CHARACTERIZATION OF SEMIENTIRE GRAPHS WITH CROSSING NUMBER 2

D. G. Akka ${ }^{1}$, J. K. Bano, Gulbarga

(Received May 25, 2000)

Abstract

The purpose of this paper is to give characterizations of graphs whose vertexsemientire graphs and edge-semientire graphs have crossing number 2. In addition, we establish necessary and sufficient conditions in terms of forbidden subgraphs for vertexsemientire graphs and edge-semientire graphs to have crossing number 2.

Keywords: semientire graph, vertex-semientire graph, edge-semientire graph, crossing number, forbidden subgraph, homeomorphic graphs

MSC 2000: 05C50, 05C99

1. Introduction

Graphs considered here are simple graphs (without loops and multiple edges). A graph is said to be embedded in a surface when it is drawn on S so that no two edges intersect. A graph is planar if it can be embedded in the plane. By a plane graph we mean a graph embedded in the plane as opposed to a planar graph.

If there exists an edge $e_{1}=u v$ in a plane graph G, we say that the vertices u, v are adjacent to each other and both incident to the edge $e_{1}=u v$. The edge $e_{1}=u v$ is said to be adjacent to an edge e_{2} if and only if $e_{2}=u w$ or $e_{2}=v w$, where w is a vertex of G distinct from u and v. A region of G is adjacent to the vertices and edges which are on its boundary, and two regions of G are adjacent if their boundaries share a common edge. In this paper, vertices, edges and regions are called the elements of G.

[^0]Kulli and Akka [2] introduced the concepts of a vertex-semientire graph and an edge-semientire graph of a graph. The vertex-semientire graph $e_{v}(G)$ of a plane graph G is the graph whose vertex set is the union of the vertex set and the region set of G and in which two vertices are adjacent if and only if the corresponding elements (two vertices, two regions or a vertex and a region) of G are adjacent. The edge-semientire graph $e_{e}(G)$ of a plane graph G is the graph whose vertex set is the union of the edge set and the region set of G and in which two vertices are adjacent if and only if the corresponding elements (two edges, two regions or an edge and a region) of G are adjacent. For other definitions see [1].
In [2], Kulli and Akka established characterizations of graphs whose vertexsemientire graphs and edge-semientire graphs are planar and outerplanar. Further, in [3], Kulli and Muddebihal established characterizations of graphs whose vertexsemientire graphs and edge-semientire graphs have crossing number one. In addition, they established necessary and sufficient conditions in terms of forbidden subgraphs for vertex-semientire graphs and edge-semientire graphs to have crossing number one.

The main results of this paper are characterizations of graphs whose vertexsemientire graphs and edge-semientire graphs have crossing number 2. In addition, we give characterizations in terms of forbidden subgraphs of graphs whose vertexsemientire graphs and edge-semientire graphs have crossing number 2 .
The following will be useful for proving our theorems.
Theorem A [2]. Let G be a connected plane graph. Then $e_{v}(G)$ is planar if and only if G is a tree.

Theorem B [2]. Let G be a connected plane graph. Then $e_{e}(G)$ is planar if and only if $\Delta(G) \leqslant 3$ and G is a tree.

Theorem C [3]. Let G be a connected plane graph. Then $e_{v}(G)$ has crossing number 1 if and only if G is unicyclic.

Theorem D [3]. The edge-semientire graph $e_{e}(G)$ of a connected plane graph G has crossing number 1 if and only if (1) or (2) holds.
(1) $\Delta(G)=3, G$ is unicyclic and such that at least one vertex of degree 2 is on the cycle.
(2) $\Delta(G)=4, G$ is a tree and has exactly one vertex of degree 4 .

2. Main Results

In the next theorem, we present a characterization of graphs whose vertexsemientire graphs have crossing number 2.

Theorem 1. Let G be a connected plane graph. Then $e_{v}(G)$ has crossing number 2 if and only if G has exactly two cycles and these cycles are its blocks.

Proof. Suppose $e_{v}(G)$ has crossing number 2. Assume that G is a tree. Then by Theorem A, $e_{v}(G)$ is planar, a contradiction.

Assume that G has at least three cycles. Suppose each cycle is a block of G. Then by Theorem C, each block which is a cycle in G gives at least one crossing in $e_{v}(G)$. Hence $e_{v}(G)$ has at least three crossings, a contradiction. Thus G has exactly two cycles.

Suppose two cycles lie in a block. Then G has a subgraph homeomorphic to $K_{4}-x$. G has two interior regions r_{1} and r_{2} and the exterior region R. In $e_{v}(G)$, the vertices r_{1}, r_{2} and R are mutually adjacent, since the regions r_{1}, r_{2} and R are mutually adjacent in G. Then in each adjacency there exists at least one crossing. Hence $e_{v}(G)$ has at least 3 crossings, a contradiction. Thus we conclude that G has exactly two cycles as blocks.

Conversely, assume that G has exactly two cycles $C_{i}, i=1,2$, which are both blocks. Also, let each edge which is not on C_{i} be a block of G. Let $r_{i}, i=1,2$ be two interior regions of C_{i} and R the exterior region of G. In $e_{v}(G)$, the vertex r_{i} is adjacent to each vertex of C_{i} without crossings, the vertex R is adjacent to each vertex of G without crossings and the vertex R is adjacent to r_{i} with two crossings.

Thus $e_{v}(G)$ has crossing number 2 . This completes the proof of the theorem.
In the next theorem, we obtain a characterization of graphs whose edge-semientire graphs have crossing number 2.

Theorem 2. The edge-semientire graph $e_{e}(G)$ of a connected plane graph G has crossing number 2 if and only if

1) $\operatorname{deg} v \leqslant 4$ for every vertex v of G, and G is a tree and has exactly two vertices of degree 4 , or G is not a tree and has exactly one cutvertex of degree 4 and exactly one cycle such that at least one vertex of degree 2 is on the cycle or
2) $\operatorname{deg} v \leqslant 3$ for every vertex v of G and G has exactly two cycles and these cycles are its blocks in which at least one vertex of degree 2 lies on each cycle, or G is unicyclic and such that no vertex of degree 2 is on the cycle.

Proof. Suppose the edge-semientire graph $e_{e}(G)$ of a connected plane graph G has crossing number 2. Then it is nonplanar. By Theorem B or D, G is a tree with $\Delta(G) \geqslant 4$ or G is not a tree and $\Delta(G) \leqslant 3$.

Suppose G is a tree with $\operatorname{deg} \geqslant 4$ for some vertex v of G. We consider the following cases.

Case 1. Suppose $\operatorname{deg} v \geqslant 5$ for some vertex v of the tree G. Then clearly $c\left(e_{e}(G)\right)>2$, a contradiction. Hence $\Delta(G) \leqslant 4$.

Case 2. Suppose $\operatorname{deg} v=4$ for some vertex v of G. Assume G has at least 3 vertices of degree 4. Then $L(G)$ has at least 3 subgraphs isomorphic K_{4}. By the definition of $e_{e}(G), L(G)$ is a subgraph of $e_{e}(G)$. The vertex R in $e_{e}(G)$ which corresponds to the exterior region is adjacent to every vertex of $L(G)$, which gives at least 3 subgraphs isomorphic K_{5} in $e_{e}(G)$. Hence $c\left(e_{e}(G)\right)>2$, a contradiction. Thus G has at most two vertices of degree 4.

Suppose G is not a tree and assume $\operatorname{deg} v=4$ for some vertex v of G. We consider 2 cases.

Case 1. Assume G has at least two vertices of degree 4 and at least one cycle C. Then $L(G)$ has at least 2 subgraphs isomorphic to K_{4} and at least one subgraph $L(C)$. By the definition of $e_{e}(G), L(G) \subset e_{e}(G)$. The vertex r in $e_{e}(G)$ (which corresponds to an interior region of C) is adjacent to every vertex of $L(C)$. This gives one wheel W. The vertex R in $e_{e}(G)$ is adjacent to every vertex of two K_{4} and W of $L(G)$. This gives at least 3 subgraphs isomorphic to K_{5} in $e_{e}(G)$. Thus $c\left(e_{e}(G)\right) \geqslant 3$, a contradiction.

Case 2. Assume G has at least one vertex of degree 4, at least two cycles C_{i}, $i=1,2$ as blocks and let r_{i} be the interior regions of C_{i}. Then $L(G)$ has at least one subgraph isomorphic to K_{4} and at least two subgraphs $L\left(C_{i}\right)$. In $e_{e}(G), r_{i}$ is adjacent to every vertex of $L\left(C_{i}\right)$, which gives a wheel W_{i}. Since $L(G) \subset e_{e}(G)$, the vertex R in $e_{e}(G)$ which corresponds to the exterior region is adjacent to every vertex of $L(G)$ and r_{i}. This gives at least 3 subgraphs isomorphic to K_{5} in $e_{e}(G)$. Hence $c\left(e_{e}(G)\right)>2$, a contradiction.

From cases 1 and 2 we conclude that G has exactly one vertex of degree 4 and exactly one cycle.

Suppose G has exactly one vertex v of degree 4 and a cycle C. Assume that every vertex of C has degree at least three. Let $e_{i}, i=1,2,3$ and 4 be edges adjacent to v. Then $L(G)$ has exactly one subgraph isomorphic to K_{4} and exactly one cycle $L(C)$. Let r be the interior region of C and R the exterior region of G. In $e_{e}(G)$, the vertex r is adjacent to every vertex of $L(C)$ without crossing, which gives $e_{e}(G)-R$. We get two wheels $L(C)+r$ and $K_{3}+e_{i}\left(=K_{4}\right), i=1,2,3$ or 4 in $e_{e}(G)-R$. In $e_{e}(G)-\left\{r R, R e_{i}\right\}$, the vertex R is adjacent to every vertex of $e_{e}(G)-\left\{r, e_{i}\right\}$ without crossings. In $e_{e}(G)$ it is easy to see that the edges $R e_{i}$ and $r R$ cross respectively at
least one edge and at least 2 edges of $e_{e}(G)-\left\{r R, r e_{i}\right\}$. Thus $e_{e}(G)$ has at least 3 crossings, a contradiction. This proves (1).

Assume G is not a tree and $\operatorname{deg} v \leqslant 3$ for every vertex v of G. We consider three cases.

Case 1. Assume G has at least 3 cycles. Suppose each cycle has at least one vertex of degree two and each cycle is a block of G. Let R and $r_{i}, i=1,2,3$ be vertices in $e_{e}(G)$ which correspond to the exterior and interior regions of G. Then $e_{e}(G)-R$ has at least 3 blocks each of which is a wheel. In $e_{e}(G), R$ is adjacent to each wheel. We get at least 1 crossing in each case. It is clear that $e_{e}(G)$ has at least 3 crossings, a contradiction.

Case 2. Suppose G has at least two cycles in a block. Then G has a subgraph homeomorphic to $K_{4}-x$. Obviously G has 2 interior regions, say r_{1} and r_{2}, and the exterior region R. Clearly $e_{e}(G)-R$ has a block in which the edge joining the vertices r_{1} and r_{2} has two crossings. Also in $e_{e}(G)$, the vertex R is adjacent to r_{1} and r_{2}, which makes two more crossings. Thus $c\left(e_{e}(G)\right) \geqslant 4$, a contradiction.

From the above cases, we conclude that G has at most two cycles C_{i} as blocks.
Assume G has no vertex of degree 2 on each cycle C_{i}. The interior regions r_{1} and r_{2} are adjacent respectively to every vertex of C_{1} and C_{2} without crossings and this gives $e_{e}(G)-R$ where R is the exterior region. The vertex R is adjacent to each vertex of $e_{e}(G)-\left\{r_{1}, r_{2}\right\}$ without crossings. In $e_{e}(G), r_{1} R$ and $r_{2} R$ are edges. Clearly each $r_{i} R$ crosses at least 2 edges in $e_{e}(G)-\left\{r_{1} R, r_{2} R\right\}$. Thus $c\left(e_{e}(G)\right) \geqslant 4$, a contradiction.

Suppose G is unicyclic and all vertices of the cycle C are of degree less than 3 . Assume that at least one vertex of the cycle C of G has degree 2 . Then by condition (1) of Theorem $\mathrm{D}, e_{e}(G)$ has exactly one crossing, a contradiction. This proves (2).

Conversely, suppose G is a graph satisfying conditions (1) or (2). Then by Theorem B or $\mathrm{D}, e_{e}(G)$ has crossing number at least 2 . We now show that its crossing number is at most 2. Assume first that G satisfies condition (1). We consider 3 cases.

Case 1. Suppose G is a tree and has exactly two vertices of degree 4. Then clearly $e_{e}(G)$ has exactly two subgraphs, each isomorphic to K_{5}, and hence $e_{e}(G)$ can be drawn with exactly two crossings.

Case 2. Suppose G is not a tree and has exactly one vertex of degree 4 and exactly one cycle C such that at least one vertex of degree 2 is on the cycle. Then it is easy to see that $e_{e}(G)$ has exactly two crossings.

Now assume (2). Then G has exactly two cycles C_{i} as blocks in which at least one vertex of degree 2 lies on each cycle. Let $r_{i}, i=1,2$ be the interior regions of two circles C_{i} of G. The vertex r_{i} is adjacent to every vertex of $L\left(C_{i}\right)$ without crossings, which gives $e_{e}(G)-R$ where R is the exterior region of G. Obviously $e_{e}(G)-R$
has at least two blocks each of which is a wheel with at least one boundary edge. In $e_{e}(G)-\left\{r_{1} R, r_{2} R\right\}$ the vertex R is adjacent to every vertex of $e_{e}(G)-\left\{r_{1}, r_{2}\right\}$ without crossings. By the definition of $e_{e}(G), r_{1} R$ and $r_{2} R$ are edges. Hence either of $r_{1} R$ and $r_{2} R$ crosses exactly one edge of $e_{e}(G)-\left\{r_{1} R, r_{2} R\right\}$ and gives $e_{e}(G)$. Hence $e_{e}(G)$ has exactly two crossings.

Suppose G is unicyclic in which no vertex of degree 2 is on the cycle C. Let the vertices r and R correspond to the interior and exterior regions of G, respectively. The vertex r is adjacent to every vertex of $L(C)$ and gives one wheel together with a triangle on each side (in $e_{e}(G)-R$) without crossings. In $e_{e}(G)-r R$, the vertex R is adjacent to every vertex of $e_{e}(G)-r$ without crossings. Thus the edge $r R$ crosses exactly two boundary edges of $e_{e}(G)-r R$ and gives $e_{e}(G)$. Hence $c\left(e_{e}(G)\right)=2$. This completes the proof of the theorem.

3. Forbidden subgraphs

With help of Theorems 1 and 2 we now characterize graphs whose semientire graphs have crossing number 2 , in terms of forbidden subgraphs.

Theorem 3. Suppose a connected plane graph G has at least two cycles as blocks. The vertex-semientire graph $e_{v}(G)$ has crossing number 2 if and only if it has no subgraph homeomorphic to $G_{i}, i=12,13,14,16, \ldots, 19$ or 20 (Fig. 1).

Proof. Assume a connected plane graph G has at least two cycles. Suppose $c\left(e_{v}(G)\right)=2$. Then by Theorem $1, G$ has at most two cycles as blocks. It follows that G has no subgraph homeomorphic to $G_{12}, G_{13}, G_{14}, G_{16}, G_{17}, G_{18}, G_{19}$ or G_{20}.

Conversely, suppose G has at least two cycles as blocks and has no subgraph homeomorphic to $G_{12}, G_{13}, G_{14}, G_{16}, G_{17}, G_{18}, G_{19}$ or G_{20}.

Suppose G has at least 3 cycles each of them being a block of G. Then G has a subgraph homeomorphic to $G_{12}, G_{13}, G_{16}, G_{17}, G_{18}, G_{19}$ or G_{20}, a contradiction.

Suppose G has a block which contains at least two cycles. Then G has a subgraph homeomorphic to G_{14}, a contradiction.

In each case we have arrived at a contradiction. Thus Theorem 1 implies that $c\left(e_{v}(G)\right)=2$. This completes proof.

Theorem 4. The edge-semientire graph $e_{e}(G)$ of a connected plane graph G (with at least 5 vertices and 5 edges and $\Delta(G) \leqslant 4$) has crossing number 2 if and only if G has no subgraph homeomorphic to $G_{i}, 1=1,2, \ldots, 14$ or 15 (Fig.1).
G_{1} :

$\left.G_{4}: \sqrt{0}^{9}\right]^{9}$
$G_{7}: \underbrace{9}_{0}$

G_{12} :

G_{13} :

G_{14} :

G_{16} :

G_{17} :

G_{18} :

G_{19} :

Fig. 1

Proof. Assume G is a connected plane graph whose edge-semientire graph $e_{e}(G)$ has crossing number 2 . We prove that all graphs homeomorphic to $G_{i}, i=$ $1,2, \ldots, 14$ or 15 have $c\left(e_{e}\left(G_{i}\right)\right)>2$. By Theorem 2 , we have (1) $\operatorname{deg} v \leqslant 4$ for every vertex v of G and G is a tree and has exactly two vertices of degree 4 or G is not a tree and has exactly one vertex of degree 4 and exactly one cycle such that at least one vertex of degree 2 is on the cycle. Or (2) $\operatorname{deg} v \leqslant 3$ for every vertex v of G and G has exactly two cycles as blocks in which at least one vertex of degree 2 is on each
cycle or G is unicyclic and such that no vertex of degree 2 is on the cycle. From (1) or (2) it follows that G has no subgraph homeomorphic to any one of the graphs G_{i}, $i=1,2, \ldots, 15$.

Conversely, assume that G is a connected plane graph and does not contain a subgraph homeomorphic to any one of the graphs $G_{i}, i=1, \ldots, 15$. We shall show that G satisfies (1) or (2) and hence by Theorem $2, e_{e}(G)$ has crossing number 2. Suppose $\operatorname{deg} v \geqslant 5$ for some vertex v of G. Then G contains a subgraph homeomorphic to G_{1}, a contradiction. Hence $\operatorname{deg} v \leqslant 4$ for every vertex v of G. We consider the following two cases.

Case 1. Suppose G is a tree. Assume there exist at least three vertices of degree 4. Then G has a subgraph homeomorphic to G_{2} or G_{3}, a contradiction. Hence G has exactly two vertices of degree 4.

Case 2. Suppose G is not a tree. Then we consider two subcases.
Subcase 2.1. Suppose G is unicyclic C. Assume G has exactly two vertices v_{1} and v_{2} of degree 4 . Then we consider 3 possibilities.
a) If $v_{1}, v_{2} \in C$, then G has a subgraph homeomorphic to G_{4}.
b) If v_{1} or $v_{2} \in C$, then G has a subgraph homeomorphic to G_{5}.
c) If $v_{1}, v_{2} \notin C$, then G has a subgraph homeomorphic to G_{6}.

In each case we have a contradiction. Thus G has exactly one vertex of degree 4 and exactly one cycle.

Suppose G has exactly one vertex v of degree 4 and exactly one cycle C such that no vertex of degree 2 is on the cycle. Then we consider two possibilities.
a) If $v \in C$, then G has a subgraph homeomorphic to G_{7}, a contradiction.
b) If $v \notin C$, then G has a subgraph homeomorphic to G_{8}, a contradiction.

Thus G has exactly one vertex of degree 4 and exactly one cycle such that at least one vertex of degree 2 is on the cycle, or G is unicyclic with every vertex of degree 3 on the cycle.

Subcase 2.2. Assume G is not a unicyclic graph. Suppose G has exactly one vertex v of degree 4 and at least two cycles C_{1} and C_{2}, each of which has at least one vertex of degree 2 . We consider the following three possibilities.
a) If $v \in C_{1}$ and C_{2}, then G has a subgraph homeomorphic to G_{9}.
b) If $v \in C_{1}$ or C_{2}, then G has a subgraph homeomorphic to G_{10}.
c) If $v \notin C_{1}$ and C_{2}, then G has a subgraph homeomorphic to G_{11}.

In each case we have a contradiction. Thus G has at least 2 cycles each of which has at least one vertex of degree 2. Assume $\operatorname{deg} v \leqslant 3$ for every vertex v of G. Then we consider 3 cases.

Case 1. Suppose G has at least 3 cycles as blocks such that each block has at least one vertex of degree two. Then G has a subgraph homeomorphic to G_{12} or G_{13}, a contradiction.

Case 2. Suppose G has a block which contains at least two cycles. Then G has a subgraph homeomorphic to G_{14}, a contradiction.

Thus G has at most two cycles as blocks.
Case 3. Suppose G has exactly two cycles as blocks such that one block has no vertex of degree 2 . Then G has a subgraph homeomorphic to G_{15}, a contradiction. Thus G has exactly two cycles such that each cycle has at least one vertex of degree 2 , or G has exactly one cycle such that each vertex on the cycle is of degree 3 .

We have exhausted all possibilities. In each case we found that G contains a subgraph homeomorphic to some of the forbidden subgraphs $G_{i}, i=1, \ldots, 15$. Hence by Theorem $2, e_{e}(G)$ has crossing number 2 . This completes the proof of the theorem.

References

[1] F. Harary: Graph Theory. Addison-Wesley, Reading Mass, 1969.
[2] V. R. Kulli, D. G. Akka: On semientire graphs. J. Math. Phys. Sci. 14 (1980), 585-588.
[3] V.R. Kulli, M. H. Muddebihal: Semientire graphs with crossing number 1. To appear in Indian J. Pure Appl. Math.

Authors' addresses: D. G. Akka, Dept. of Mathematics, B. V. Bhoomaraddi College, Bidar, Karnataka, India; J. K. Bano, Dept. of Mathematics, Govt. Junior College, Sedam, Dist. Gulbarga, Karnataka, India.

[^0]: ${ }^{1}$ Research supported by the UGC Minor Research Project No. F1-28/97 (MINOR/SRO).

