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Abstract. The purpose of this paper is to give characterizations of graphs whose vertex-
semientire graphs and edge-semientire graphs have crossing number 2. In addition, we
establish necessary and sufficient conditions in terms of forbidden subgraphs for vertex-
semientire graphs and edge-semientire graphs to have crossing number 2.
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1. Introduction

Graphs considered here are simple graphs (without loops and multiple edges). A
graph is said to be embedded in a surface when it is drawn on S so that no two edges

intersect. A graph is planar if it can be embedded in the plane. By a plane graph
we mean a graph embedded in the plane as opposed to a planar graph.

If there exists an edge e1 = uv in a plane graph G, we say that the vertices u, v

are adjacent to each other and both incident to the edge e1 = uv. The edge e1 = uv

is said to be adjacent to an edge e2 if and only if e2 = uw or e2 = vw, where w is a
vertex of G distinct from u and v. A region of G is adjacent to the vertices and edges

which are on its boundary, and two regions of G are adjacent if their boundaries share
a common edge. In this paper, vertices, edges and regions are called the elements

of G.

1Research supported by the UGC Minor Research Project No. F1-28/97 (MINOR/SRO).
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Kulli and Akka [2] introduced the concepts of a vertex-semientire graph and an

edge-semientire graph of a graph. The vertex-semientire graph ev(G) of a plane
graph G is the graph whose vertex set is the union of the vertex set and the region
set of G and in which two vertices are adjacent if and only if the corresponding

elements (two vertices, two regions or a vertex and a region) of G are adjacent. The
edge-semientire graph ee(G) of a plane graph G is the graph whose vertex set is the

union of the edge set and the region set of G and in which two vertices are adjacent
if and only if the corresponding elements (two edges, two regions or an edge and

a region) of G are adjacent. For other definitions see [1].

In [2], Kulli and Akka established characterizations of graphs whose vertex-
semientire graphs and edge-semientire graphs are planar and outerplanar. Further,

in [3], Kulli and Muddebihal established characterizations of graphs whose vertex-
semientire graphs and edge-semientire graphs have crossing number one. In addition,
they established necessary and sufficient conditions in terms of forbidden subgraphs

for vertex-semientire graphs and edge-semientire graphs to have crossing number
one.

The main results of this paper are characterizations of graphs whose vertex-

semientire graphs and edge-semientire graphs have crossing number 2. In addition,
we give characterizations in terms of forbidden subgraphs of graphs whose vertex-

semientire graphs and edge-semientire graphs have crossing number 2.

The following will be useful for proving our theorems.

Theorem A [2]. Let G be a connected plane graph. Then ev(G) is planar if and
only if G is a tree.

Theorem B [2]. Let G be a connected plane graph. Then ee(G) is planar if and
only if ∆(G) � 3 and G is a tree.

Theorem C [3]. Let G be a connected plane graph. Then ev(G) has crossing
number 1 if and only if G is unicyclic.

Theorem D [3]. The edge-semientire graph ee(G) of a connected plane graph G

has crossing number 1 if and only if (1) or (2) holds.

(1) ∆(G) = 3, G is unicyclic and such that at least one vertex of degree 2 is on the

cycle.

(2) ∆(G) = 4, G is a tree and has exactly one vertex of degree 4.
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2. Main results

In the next theorem, we present a characterization of graphs whose vertex-

semientire graphs have crossing number 2.

Theorem 1. Let G be a connected plane graph. Then ev(G) has crossing number
2 if and only if G has exactly two cycles and these cycles are its blocks.

�����. Suppose ev(G) has crossing number 2. Assume that G is a tree. Then

by Theorem A, ev(G) is planar, a contradiction.

Assume that G has at least three cycles. Suppose each cycle is a block of G. Then

by Theorem C, each block which is a cycle in G gives at least one crossing in ev(G).
Hence ev(G) has at least three crossings, a contradiction. Thus G has exactly two

cycles.

Suppose two cycles lie in a block. Then G has a subgraph homeomorphic to
K4 − x. G has two interior regions r1 and r2 and the exterior region R. In ev(G),

the vertices r1, r2 and R are mutually adjacent, since the regions r1, r2 and R are
mutually adjacent in G. Then in each adjacency there exists at least one crossing.

Hence ev(G) has at least 3 crossings, a contradiction. Thus we conclude that G has
exactly two cycles as blocks.

Conversely, assume that G has exactly two cycles Ci, i = 1, 2, which are both
blocks. Also, let each edge which is not on Ci be a block of G. Let ri, i = 1, 2 be

two interior regions of Ci and R the exterior region of G. In ev(G), the vertex ri

is adjacent to each vertex of Ci without crossings, the vertex R is adjacent to each

vertex of G without crossings and the vertex R is adjacent to ri with two crossings.

Thus ev(G) has crossing number 2. This completes the proof of the theorem.

In the next theorem, we obtain a characterization of graphs whose edge-semientire

graphs have crossing number 2. �

Theorem 2. The edge-semientire graph ee(G) of a connected plane graph G has

crossing number 2 if and only if

1) deg v � 4 for every vertex v of G, and G is a tree and has exactly two vertices

of degree 4, or G is not a tree and has exactly one cutvertex of degree 4 and

exactly one cycle such that at least one vertex of degree 2 is on the cycle

or

2) deg v � 3 for every vertex v of G and G has exactly two cycles and these cycles

are its blocks in which at least one vertex of degree 2 lies on each cycle, or G is

unicyclic and such that no vertex of degree 2 is on the cycle.
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�����. Suppose the edge-semientire graph ee(G) of a connected plane graph G

has crossing number 2. Then it is nonplanar. By Theorem B or D, G is a tree with
∆(G) � 4 or G is not a tree and ∆(G) � 3.
Suppose G is a tree with deg � 4 for some vertex v of G. We consider the following

cases.

Case 1. Suppose deg v � 5 for some vertex v of the tree G. Then clearly
c(ee(G)) > 2, a contradiction. Hence ∆(G) � 4.
Case 2. Suppose deg v = 4 for some vertex v of G. Assume G has at least 3 vertices

of degree 4. Then L(G) has at least 3 subgraphs isomorphic K4. By the definition of

ee(G), L(G) is a subgraph of ee(G). The vertex R in ee(G) which corresponds to the
exterior region is adjacent to every vertex of L(G), which gives at least 3 subgraphs

isomorphic K5 in ee(G). Hence c(ee(G)) > 2, a contradiction. Thus G has at most
two vertices of degree 4.

Suppose G is not a tree and assume deg v = 4 for some vertex v of G. We consider

2 cases.

Case 1. Assume G has at least two vertices of degree 4 and at least one cycle C.
Then L(G) has at least 2 subgraphs isomorphic to K4 and at least one subgraph

L(C). By the definition of ee(G), L(G) ⊂ ee(G). The vertex r in ee(G) (which
corresponds to an interior region of C) is adjacent to every vertex of L(C). This

gives one wheel W . The vertex R in ee(G) is adjacent to every vertex of two K4
and W of L(G). This gives at least 3 subgraphs isomorphic to K5 in ee(G). Thus

c(ee(G)) � 3, a contradiction.
Case 2. Assume G has at least one vertex of degree 4, at least two cycles Ci,

i = 1, 2 as blocks and let ri be the interior regions of Ci. Then L(G) has at least
one subgraph isomorphic to K4 and at least two subgraphs L(Ci). In ee(G), ri is
adjacent to every vertex of L(Ci), which gives a wheel Wi. Since L(G) ⊂ ee(G),

the vertex R in ee(G) which corresponds to the exterior region is adjacent to every
vertex of L(G) and ri. This gives at least 3 subgraphs isomorphic to K5 in ee(G).

Hence c(ee(G)) > 2, a contradiction.

From cases 1 and 2 we conclude that G has exactly one vertex of degree 4 and

exactly one cycle.

Suppose G has exactly one vertex v of degree 4 and a cycle C. Assume that every
vertex of C has degree at least three. Let ei, i = 1, 2, 3 and 4 be edges adjacent

to v. Then L(G) has exactly one subgraph isomorphic to K4 and exactly one cycle
L(C). Let r be the interior region of C and R the exterior region of G. In ee(G), the

vertex r is adjacent to every vertex of L(C) without crossing, which gives ee(G)−R.
We get two wheels L(C) + r and K3 + ei (= K4), i = 1, 2, 3 or 4 in ee(G) − R. In

ee(G)−{rR, Rei}, the vertex R is adjacent to every vertex of ee(G)−{r, ei} without
crossings. In ee(G) it is easy to see that the edges Rei and rR cross respectively at
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least one edge and at least 2 edges of ee(G) − {rR, rei}. Thus ee(G) has at least 3

crossings, a contradiction. This proves (1).

Assume G is not a tree and deg v � 3 for every vertex v of G. We consider three
cases.

Case 1. Assume G has at least 3 cycles. Suppose each cycle has at least one vertex

of degree two and each cycle is a block of G. Let R and ri, i = 1, 2, 3 be vertices in
ee(G) which correspond to the exterior and interior regions of G. Then ee(G) − R

has at least 3 blocks each of which is a wheel. In ee(G), R is adjacent to each wheel.
We get at least 1 crossing in each case. It is clear that ee(G) has at least 3 crossings,

a contradiction.

Case 2. Suppose G has at least two cycles in a block. Then G has a subgraph
homeomorphic to K4 − x. Obviously G has 2 interior regions, say r1 and r2, and

the exterior region R. Clearly ee(G) − R has a block in which the edge joining the
vertices r1 and r2 has two crossings. Also in ee(G), the vertex R is adjacent to r1

and r2, which makes two more crossings. Thus c(ee(G)) � 4, a contradiction.
From the above cases, we conclude that G has at most two cycles Ci as blocks.

Assume G has no vertex of degree 2 on each cycle Ci. The interior regions r1
and r2 are adjacent respectively to every vertex of C1 and C2 without crossings and

this gives ee(G) − R where R is the exterior region. The vertex R is adjacent to
each vertex of ee(G) − {r1, r2} without crossings. In ee(G), r1R and r2R are edges.

Clearly each riR crosses at least 2 edges in ee(G)− {r1R, r2R}. Thus c(ee(G)) � 4,
a contradiction.

Suppose G is unicyclic and all vertices of the cycle C are of degree less than 3.

Assume that at least one vertex of the cycle C of G has degree 2. Then by condition
(1) of Theorem D, ee(G) has exactly one crossing, a contradiction. This proves (2).

Conversely, suppose G is a graph satisfying conditions (1) or (2). Then by The-

orem B or D, ee(G) has crossing number at least 2. We now show that its crossing
number is at most 2. Assume first that G satisfies condition (1). We consider 3

cases.

Case 1. Suppose G is a tree and has exactly two vertices of degree 4. Then clearly
ee(G) has exactly two subgraphs, each isomorphic to K5, and hence ee(G) can be

drawn with exactly two crossings.

Case 2. Suppose G is not a tree and has exactly one vertex of degree 4 and exactly
one cycle C such that at least one vertex of degree 2 is on the cycle. Then it is easy

to see that ee(G) has exactly two crossings.

Now assume (2). Then G has exactly two cycles Ci as blocks in which at least one
vertex of degree 2 lies on each cycle. Let ri, i = 1, 2 be the interior regions of two

circles Ci of G. The vertex ri is adjacent to every vertex of L(Ci) without crossings,
which gives ee(G) − R where R is the exterior region of G. Obviously ee(G) − R
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has at least two blocks each of which is a wheel with at least one boundary edge.

In ee(G) − {r1R, r2R} the vertex R is adjacent to every vertex of ee(G) − {r1, r2}
without crossings. By the definition of ee(G), r1R and r2R are edges. Hence either of
r1R and r2R crosses exactly one edge of ee(G)−{r1R, r2R} and gives ee(G). Hence

ee(G) has exactly two crossings.

Suppose G is unicyclic in which no vertex of degree 2 is on the cycle C. Let the
vertices r and R correspond to the interior and exterior regions of G, respectively.

The vertex r is adjacent to every vertex of L(C) and gives one wheel together with a
triangle on each side (in ee(G)− R) without crossings. In ee(G)− rR, the vertex R

is adjacent to every vertex of ee(G)− r without crossings. Thus the edge rR crosses
exactly two boundary edges of ee(G) − rR and gives ee(G). Hence c(ee(G)) = 2.

This completes the proof of the theorem. �

3. Forbidden subgraphs

With help of Theorems 1 and 2 we now characterize graphs whose semientire

graphs have crossing number 2, in terms of forbidden subgraphs.

Theorem 3. Suppose a connected plane graph G has at least two cycles as

blocks. The vertex-semientire graph ev(G) has crossing number 2 if and only if it

has no subgraph homeomorphic to Gi, i = 12, 13, 14, 16, . . . , 19 or 20 (Fig. 1).

�����. Assume a connected plane graph G has at least two cycles. Suppose

c(ev(G)) = 2. Then by Theorem 1, G has at most two cycles as blocks. It follows
that G has no subgraph homeomorphic to G12, G13, G14, G16, G17, G18, G19 or G20.

Conversely, suppose G has at least two cycles as blocks and has no subgraph

homeomorphic to G12, G13, G14, G16, G17, G18, G19 or G20.

Suppose G has at least 3 cycles each of them being a block of G. Then G has a

subgraph homeomorphic to G12, G13, G16, G17, G18, G19 or G20, a contradiction.

Suppose G has a block which contains at least two cycles. Then G has a subgraph
homeomorphic to G14, a contradiction.

In each case we have arrived at a contradiction. Thus Theorem 1 implies that

c(ev(G)) = 2. This completes proof. �

Theorem 4. The edge-semientire graph ee(G) of a connected plane graph G

(with at least 5 vertices and 5 edges and ∆(G) � 4) has crossing number 2 if and
only if G has no subgraph homeomorphic to Gi, 1 = 1, 2, . . . , 14 or 15 (Fig. 1).
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G1:� G2:� G3:�
G4: � G5: � G6:�
G7: � G8:� G9:�
G10: 	 G11:
 G12:�
G13:� G14:Æ G15:
G16:� G17:� G18:�

G19:� G20:�
Fig. 1

�����. Assume G is a connected plane graph whose edge-semientire graph

ee(G) has crossing number 2. We prove that all graphs homeomorphic to Gi, i =
1, 2, . . . , 14 or 15 have c(ee(Gi)) > 2. By Theorem 2, we have (1) deg v � 4 for every
vertex v of G and G is a tree and has exactly two vertices of degree 4 or G is not a
tree and has exactly one vertex of degree 4 and exactly one cycle such that at least

one vertex of degree 2 is on the cycle. Or (2) deg v � 3 for every vertex v of G and
G has exactly two cycles as blocks in which at least one vertex of degree 2 is on each
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cycle or G is unicyclic and such that no vertex of degree 2 is on the cycle. From (1)

or (2) it follows that G has no subgraph homeomorphic to any one of the graphs Gi,
i = 1, 2, . . . , 15.

Conversely, assume that G is a connected plane graph and does not contain a sub-
graph homeomorphic to any one of the graphs Gi, i = 1, . . . , 15. We shall show that

G satisfies (1) or (2) and hence by Theorem 2, ee(G) has crossing number 2. Suppose
deg v � 5 for some vertex v of G. Then G contains a subgraph homeomorphic to G1,

a contradiction. Hence deg v � 4 for every vertex v of G. We consider the following
two cases.

Case 1. Suppose G is a tree. Assume there exist at least three vertices of degree 4.

Then G has a subgraph homeomorphic to G2 or G3, a contradiction. Hence G has
exactly two vertices of degree 4.

Case 2. Suppose G is not a tree. Then we consider two subcases.

Subcase 2.1. Suppose G is unicyclic C. Assume G has exactly two vertices v1 and
v2 of degree 4. Then we consider 3 possibilities.

a) If v1, v2 ∈ C, then G has a subgraph homeomorphic to G4.

b) If v1 or v2 ∈ C, then G has a subgraph homeomorphic to G5.

c) If v1, v2 /∈ C, then G has a subgraph homeomorphic to G6.
In each case we have a contradiction. Thus G has exactly one vertex of degree 4

and exactly one cycle.

Suppose G has exactly one vertex v of degree 4 and exactly one cycle C such that
no vertex of degree 2 is on the cycle. Then we consider two possibilities.

a) If v ∈ C, then G has a subgraph homeomorphic to G7, a contradiction.

b) If v /∈ C, then G has a subgraph homeomorphic to G8, a contradiction.

Thus G has exactly one vertex of degree 4 and exactly one cycle such that at least
one vertex of degree 2 is on the cycle, or G is unicyclic with every vertex of degree 3
on the cycle.

Subcase 2.2. Assume G is not a unicyclic graph. Suppose G has exactly one vertex

v of degree 4 and at least two cycles C1 and C2, each of which has at least one vertex
of degree 2. We consider the following three possibilities.

a) If v ∈ C1 and C2, then G has a subgraph homeomorphic to G9.

b) If v ∈ C1 or C2, then G has a subgraph homeomorphic to G10.

c) If v /∈ C1 and C2, then G has a subgraph homeomorphic to G11.

In each case we have a contradiction. Thus G has at least 2 cycles each of which
has at least one vertex of degree 2. Assume deg v � 3 for every vertex v of G. Then
we consider 3 cases.

Case 1. Suppose G has at least 3 cycles as blocks such that each block has at least

one vertex of degree two. Then G has a subgraph homeomorphic to G12 or G13, a
contradiction.
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Case 2. Suppose G has a block which contains at least two cycles. Then G has a

subgraph homeomorphic to G14, a contradiction.
Thus G has at most two cycles as blocks.
Case 3. Suppose G has exactly two cycles as blocks such that one block has no

vertex of degree 2. Then G has a subgraph homeomorphic to G15, a contradiction.
Thus G has exactly two cycles such that each cycle has at least one vertex of degree 2,

or G has exactly one cycle such that each vertex on the cycle is of degree 3.
We have exhausted all possibilities. In each case we found that G contains a

subgraph homeomorphic to some of the forbidden subgraphsGi, i = 1, . . . , 15. Hence
by Theorem 2, ee(G) has crossing number 2. This completes the proof of the theorem.

�
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