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SINGULAR DIRICHLET PROBLEM FOR ORDINARY
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Abstract. We provide sufficient conditions for solvability of a singular Dirichlet boundary
value problem with φ-Laplacian

(φ(u′))′ = f(t, u, u
′),

u(0) = A, u(T ) = B,

where φ is an increasing homeomorphism, φ( � ) = � , φ(0) = 0, f satisfies the Carathéodory
conditions on each set [a, b] × � 2 with [a, b] ⊂ (0, T ) and f is not integrable on [0, T ] for
some fixed values of its phase variables. We prove the existence of a solution which has
continuous first derivative on [0, T ].

Keywords: singular Dirichlet problem, φ-Laplacian, existence of smooth solution, lower
and upper functions

MSC 2000 : 34B16, 34B15

1. Formulation of the problem

In a certain problem in fluid dynamics and boundary layer theory ([1], [2]), the

generalized Emden-Fowler differential equation u′′ + ψ(t)uλ = 0, t ∈ (0, 1), arises.

This equation is singular, because ψ need not be Lebesgue integrable on the whole

interval [0, 1].

On the other hand, due to various applications, for example to diffusions of flows

in porous media ([3], [4]), several authors have proposed the study of second order

ordinary differential equations with the p-Laplacian (φp(u
′))′, where p ∈ (1,∞) and

φp(y) = |y|p−2y for y ∈ � . Usually the p-Laplacian is replaced by its abstract and
more general version called a φ-Laplacian.
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Throughout the paper φ will be an increasing homeomorphism with φ( � ) = � ,
φ(0) = 0 and A,B ∈ � , [0, T ] ⊂ � . We study the problem of existence of smooth
solutions of the Dirichlet problem with φ-Laplacian

(φ(u′))′ = f(t, u, u′),(1.1)

u(0) = A, u(T ) = B,(1.2)

where f satisfies the Carathéodory conditions on each set [a, b] × � 2 , where [a, b] ⊂
(0, T ), but f does not satisfy the Carathéodory conditions on [0, T ]× � 2 .

Recall that a real valued function f satisfies the Carathéodory conditions on the

set [a, b] × � 2 if

(i) f(·, x, y) : [a, b] → � is measurable for all (x, y) ∈ � 2 ,

(ii) f(t, ·, ·) : � 2 → � is continuous for a.e. t ∈ [a, b],

(iii) for each compact set K ⊂ � 2 there is a function mK ∈ L[a, b] such that

|f(t, x, y)| 6 mK(t) for a.e. t ∈ [a, b] and all (x, y) ∈ K.

We write f ∈ Car([a, b] × � 2 ). By the assumption f 6∈ Car([0, T ] × � 2 ) we mean

that condition (iii) is not fulfilled for [a, b] = [0, T ], i.e. that f has time singularities

at the endpoints 0 and T .

Definition 1.1. We say that f has time singularities at the points 0 and T ,

respectively, if there exist x, y ∈ � such that

(1.3)

∫ ε

0

|f(t, x, y)| dt = ∞ and

∫ T

T−ε

|f(t, x, y)| dt = ∞

for each sufficiently small ε > 0. The points 0 and T are called singular points of f .

We will seek solutions of problem (1.1), (1.2) in the space of functions having

continuous first derivatives on [0, T ], in particular at the singular points 0 and T .

Definition 1.2. A function u : [0, T ] → � with φ(u′) ∈ AC[0, T ] is called a

solution of problem (1.1), (1.2) if u satisfies

(φ(u′(t)))′ = f(t, u(t), u′(t))

for a.e. t ∈ [0, T ] and fulfils (1.2).

Note that the condition φ(u′) ∈ AC[0, T ] implies u ∈ C1[0, T ].

Majority of papers dealing with time singularities use an alternative approach

to the solvability of problem (1.1), (1.2) (see [5]–[15]). These papers understand

solutions as functions whose first derivatives need not exist at singular points. Here

we will call them w-solutions. More precisely:
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Definition 1.3. A function u ∈ C[0, T ] is called a w-solution of problem (1.1),

(1.2) if φ(u′) ∈ ACloc(0, T ), u satisfies

(φ(u′(t)))′ = f(t, u(t), u′(t))

for a.e. t ∈ [0, T ] and fulfils (1.2).

Since the condition φ(u′) ∈ ACloc(0, T ) implies that a w-solution u belongs only

to C1(0, T ), we do not know the behaviour of u′ at the singular endpoints 0, T .

Although most of the known existence results concern w-solutions, we often need

the existence of solutions in the sense of Definition 1.2. For example, when searching

for positive, radially symmetric solutions to the partial differential equation

(1.4) −∆pu = f(u) + h(x)

on an open ball Ω in � n (centered at the origin), n > 1, where the n-dimensional

p-Laplacian has the form

∆pu = div(|∇u|p−2∇u),

equation (1.4) reduces under the assumption u′(0) = 0 to the singular ordinary

differential equation

(1.5) (|u′|p−2u′)′ +
n− 1

t
|u′|p−2u′ + f(u) + h(t) = 0

with a time singularity at t = 0. We can see that only solutions of (1.5) belonging

to C1[0, T ] have sense for the associated equation (1.4).

Further, we can check that the function u(t) = 1 − t2 is a solution of the singular

problem

(1.6)
1

2
((u′)3)′ +

1

t
u′ +

12t2
√
u√

1 − t2
+ 2 = 0, u(0) = 1, u(1) = 0.

We see that the function f(t, x, y) = y/t+12t2
√
x/

√
1 − t2 +2 has time singularities

at t = 0 and t = 1 and problem (1.6) has at least one solution u ∈ C1[0, 1].

In addition, numerical computations ([16], [17]) lead to smooth solutions of singu-

lar Dirichlet problems, as well.

Motivated by these facts we provide new existence principles which lead to suf-

ficient conditions guaranteeing the existence of a solution of the singular problem

(1.1), (1.2) in the sense of Definition 1.2.
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2. Existence principle

Singular problems are usually investigated by means of auxiliary regular problems.

To establish the existence of a solution of the singular problem (1.1), (1.2) we intro-

duce a sequence of approximating regular problems which are solvable. Then we pass

to the limit in the sequence of approximate solutions to get a solution (a w-solution)

of the original problem (1.1), (1.2). In the next theorem we provide an existence

principle which contains the main rules for the construction of such approximating

sequences.

For n ∈ � consider equations

(2.1) (φ(u′))′ = fn(t, u, u′),

where fn ∈ Car([0, T ]× � 2 ). Solutions of problem (2.1), (1.2) are understood in the

sense of Definition 1.2. Denote

(2.2) Jn =

{

[1/n, T − 1/n] if n > 3/T,

∅ if n < 3/T.

Theorem 2.1. Assume that

f ∈ Car((0, T )× � 2 ) has time singularities at t = 0 and t = T,(2.3)

for all n ∈ � , fn(t, x, y) = f(t, x, y) for a.e. t ∈ Jn and all x, y ∈ � ,(2.4)

there exists a bounded set Ω ⊂ C1[0, T ] such that for each n ∈ �(2.5)

the regular problem (2.1), (1.2) has a solution un ∈ Ω.

Then

• there exist u ∈ C[0, T ] ∩ C1(0, T ) and a subsequence {unl
} ⊂ {un} such that

lim
l→∞

‖unl
− u‖C[0,T ] = 0, lim

l→∞
u′nl

(t) = u′(t) locally uniformly on (0, T ),

• u is a w-solution of (1.1), (1.2).

Moreover, assume that there exist η ∈ (0, 1
2T ), λ1, λ2 ∈ {−1, 1}, y1, y2 ∈ � and

ψ ∈ L[0, T ] such that for each n ∈ �

(2.6)

{

λ1 sign(u′n(t) − y1)fn(t, un(t), u′n(t)) > ψ(t) a.e. on (0, η),

λ2 sign(u′n(t) − y2)fn(t, un(t), u′n(t)) > ψ(t) a.e. on (T − η, T ).

Then u is a solution of (1.1), (1.2).

�! #"$"&%
. By (2.5) there exists c = c(Ω) > 0 such that

‖un‖C[0,T ] 6 c, ‖u′n‖C[0,T ] 6 c ∀n ∈ � ,
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so the sequence {un} is bounded in C1[0, T ] and

∀ε > 0 ∃δ > 0 ∀n ∈ � ∀t, s ∈ [0, T ] :

|t− s| < δ ⇒ |un(t) − un(s)| =

∣

∣

∣

∣

∫ t

s

u′n(τ) dτ

∣

∣

∣

∣

6 c|t− s|,

which means that the sequence {un} is equicontinuous on [0, T ]. Due to the Arzelà-

Ascoli theorem, we can choose a subsequence {unk
} ⊂ {un} which is converging

uniformly on [0, T ] to a function u ∈ C[0, T ]. Clearly, u satisfies (1.2), because each

un does.

1. Let us take an arbitrary compact interval K ⊂ (0, T ). Then, by (2.3), f ∈
Car(K × � 2 ) and there exists n0 ∈ � such that

(2.7) K ⊂ Jn for all n > n0.

Further, by (2.4),

(2.8) fn(t, x, y) = f(t, x, y) for a.e. t ∈ K, for all x, y ∈ � and all n > n0.

Then there exists hK ∈ L[0, T ] such that for each t, s ∈ K

|φ(u′nk
(t)) − φ(u′nk

(s))| =

∣

∣

∣

∣

∫ t

s

fnk
(τ, unk

(τ), u′nk
(τ)) dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

s

f(τ, unk
(τ), u′nk

(τ)) dτ

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ t

s

hK(τ) dτ

∣

∣

∣

∣

∀nk > n0.

So {φ(u′nk
)} is equicontinuous on K. By virtue of the uniform continuity of φ on

compact intervals, the sequence {u′nk
} is equicontinuous and, by (2.5), equibounded

on K. By the Arzelà-Ascoli theorem, we can find a subsequence of {u′
nk
} uniformly

converging on K. Now we will show that there exists a subsequence {u′
nl
} ⊂ {u′nk

}
which converges locally uniformly on (0, T ) to u′ ∈ C(0, T ).

Let us consider a sequence of compact intervals Ki = [αi, βi] ⊂ (0, T ), i ∈ � ,
Ki ⊂ Ki+1, lim

i→∞
αi = 0, lim

i→∞
βi = T . Then there exists a subsequence {u′1,n}∞n=1 ⊂

{u′nk
} which converges uniformly on K1. We can choose {u′2,n}∞n=1 ⊂ {u′1,n} which

converges uniformly on K2 and for each i ∈ � , {u′i,n} ⊂ {u′i−1,n} which converges
uniformly on Ki, i.e.

∀i ∈ � ∀ε > 0 ∃ki ∈ � ∀t ∈ Ki ∀n > ki : |u′i,n(t) − u′(t)| < ε.

Let us take {u′n,n}. This sequence converges uniformly on Ki for all i ∈ � , because
for each i there are only i−1 terms of {u′n,n} which do not belong to {u′i,n}. Clearly,

413



for each compact interval K ⊂ (0, T ) there exists i0 ∈ � such that K ⊂ Ki for all

i > i0. Hence

∀ε > 0 ∀t ∈ K ∀n > ki0 : |u′n,n(t) − u′(t)| < ε.

This implies that

∀K ⊂ (0, T ) ∀ε > 0 ∃m ∈ � ∀t ∈ K ∀n > m : |u′n,n(t) − u′(t)| < ε.

So the sequence {u′n,n} ⊂ {u′nk
} converges locally uniformly on (0, T ) to u′ ∈ C(0, T ).

2. Let us denote {u′n,n} as {u′nl
} and take an arbitrary compact interval K ⊂

(0, T ). There exists n0 ∈ � such that (2.7) and (2.8) are valid. Therefore for all
nl > n0 we have

(2.9) φ(u′nl
(t)) = φ(u′nl

( 1
2T )) +

∫ t

T

2

f(s, unl
(s), u′nl

(s)) ds for t ∈ K.

Since f is continuous in its phase variables for a.e. t ∈ (0, T ) and because

(2.10) unl
⇒ u on [0, T ] and u′nl

loc

⇒ u′ on (0, T ),

we get

lim
l→∞

f(t, unl
(t), u′nl

(t)) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ].

Recall that

∃hK ∈ L[0, T ] : |f(t, unl
(t), u′nl

(t))| 6 hK(t) for a.e. t ∈ K and all nl > n0.

Letting l → ∞ in (2.9), using the Lebesgue dominated convergence theorem on K
and the fact that K ⊂ (0, T ) is arbitrary, we get

φ(u′(t)) = φ(u′( 1
2T )) +

∫ t

T

2

f(s, u(s), u′(s)) ds for t ∈ (0, T ).

Hence, φ(u′) ∈ ACloc(0, T ) and u satisfies (1.1) for a.e. t ∈ [0, T ]. It means that u is

a w-solution of (1.1), (1.2).

3. Let (2.6) be fulfilled. It remains to prove that φ(u′) ∈ AC[0, T ]. It is sufficient

to prove that φ(u′) ∈ AC[0, η]∩AC[T−η, T ]. Now, we will show that for a.e. t ∈ (0, η)

(2.11) lim
l→∞

sign(u′nl
(t) − y1)fnl

(t, unl
(t), u′nl

(t)) = sign(u′(t) − y1)f(t, u(t), u′(t)).
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Put

V1 = {t ∈ (0, η) : f(t, ·, ·) : � 2 → � is not continuous},
V2 = {t ∈ (0, η) : t is an isolated zero of u′ − y1},
V3 = {t ∈ (0, η) : (φ(u′(t)))′ does not exist or (1.1) is not fulfiled}.

Then meas(M ) = 0, where M = V1 ∪ V2 ∪ V3. Choose an arbitrary t0 ∈ (0, η) \ M .

If t0 is an accumulation point of a set of zeros of u
′−y1, then there exists a sequence

{tn} ⊂ (0, η) such that u′(tn) = y1 and lim
n→∞

tn = t0. Since u
′ is continuous on (0, η),

we get u′(t0) = y1. Further, by virtue of t0 6∈ V3,

lim
tn→t0

φ(u′(tn)) − φ(u′(t0))

tn − t0
= 0 = (φ(u′(t0)))

′

and we get

0 = (φ(u′(t0)))
′ = f(t0, u(t0), u

′(t0)).

Since t0 6∈ V1, we have by (2.4) and (2.10)

lim
l→∞

fnl
(t0, unl

(t0), u
′
nl

(t0)) = lim
l→∞

f(t0, unl
(t0), u

′
nl

(t0)) = f(t0, u(t0), u
′(t0)) = 0

and

lim
l→∞

sign(u′nl
(t0) − y1)fnl

(t0, unl
(t0), u

′
nl

(t0))

= 0 = sign(u′(t0) − y1)f(t0, u(t0), u
′(t0)).

Let u′(t0) 6= y1. If u
′(t0) > y1 then there exists n0 ∈ � such that u′nl

(t0) > y1 for

all nl > n0. It means that sign(u′nl
(t0) − y1) = 1 and (2.11) is satisfied. Similarly

if u′(t0) < y1. Therefore we have proved that (2.11) is fulfilled for a.e. t0 ∈ (0, η).

Further, for all nl ∈ � we have
∫ η

0

sign (u′nl
(t) − y1)fnl

(t, unl
(t), u′nl

(t)) dt

=

∫ η

0

sign(φ(u′nl
(t)) − φ(y1))(φ(u′nl

(t)) − φ(y1))
′ dt

=

∫ η

0

|φ(u′nl
(t)) − φ(y1)|′ dt

= (|φ(u′nl
(η)) − φ(y1)| − |φ(u′nl

(0)) − φ(y1)|).

By (2.6) there exists d = d(c, y1, ψ) > 0 such that

(2.12) 0 6

∫ η

0

[λ1 sign(u′nl
(s) − y1)fnl

(s, unl
(s), u′nl

(s)) + |ψ(s)|] ds 6 d, nl ∈ � .
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For a.e. t ∈ (0, η) let us put

ϕnl
(t) = λ1 sign(u′nl

(t) − y1)fnl
(t, unl

(t), u′nl
(t)) + |ψ(t)|,

ϕ(t) = λ1 sign(u′(t) − y1)f(t, u(t), u′(t)) + |ψ(t)|.

According to (2.6) we can see that ϕnl
∈ L[0, η] are nonnegative a.e. on (0, η). Fur-

ther, by (2.11), ϕnl

a.e.−→ ϕ on (0, η) and, by (2.12),
∫ η

0 ϕnl
(s) ds 6 d. Using the

Fatou lemma, we conclude that ϕ ∈ L[0, η]. Then |f(·, u, u′)| ∈ L[0, η] and also

f(·, u, u′) ∈ L[0, η]. It means that φ(u′) ∈ AC[0, η]. In an analogous way, we can

prove that φ(u′) ∈ AC[T − η, T ]. The theorem is proved. �

3. Regular Dirichlet BVP’s

In order to fulfil the basic condition (2.5) in Theorem 2.1 we need existence results

for regular problems (2.1), (1.2) and a priori estimates for their solutions. To this

aim we consider a regular equation

(3.1) (φ(u′))′ = h(t, u, u′),

h ∈ Car([0, T ]× � 2), and use the lower and upper functions method to get solvability

of problem (3.1), (1.2).

Definition 3.1. Functions σ1, σ2 : [0, T ] → � are respectively lower and upper
functions of problem (3.1), (1.2) if φ(σ′

i) ∈ AC[0, T ] for i ∈ {1, 2} and

(φ(σ′
1(t)))

′ > f(t, σ1(t), σ
′
1(t)), (φ(σ′

2(t)))
′ 6 f(t, σ2(t), σ

′
2(t)) for a.e. t ∈ [0, T ],

σ1(0) 6 A, σ1(T ) 6 B, σ2(0) > A, σ2(T ) > B.

Lemma 3.2. Let σ1 and σ2 be respectively lower and upper functions of problem

(3.1), (1.2) and let σ1 6 σ2 on [0, T ]. Further assume that there is h0 ∈ L[0, T ] such

that

|h(t, x, y)| 6 h0(t) for a.e. t ∈ [0, T ] and for all (x, y) ∈ [σ1(t), σ2(t)] × � .

Then problem (3.1), (1.2) has a solution u ∈ C1[0, T ] with φ(u′) ∈ AC[0, T ] such

that

(3.2) σ1 6 u 6 σ2 on [0, T ].

Since the lower and upper functions method for regular problems with φ-Laplacian

can be found in literature (see e.g. [18]–[20]), we present just the main ideas of the

proof of Lemma 3.2.
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'$(*),+.-0/ "&% +0/1)32  #"$"&%
. For a.e. t ∈ [0, T ] and all x, y ∈ � define an auxiliary

function

(3.3)

g(t, x, y) =























h(t, σ2, y) + ω2

(

t,
x− σ2

x− σ2 + 1

)

+
x− σ2

x− σ2 + 1
for x > σ2(t),

h(t, x, y) for σ1(t) 6 x 6 σ2(t),

h(t, σ1, y) − ω1

(

t,
σ1 − x

σ1 − x+ 1

)

− σ1 − x

σ1 − x+ 1
for x < σ1(t),

where

ωi(t, ε) = sup{|h(t, σi, σ
′
i) − h(t, σi, y)| : |y − σ′

i| 6 ε}, i = 1, 2, ε ∈ [0, 1]

and consider the equation

(3.4) (φ(u′))′ = g(t, u, u′).

We see that ωi ∈ Car([0, T ] × [0, 1]) are nonnegative, nondecreasing in their second

variable and ωi(t, 0) = 0 for a.e. t ∈ [0, T ], i = 1, 2. Further we see that g ∈
Car([0, T ]× � 2 ) and there exists g̃ ∈ L[0, T ] such that

|g(t, x, y)| 6 g̃(t) for a.e. t ∈ [0, T ] and all x, y ∈ � .

We will prove the existence of a solution of the auxiliary problem (3.4), (1.2).

For fixed v ∈ C1[0, T ] define γv : � → � by

γv(x) =

∫ T

0

φ−1

(

x+

∫ r

0

gv(s) ds

)

dr

where gv(s) ≡ g(s, v(s), v′(s)) for a.e. s ∈ [0, T ]. The properties of φ and g imply

that for each v ∈ C1[0, T ] there exists a unique τv satisfying

(3.5) γv(τv) =

∫ T

0

φ−1

(

τv +

∫ r

0

gv(s) ds

)

dr = B −A,

and that there exists m > 0 such that |τv | 6 m for every v ∈ C1[0, T ]. Now define

an operator T : C1[0, T ] → C1[0, T ] by the formula

(T u)(t) = A+

∫ t

0

φ−1

(

τu +

∫ r

0

gu(s) ds

)

dr.

Then we can check that if u is a fixed point of the operator T then u is a solution

of (3.4), (1.2). Using the Lebesgue theorem and the Arzelà-Ascoli theorem we prove
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that T is continuous and compact. Further, for all u ∈ C1[0, T ] the following

estimate holds:

‖T u‖C1[0,T ] 6 |A|+ (T + 1) max{|φ−1(−m−‖g̃‖L[0,T ])|, |φ−1(m+ ‖g̃‖L[0,T ])|} = Q.

Define Ω = {u ∈ C1[0, T ] : ‖u‖C1[0,T ] 6 Q}. Then Ω is a nonempty closed bounded

and convex set. The compact operator T sends the set Ω into Ω. By the Schauder

fixed point theorem, operator T has a fixed point u. This fixed point is a solution

of problem (3.4), (1.2).

It remains to prove that u satisfies (3.2). We put v(t) = σ1(t) − u(t) for all

t ∈ [0, T ]. By (1.2), we have v(0) 6 0 and v(T ) 6 0, and then we can show that v

does not have a positive maximum at any point of (0, T ). The second inequality in

(3.2) can be proved similarly.

(3.2) and (3.3) yield that u is also a solution of problem (3.1), (1.2). The lemma

is proved. �

Lemma 3.2 gives the existence result for (3.1), (1.2) provided the function h has

a Lebesgue integrable majorant h0. The method of a priori estimates enables us to

extend this result to more general right-hand sides h.

Lemma 3.3 (An a priori estimate). Assume that a, b ∈ [0, T ], a 6 b, y1, y2 ∈ � ,
c0 ∈ (0,∞). Let g0 ∈ L[0, T ] be nonnegative and let ω ∈ C[0,∞) be positive and

(3.6)

∫ ∞

0

ds

ω(s)
= ∞.

Then there exists %0 ∈ (c0,∞) such that for each function u ∈ C1[0, T ] satisfying the

conditions

φ(u′) ∈ AC[0, T ],

|u(t)| 6 c0 for each t ∈ [0, T ],(3.7)

|u′(ξ)| 6 c0 for some ξ ∈ [a, b],(3.8)

(φ(u′(t)))′ sign(u′(t) − y1) > −ω(|φ(u′(t)) − φ(y1)|)(g0(t) + |u′(t) − y1|)
for a.e. t ∈ [0, b] and for |φ(u′(t))| > |φ(y1)|(3.9)

and

(φ(u′(t)))′ sign(u′(t) − y2) 6 ω(|φ(u′(t)) − φ(y2)|)(g0(t) + |u′(t) − y2|)(3.10)

for a.e. t ∈ [a, T ] and for |φ(u′(t))| > |φ(y2)|,
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the estimate

(3.11) |u′(t)| 6 %0 for each t ∈ [0, T ]

is valid.

�! #"$"&%
. We can see that sign(φ(u′(t)) − φ(yi)) = sign(u′(t) − yi), i = 1, 2. Put

v′i(t) = φ(u′(t)) − φ(yi), i = 1, 2. Then

|v′i(ξ)| = |φ(u′(ξ)) − φ(yi)| 6 max{|φ(−c0)|, φ(c0)} + |φ(yi)| = ci, i = 1, 2.

Condition (3.6) implies that there exists %i ∈ (ci,∞) such that

(3.12)

∫ %i

ci

ds

ω(s)
> ‖g0‖L[0,T ] + 2c0 + T |yi|, i = 1, 2.

First, let us prove the estimate

(3.13) |v′1(t)| 6 %1 for t ∈ [0, ξ].

By (3.9) we get

(3.14) −v
′′
1 (t) sign v′1(t)

ω(|v′1(t)|)
6 g0(t) + |u′(t) − y1| for a.e. t ∈ [0, ξ].

Asume that (3.13) is not valid, i.e. that there exists an interval [α, β] ⊂ [0, ξ] such

that

|v′1(β)| 6 c1, |v′1(α)| > %1 and v′1(t) 6= 0 on [α, β].

Integrating (3.14) over [α, β] we arrive at

∫ β

α

−v
′′
1 (t) sign v′1(t)

ω(|v′1(t)|)
dt 6

∫ β

α

g0(t) dt+

∫ β

α

|u′(t) − y1| dt.

Using a substitution s = |v′1(t)|, we obtain
∫ %1

c1

ds

ω(s)
6

∫ |v′

1
(α)|

|v′

1
(β)|

ds

ω(s)
6 ‖g0‖L[0,T ] +

∣

∣

∣

∣

∫ β

α

u′(t) dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ β

α

y1 dt

∣

∣

∣

∣

6 ‖g0‖L[0,T ] + 2c0 + T |y1|,

which contradicts (3.12). Therefore (3.13) is valid. Similiarly we can prove the

estimate

(3.15) |v′2(t)| 6 %2 for t ∈ [ξ, T ].
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Now (3.13) and (3.15) imply that

|φ(u′(t)) − φ(y1)| 6 %1 on [0, ξ], |φ(u′(t)) − φ(y2)| 6 %2 on [ξ, T ],

wherefrom

|u′(t)| 6 max{|φ−1(−max{|φ(y1)|, |φ(y2)|} − max{%1, %2})|,
|φ−1(max{|φ(y1)|, |φ(y2)|} + max{%1, %2})|} = %0 on [0, T ].

�

Using Lemma 3.2 and Lemma 3.3 we get the existence result for (3.1), (1.2) under

one-sided growth restrictions of the Nagumo type (3.19), (3.20). Note that for φ(y) ≡
y similar results can be found in [8] and for φ = φp in the papers [10], [19], [20], where

both-sided growth restrictions are assumed.

Theorem 3.4. Assume that the following conditions are fulfilled:

σ1 and σ2 are respectively lower and upper functions of (3.1), (1.2)(3.16)

and σ1 6 σ2 on [0, T ],

a, b ∈ (0, T ), a < b, y1, y2 ∈ � , c0 > 2(1 + b− a)(b− a)−1(‖σ1‖∞ + ‖σ2‖∞),(3.17)

g ∈ L[0, T ] is nonnegative, ω ∈ C[0,∞) is positive and fulfils (3.6),(3.18)

h(t, x, y) sign y > −ω(|φ(y) − φ(y1)|)(g(t) + |y|)(3.19)

for a.e. t ∈ [0, b], ∀x ∈ [σ1(t), σ2(t)], ∀y ∈ � such that |φ(y)| > |φ(y1)|

and

h(t, x, y) sign y 6 ω(|φ(y) − φ(y2)|)(g(t) + |y|)(3.20)

for a.e. t ∈ [a, T ], ∀x ∈ [σ1(t), σ2(t)], ∀y ∈ � such that |φ(y)| > |φ(y2)|.

Then problem (3.1), (1.2) has a solution u satisfying

(3.21) σ1 6 u 6 σ2 on [0, T ]

and

(3.22) |u′(t)| 6 %0 for t ∈ [0, T ],

where %0 ∈ (0,∞) is the constant from Lemma 3.3 with g0 = g + |y1| + |y2|.
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�! #"$"&%
. Put r0 = %0 + ‖σ′

1‖∞ + ‖σ′
2‖∞ where %0 is given by Lemma 3.3 and

define functions

χ(y) =











1 if |y| 6 r0,

2 − y/r0 if r0 < |y| < 2r0,

0 if |y| > 2r0

and

(3.23) h̃(t, x, y) = χ(y)h(t, x, y)

for a.e. t ∈ [0, T ], x, y ∈ � .
For (x, y) ∈ [σ1(t), σ2(t)] × � , the function h̃ is bounded on [0, T ] by a Lebesgue

integrable function. In addition, σ1, σ2 are respectively lower and upper functions

of the problem

(3.24) (φ(x′(t)))′ = h̃(t, x(t), x′(t)), (1.2).

According to Lemma 3.2 there exists a solution u of problem (3.24) satisfying (3.2).

Let us prove that u is also a solution of problem (3.1), (1.2). Conditions (3.2) and

(3.17) imply that u fulfils (3.7) and (3.8). Moreover, by (3.19) and (3.23),

h̃(t, x, y) sign(φ(y) − φ(y1)) = χ(y)h(t, x, y) sign y

> −ω(|φ(y) − φ(y1)|)(g(t) + |y|)
> −ω(|φ(y) − φ(y1)|)(g0(t) + |y − y1|)

for a.e. t ∈ [0, T ], all x ∈ [σ1(t), σ2(t)] and every y ∈ � such that |φ(y)| > |φ(y1)|,
where g0(t) = g(t) + |y1| + |y2|. (Note that |φ(y)| > |φ(y1)| implies sign(y − y1) =

sign y.) It means that (3.9) is valid. Similarly, using (3.20), we can derive that (3.10)

is valid. We have shown that all conditions of Lemma 3.3 are satisfied. So, the

estimate (3.11) is true and u is a solution of problem (3.1), (1.2). This concludes the

proof of Theorem 3.4. �

4. Main result

In this section we prove our main result about the solvability of the singular

Dirichlet boundary value problem (1.1), (1.2).
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Theorem 4.1. Assume that conditions (3.18),

a, b ∈ (0, T ), a < b, r1, r2, y1, y2 ∈ � ,(4.1)
{

r1 + ty1 6 min{A,B}, r2 + ty2 > max{A,B} for t ∈ [0, T ],

f(t, r1 + ty1, y1) 6 0, f(t, r2 + ty2, y2) > 0 for a.e. t ∈ [0, T ],
(4.2)

f(t, x, y) sign y > −ω(|φ(y) − φ(y1)|)(g(t) + |y|)(4.3)

for a.e. t ∈ [0, b], ∀x ∈ [r1 + ty1, r2 + ty2], ∀y ∈ � such that |φ(y)| > |φ(y1)|

and

f(t, x, y) sign y 6 ω(|φ(y) − φ(y2)|)(g(t) + |y|)(4.4)

for a.e. t ∈ [a, T ], ∀x ∈ [r1 + ty1, r2 + ty2], ∀y ∈ � such that |φ(y)| > |φ(y2)|

are satisfied. Then there exists %0 > 0 such that problem (1.1), (1.2) has a w-solution

u ∈ C1(0, T ) satisfying

(4.5) r1 + ty1 6 u(t) 6 r2 + ty2 for t ∈ [0, T ]

and

(4.6) |u′(t)| 6 %0 for each t ∈ (0, T ).

Further, let there exist η ∈ (0, T/2), λ1, λ2 ∈ {−1, 1}, ψ0 ∈ L[0, T ] such that

(4.7)























λ1 sign(y − y1)f(t, x, y) > ψ0(t)

for a.e. t ∈ [0, η], ∀x ∈ [r1 + ty1, r2 + ty2], ∀y ∈ [−%0, %0],

λ2 sign(y − y2)f(t, x, y) > ψ0(t)

for a.e. t ∈ [T − η, T ], ∀x ∈ [r1 + ty1, r2 + ty2], ∀y ∈ [−%0, %0].

Then u ∈ C1[0, T ] is a solution of problem (1.1), (1.2).

�! #"$"&%
. For each n ∈ � define Jn by (2.2),

(4.8) fn(t, x, y) =

{

f(t, x, y) for a.e. t ∈ Jn, ∀x, y ∈ � ,
0 for a.e. t ∈ [0, 1/n) ∪ (T − 1/n, T ], ∀x, y ∈ � .

Then fn ∈ Car([0, T ] × � 2 ) for each n ∈ � . Choose n ∈ � and show that problem
(2.1), (1.2) satisfies the assumptions of Theorem 3.4. Let us put σ1(t) = r1 + ty1
and σ2(t) = r2 + ty2 for t ∈ [0, T ]. Then, according to (4.2), σ1 and σ2 are lower and
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upper function of problem (2.1), (1.2), i.e. (3.16) holds. From inequalities (4.3) and

(4.4) we get

fn(t, x, y) sign y = f(t, x, y) sign y > −ω(|φ(y) − φ(y1)|)(g(t) + |y|)
for a.e. t ∈ [0, b] ∩ Jn, ∀x ∈ [r1 + ty1, r2 + ty2], ∀y ∈ � , |φ(y)| > |φ(y1)|,

fn(t, x, y) sign y = 0 > −ω(|φ(y) − φ(y1)|)(g(t) + |y|)
for a.e. t ∈ [0, b] \ Jn, ∀x ∈ [r1 + ty1, r2 + ty2], ∀y ∈ � ,

fn(t, x, y) sign y = f(t, x, y) sign y 6 ω(|φ(y) − φ(y2)|)(g(t) + |y|)
for a.e. t ∈ [a, T ] ∩ Jn, ∀x ∈ [r1 + ty1, r2 + ty2], ∀y ∈ � , |φ(y)| > |φ(y2)|,

fn(t, x, y) sign y = 0 6 ω(|φ(y) − φ(y2)|)(g(t) + |y|)
for a.e. t ∈ [a, T ] \ Jn, ∀x ∈ [r1 + ty1, r2 + ty2], ∀y ∈ � .

It means that conditions (3.19) and (3.20) are fulfilled. By Theorem 3.4, problem

(2.1), (1.2) has a solution un ∈ C1[0, T ] with φ(u′n) ∈ AC[0, T ]. Moreover, un satisfies

(4.5) and

(4.9) |u′n(t)| 6 %0 for t ∈ [0, T ],

where %0 ∈ (0,∞) is the constant from Lemma 3.3 with g0 = g + |y1| + |y2|. By
virtue of Lemma 3.3, %0 does not depend on un. Therefore condition (2.5) is fulfilled,

where

Ω = {u ∈ C1([0, T ]) : ‖u‖∞ 6 ‖σ1‖∞ + ‖σ2‖∞ + %0}.
Hence Theorem 2.1 yields the existence of a w-solution u of problem (1.1), (1.2).

Moreover, u satisfies (4.5) and (4.6).

Now, moreover, assume (4.7). Let us define

ψ(t) = min{ψ0(t), 0} for t ∈ [0, T ].

Then ψ ∈ L[0, T ]. We can see that

λ1fn(t, un(t), u′n(t)) sign(u′n(t) − y1) = λ1f(t, un(t), u′n(t)) sign(u′n(t) − y1)

> ψ0(t) > ψ(t) for a.e. t ∈ [0, η] ∩ Jn,

λ1fn(t, un(t), u′n(t)) sign(u′n(t) − y1) = 0 > ψ(t) for a.e. t ∈ [0, η] \ Jn,

λ2fn(t, un(t), u′n(t)) sign(u′n(t) − y2) = λ2f(t, un(t), u′n(t)) sign(u′n(t) − y2)

> ψ0(t) > ψ(t) for a.e. t ∈ [T − η, T ] ∩ Jn,

λ2fn(t, un(t), u′n(t)) sign(u′n(t) − y2) = 0 > ψ(t) for a.e. t ∈ [T − η, T ] \ Jn.

It means that condition (2.6) is satisfied. By Theorem 2.1, u is a solution of (1.1),

(1.2). �
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4 )6587  (
4.2. A similar result about the existence of a w-solution of problem

(1.1), (1.2) with φ(y) = y can be found in [8], Theorem 3.1, but we do not know

another result about the existence of a solution to (1.1), (1.2) in literature.
9 : 7;5<2>=?)

4.3 (Existence of solution). Let p > 1 and φp(y) = |y|p−2y for y ∈ � .
Consider the equation

(4.10) (φp(u
′))′ = q(t)(uk − rk) + cφp(u

′)u′ +
( 1

tα
− 1

(T − t)β

)

(φp(u
′) − φp(d)),

where r, c, d ∈ � , k ∈ � is odd, α, β ∈ (1,∞), q ∈ L[0, T ] is nonnegative. Then,

by Theorem 4.1, problem (4.10), (1.2) has a solution u ∈ C1[0, T ] with φp(u
′) ∈

AC[0, T ]. We will show that all the conditions of Theorem 4.1 are satisfied. Let

r1, r2 ∈ � . Then

f(t, ri + td, d) = q(t)((ri + td)k − rk) + cφp(d)d for a.e. t ∈ [0, T ].

Since q is nonnegative on [0, T], we can find a large positive r2 and a negative r1
with large absolute value such that (4.2) holds. Denote

q1(t) = q(t) max{|xk − rk | : r1 + td 6 x 6 r2 + td} for a.e. t ∈ [0, T ],

q2(t) =











(T − t)−β for a.e. t ∈ [0, a),

(T − t)−β + t−α for a.e. t ∈ [a, b],

t−α for a.e. t ∈ (b, T ].

Then for a.e. t ∈ [0, b], each x ∈ [r1 + td, r2 + td] and each y ∈ � , |φp(y)| > |φp(d)|
we have

f(t, x, y) sign y = f(t, x, y) sign(φp(y) − φp(d))

> −q1(t) − |c||φp(y) − φp(d)||y| − |c||φp(d)||y| −
1

(T − t)β
|φp(y) − φp(d)|

> −(|φp(y) − φp(d)| + 1)((|c| + 1)(|φp(d)| + 1))(|q1(t)| + |q2(t)| + |y|).

Therefore, if we put

ω(s) = (1 + s)c0, c0 = (|c| + 1)(|φp(d)| + 1), g(t) = |q1(t)| + |q2(t)|,

we get (4.3). Similarly we obtain (4.4) Further, for a.e. t ∈ [0, T ], each x ∈ [r1 + td,

r2 + td] and each y ∈ [−%0, %0] we get

sign(b− t)f(t, x, y) sign(y − d) = f(t, x, y) sign(φp(y) − φp(d))

> −q1(t) − |c|φp(%0)%0 − q2(t)(φp(%0) + |φp(d)|) = ψ0(t),

where ψ0 ∈ L[0, T ], which means that (4.7) is satisfied.
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