
x→0

ψ(x) = 0. Then there is

f ∈ L1 such that ‖τxf − f‖ > ψ(x) for all sufficiently small x > 0. (b) If f ∈ HK
and f 6= 0 a.e. then the most rapid decay is ‖τxf − f‖ = O(x) as x → 0 and this is

the best estimate in the sense that if ‖τxf − f‖/x→ 0 as x→ 0 then f = 0 a.e. The

implied constant in the order relation is the oscillation of f .
�������	�

. (a) Given ψ, define ψ1(x) = sup
0<t6x

ψ(t). Then ψ1 > ψ and ψ1(x)

decreases to 0 as x decreases to 0. Define ψ2(x) = ψ1(1/n) when x ∈ (1/(n+1), 1/n]

for some n ∈ � . Then ψ2 > ψ and ψ2 is a step function that decreases to 0 as x

decreases to 0. Now let

ψ3(x) = [ψ2(1/(n− 1)) − ψ2(1/n)]n(n+ 1)
(
x− 1

n+ 1

)
+ ψ2(1/n)

when x ∈ [1/(n+ 1), 1/n] for some n > 2. Define ψ3 = ψ2 on (1/2, 1]. Then ψ3 > ψ

and ψ3 is a piecewise linear continuous function that decreases to 0 as x decreases

to 0. Define f(x) = ψ′
3(x) for x ∈ (0, 1] and f(x) = 0, otherwise. For 0 < x < 1,

‖τxf − f‖ >

∣∣∣∣
∫ x

0

[
f(y − x) − f(y)

]
dy

∣∣∣∣ =

∫ x

0

f = ψ3(x) > ψ(x).

Since ψ3 is absolutely continuous, f ∈ L1.
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(b) Test functions are dense in HK, i.e., for each f ∈ HK and ε > 0 there is

ϕ ∈ D such that ‖f − ϕ‖ < ε. Let x ∈ � . Then, since τx is a linear isometry,
‖(τxf − f) − (τxϕ − ϕ)‖ = ‖τx(f − ϕ) − (f − ϕ)‖ < 2ε and ‖τxϕ − ϕ‖ − 2ε <

‖τxf − f‖ < ‖τxϕ−ϕ‖+ 2ε. It therefore suffices to prove the theorem in D. Hence,
let f ∈ D and let a, b ∈ � . Write F (y) =

∫ y

−∞ f . Then, since F ∈ C2( � ),

∫ b

a

(τxf − f) = [F (b− x) − F (b)] − [F (a− x) − F (a)]

= −F ′(b)x+ F ′′(ξ)x2/2 + F ′(a)x− F ′′(η)x2/2,

for some ξ, η in the support of f . Now,

‖τxf − f‖ > sup
a,b∈ 


|f(a) − f(b)||x| − ‖f ′‖∞x2 = osc f |x| − ‖f ′‖∞x2.

The oscillation of f ∈ D is positive unless f is constant, but there are no constant
functions in D except 0. The proof is completed by noting that ‖τxf−f‖ 6 osc f |x|+
‖f ′‖∞x2 so that ‖τxf − f‖ = O(x) as x → 0. �

Part (b) is proven in [3, Proposition 1.2.3] for f ∈ L1.

It is interesting to note that if f ∈ HK and F is its primitive then the function
τxF − F is in HK for each x ∈ � , even though F need not be in HK.

Theorem 4. Let f ∈ HK, let F be one of its primitives and let x ∈ � . Then the
function y 7→ τxF (y) − F (y) is in HK even though none of the primitives of f need
be in HK. We have the estimate ‖τxF −F‖ 6 ‖f‖|x|. In general, τxF −F need not

be in L1. However, if f ∈ L1 then τxF − F ∈ L1 and ‖τxF − F‖1 6 ‖f‖1|x|.
�������	�

. Let f ∈ HK and let F be any primitive. Since F is continuous, to prove
τxF − F ∈ HK we need only show integrability at infinity. Let a, x ∈ � . Then

∫ a

0

(τxF − F ) =

∫ a−x

−x

F −
∫ a

0

F =

∫ 0

−x

F −
∫ a

a−x

F =

∫ 0

−x

F − F (ξ)x

for some ξ between a− x and a, due to continuity of F . So, lim
a→±∞

∫ a

0
(τxF − F ) =

∫ 0

−x
F − x lim

y→±∞
F (y). Since F has limits at ±∞, Hake’s theorem shows τxF −

F ∈ HK. Now let a, b ∈ � . Then ∫ b

a
(τxF − F ) =

∫ a

a−x
F −

∫ b

b−x
F . Since F is

continuous, there are ξ between a and a − x and η between b and b − x such that∫ b

a
(τxF − F ) = F (ξ)x − F (η)x = x

∫ ξ

η
f . It follows that ‖τxF − F‖ 6 ‖f‖|x|.
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The example f = χ[0,1], for which

F (y) =

∫ y

−∞

f =






0, y 6 0,

y, 0 6 y 6 1,

1, y > 1

shows that no primitives need not be in HK. And, if we let F (y) = sin(y)/y, f = F ′,

then for x 6= 0,

τxF (y) − F (y) =
sin(y − x)

y − x
− sin(y)

y

∼ [cos(x) − 1] sin(y) − sin(x) cos(y)

y
as y → ∞.

Hence, τxF − F ∈ HK \L1.

Suppose f ∈ L1 and x > 0. Then, |f | ∈ HK so the theorem gives ‖τxF − F‖1 6∫ ∞

−∞

∫ y

y−x
|f(z)| dz dy 6 ‖ |f | ‖x = ‖f‖1x. Similarly, if x < 0. �

� ����������
5. Let f be 2π-periodic and Henstock-Kurzweil integrable over one

period. The Poisson integral of f on the unit circle is

u(reiθ) = ur(θ) =
1 − r2

2π

∫ �

− �
f(ϕ) dϕ

1 − 2r cos(ϕ− θ) + r2
.

Differentiating under the integral sign shows that u is harmonic in the disc. And, after

interchanging the order of integration, it can be seen that ‖ur − f‖ → 0 as r → 1−.

The Poisson integral defines a harmonic function that takes on the boundary values

f in the Alexiewicz norm. For details on this Dirichlet problem see [7].

Now we consider continuity in weighted Alexiewicz norms. First we need the

following lemma. Lebesgue measure is denoted λ.

Lemma 6. For each n ∈ � , suppose gn : � → � and gnχE → gχE in measure

for some set E ⊂ � of positive measure and function g of bounded variation. If
V gn 6 M for all n then gn is uniformly bounded on � .
�������	�

. Define Sn = {x ∈ E; |gn(x) − g(x)| > 1}. Then λ(Sn) → 0 as

n → ∞. There is N ∈ � such that whenever n > N we have λ(E \ Sn) > 0. Since

g ∈ BV, g is bounded. Let n > N . There is xn ∈ E \ Sn such that |g(xn)| 6 ‖g‖∞.
Therefore, |gn(xn)| 6 1 + ‖g‖∞. Let x ∈ � . Then |gn(x)− gn(xn)| 6 V gn 6 M . So,

|gn(x)| 6 M + 1 + ‖g‖∞. Hence, {gn} is uniformly bounded. �
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Theorem 7. Let w : � → (0,∞). Define gx : � → (0,∞) by gx(y) = w(y +

x)/w(y) for each x ∈ � . Then ‖(τxf − f)w‖ → 0 as x → 0 for all f : � → �
such that fw ∈ HK if and only if gx is essentially bounded and of essential bounded

variation, uniformly as x→ 0, and gx → 1 in measure on compact intervals as x→ 0.
�������	�

. Let G(x) =
∫ x

−∞
fw. Let x, α, β ∈ � . Then

∫ β

α

[f(y − x) − f(y)]w(y) dy

=

∫ β−x

α−x

f(y)w(y) dy −
∫ β

α

f(y)w(y) dy +

∫ β−x

α−x

f(y) [w(y + x) − w(y)] dy

= [G(β − x) −G(β)] − [G(α− x) −G(α)] +

∫ β−x

α−x

f(y)w(y) [gx(y) − 1] dy.

Since G is uniformly continuous on � , we have ‖(τxf − f)w‖ → 0 if and only if the

supremum of |
∫ b

a
f(y)w(y)[gx(y) − 1] dy| over a, b ∈ � has limit 0 as x → 0, i.e.,

‖fw(gx − 1)‖ → 0. Given h ∈ HK we can always take f = h/w. Hence, the theorem

now follows from Lemma 6 (easily modified for the case of essential boundedness

and essential variation) and the necessary and sufficient condition for convergence in

norm given in [2, Theorem 6]. �

Corollary 8. Suppose that for each compact interval I there are real numbers

0 < mI < MI such that mI < ‖w‖∞ < MI ; w is continuous in measure on I ;

w ∈ BV loc. Then for all f : � → � such that fw ∈ HK we have ‖(τxf − f)w‖ → 0

as x→ 0.
�������	�

. Fix ε > 0. Let I be a compact interval for which 0 < mI < ‖w‖∞ < MI .

Define

Sx := {y ∈ I ; |gx(y) − 1| > ε}
= {y ∈ I ; |w(y + x) − w(y)| > εw(y)}

⊂ {y ∈ I ; |w(y + x) − w(y)| > εmI} except for a null set.

Since w is continuous in measure on I we have λ(Sx) → 0 as x → 0 and gx → 1 in

measure on I .

Using

gx(sn) − gx(tn) =
w(sn + x) − w(tn + x)

w(tn)
− w(sn + x)[w(sn) − w(tn)]

w(sn)w(tn)

we see that VIgx 6 VI+xw/mI +MIVIw/m
2
I where I + x = {y+ x; y ∈ I} and VIw

is the variation of w over interval I . Hence, gx is of uniform bounded variation on I .

With Lemma 6 this then gives the hypotheses of the theorem. �
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Of course, we are allowing w to be changed on a set of measure 0 so that w is of

bounded variation rather than just equivalent to a function of bounded variation.

This redundancy can be removed by replacing w with its limit from the right at each

point so that w is right continuous.

As pointed out in [2], convergence of gx to 1 in measure on compact intervals in

the theorem can be replaced by convergence in L1 norm: For each compact interval

I , ‖(gx−1)χI‖1 → 0 as x → 0. In the corollary, we can replace continuity in measure

with the condition: As x → 0,
∫

I
|τxw − w| → 0 for each compact interval I .

The first two conditions in the corollary are necessary. Suppose ‖(τxf −f)w‖ → 0

whenever fw ∈ HK. Then the essential infimum of w must be positive on each
compact interval. If there is a sequence an → a ∈ � for which w(an) → 0 then

esssup|x|<δ sup
n
gx(an) = ∞ for each δ > 0 unless w = 0 a.e. in a neighbourhood of

a. Similarly, the essential supremum of w must be finite on compact intervals. This

asserts the existence of mI andMI in the corollary. Also, let I be a compact interval

on which 0 < m < ‖w‖∞ < M . Let ε > 0 and define

Tx := {y ∈ I ; |w(y + x) − w(y)| > ε}
⊂ {y ∈ I ; |gx(y) − 1| > ε/M} except for a null set.

Hence, w is continuous in measure.

It is not known if ‖(τxf−f)w‖ → 0 for all f such that fw ∈ HK implies w ∈ BV loc.

The example w(y) = ey shows W need not be of bounded variation and can have its

infimum zero and its supremum infinity. For, note that gx(y) = exp(y+x)/ exp(y) =

ex and so satisfies the conditions of the theorem. And, by the corollary, w(y) = 1

for y < 0 and w(y) = 2 for y > 0 is a valid weight function. Hence, w need not be

continuous.

� ����������
9. Let w(y) = 1/(y2 + 1). A calculation shows that the variation of

y 7→ w(y + x)/w(y) is 2|x|
√
x2 + 1 so w is a valid weight for Theorem 7. The half-

plane Poisson kernel is Φy(x) = w(x/y)/(πy). For f : � → � the Poisson integral of
f is

uy(x) = (Φy ∗ f)(x) =
y

π

∫ ∞

−∞

f(t) dt

(x − t)2 + y2
.

Define Ψz(t) = Φy(x − t)/w(t) for z = x + iy in the upper half-plane, i.e., x ∈ �
and y > 0. For fixed z both Ψz and 1/Ψz are of bounded variation on � . Hence,
necessary and sufficient for the existence of the Poisson integral on the upper half-

plane is fw ∈ HK.
Define G(t) =

∫ t

−∞ fw. Integrate by parts to get uy(x) = y G(∞)/π −
∫ ∞

−∞G(t)

Ψ′
z(t) dt. Since G is continuous on the extended real line (with G(∞) := lim

t→∞
G(t)),
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dominated convergence now allows differentiation under the integral. This shows

uy(x) is harmonic in the upper half-plane.

Neither f nor uy need be in HK. For example, the Poisson integral of 1 is 1.

But, we have the boundary values taken on in the weighted norm: ‖(uy − f)w‖ → 0

as y → 0+. We sketch out the proof, leaving the technical detail of interchanging

repeated integrals for publication elsewhere. For a, b ∈ � we then have
∫ b

a

[uy(t) − f(t)]w(t) dt =

∫ b

a

{
(f ∗ Φy)(t) − f(t)

∫ ∞

−∞

Φy(s) ds

}
w(t) dt

=

∫ ∞

−∞

Φy(s)

∫ b

a

[f(t− s) − f(t)]w(t) dt ds.

Therefore, ‖(uy − f)w‖ 6
∫ ∞

−∞ Φy(s)‖(τsf − f)w‖ ds. But, s 7→ ‖(τsf − f)w‖ is
continuous at s = 0. By the usual properties of the Poisson kernel (an approximate

identity), we have ‖(τsf − f)w‖ → 0 as y → 0+.
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