A DESCRIPTIVE DEFINITION OF A BV INTEGRAL IN THE REAL LINE

DIANA CAPONETTI, Arcavacata di Rende, VALERIA MARRAFFA, Palermo

(Received October 22, 1997)

Abstract. A descriptive characterization of a Riemann type integral, defined by BV partition of unity, is given and the result is used to prove a version of the controlled convergence theorem.

Keywords: pseudopartition, ACG°, WSL°-condition

MSC 2000: 26A39, 26A45

0. INTRODUCTION

J. Kurzweil, J. Mawhin and W. F. Pfeffer, to obtain an additive continuous integral for which a quite general formulation of Gauss-Green theorem holds, introduced in [5] a multidimensional integral (called \mathcal{I} -integral) defined via BV partitions of unity. In dimension one this integral falls properly in between the Lebesgue and Denjoy-Perron integrals and the integration by parts formula holds.

An integral satisfying quite the same properties but defined by using partitions with BV-sets or with *figures* (finite unions of intervals), was studied by W. F. Pfeffer in [7] and [9]. Descriptive characterizations for this integral are given in [3] and [8]. An application of the notion of absolute continuity given in [3] is contained in [1], where a version of the controlled convergence theorem for the one-dimensional Pfeffer-integral is proved.

It seems to us to be of interest to find a descriptive characterization even for the \mathcal{I} -integral. The aim of this paper is to solve this problem in the case of the

This work was supported by M.U.R.S.T. of Italy.

one dimensional $\mathcal I\text{-integral}$ and then to apply it to prove a controlled convergence theorem.

The main difficulty has been related to the fact that it is impossible to use the Saks-Henstock lemma, since it is not known whether it holds for the \mathcal{I} -integral. To solve our problem we have made use of a useful modification of the *Strong Lusin* condition introduced by P. Y. Lee in [6].

1. Preliminares

The set of all real numbers is denoted by \mathbb{R} . If $E \subset \mathbb{R}$, then χ_E , d(E), $\operatorname{cl} E$ and |E| denote the characteristic function, the diameter, the closure and the outer Lebesgue measure of E, respectively. Let [a, b] be a fixed, non degenerate, compact interval of \mathbb{R} .

A figure of [a, b] is a finite nonempty union of subintervals of [a, b]. A collection of figures is called *nonoverlapping* whenever the collection of their interiors is disjoint. The algebraic operations and convergence for functions on the same set are defined pointwise. The usual variation of a function ϑ over the interval [a, b] is denoted $V(\vartheta, [a, b])$. Let θ be a function on \mathbb{R} , we set $S_{\theta} = \{x \in \mathbb{R} : \theta(x) \neq 0\}$. Given $\theta \in L^1(\mathbb{R})$ such that $S_{\theta} \subset (a, b)$ we set

$$\|\theta\| = \inf V(\vartheta, [a, b])$$

where the infimum is taken over all functions ϑ such that $S_{\vartheta} \subset (a, b)$ and $\vartheta = \theta$ almost everywhere with respect to the Lebesgue measure in \mathbb{R} (abbreviated as a.e.). The family of all nonnegative functions θ on [a, b] for which θ and S_{θ} are bounded and $\|\theta\| < +\infty$ is denoted by $BV_+([a, b])$. The *regularity* of $\theta \in BV_+([a, b])$ at a point $x \in \mathbb{R}$ is the number

$$r(\theta, x) = \begin{cases} \frac{|\theta|_1}{d(S_{\theta} \cup \{x\}) \|\theta\|} & \text{if } d(S_{\theta} \cup \{x\}) \|\theta\| > 0, \\ 0 & \text{otherwise,} \end{cases}$$

where $|\theta|_1$ denotes the L^1 norm of θ . Let A be a figure of [a, b], then the characteristic function χ_A of A belongs to $BV_+([a, b])$ and the symbols $||A|| = ||\chi_A||$ and $r(A, x) = r(\chi_A, x)$ coincide with those introduced in [2, Section 1].

A partition in [a, b] is a collection $P = \{(A_1, x_1), \ldots, (A_p, x_p)\}$ where A_1, \ldots, A_p are nonoverlapping subfigures of [a, b] and $x_i \in [a, b]$ for $i = 1, \ldots, p$. In particular, P is called

- (i) special if A_1, \ldots, A_p are intervals;
- (ii) tight if $x_i \in A_i$ for $i = 1, \ldots, p$.

A pseudopartition in [a, b] is a collection $Q = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ where $\theta_1, \dots, \theta_p$ are functions from $\mathrm{BV}_+([a, b])$ such that $\sum_{i=1}^p \theta_i \leq \chi_{[a,b]}$ a.e. and $x_i \in [a, b]$ for $i = 1, \dots, p$. We say that a pseudopartition P is anchored in a set $E \subset [a, b]$ if $x_i \in E$ for $i = 1, \dots, p$. Let $P = \{(A_1, x_1), \dots, (A_p, x_p)\}$ be a partition in [a, b], then $P^* = \{(\chi_{A_1}, x_1), \dots, (\chi_{A_p}, x_p)\}$ is a pseudopartition in [a, b], called the pseudopartition in [a, b] induced by P.

Let $\varepsilon > 0$ and let δ be a positive function on [a, b]. A pseudopartition $Q = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ in [a, b] is called

- (i) a pseudopartition of [a, b] if $\sum_{i=1}^{p} \theta_i = \chi_{[a, b]}$ a.e.;
- (ii) ε -regular if $r(\theta_i, x_i) > \varepsilon$, $i = 1, \dots, p$;

(iii) δ -fine if $d(S_{\theta_i} \cup \{x_i\}) < \delta(x_i), i = 1, \dots, p$.

A partition $P = \{(A_1, x_1), \dots, (A_p, x_p)\}$ in [a, b] is a partition of [a, b], or ε -regular, or δ -fine whenever the pseudopartition P^* induced by P has the respective property.

For a given function f on [a, b] and a pseudopartition $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ in [a, b] we set $\sigma(f, P) = \sum_{i=1}^{p} f(x_i) \int_{[a,b]} \theta_i$, where the symbol \int is used to denote the Lebesgue integral.

Definition 1.1. (See [4].) A function $f: [a, b] \to \mathbb{R}$ is said to be *integrable* in [a, b] if there is a real number I with the following property: given $\varepsilon > 0$, we can find a positive function δ on [a, b] such that

$$\left|\sigma(f,P) - I\right| < \varepsilon$$

for each ε -regular δ -fine pseudopartition P of [a, b].

We denote by $\mathcal{I}([a, b])$ the family of all integrable functions in [a, b] and set $\int_{[a,b]}^* f = I$. For each $f \in \mathcal{I}([a, b])$, the function $x \mapsto \int_{[a,x]}^* f$, defined on [a, b], is called the *primitive* of f.

Let $\theta \in BV_+([a, b])$, then the distributional derivative $D\theta$ is a signed Borel measure in \mathbb{R} whose support is contained in cl S_{θ} . For a bounded Borel function f on [a, b], $\int_{[a,b]} fD\theta$ denotes the Lebesgue integral of f over [a, b] with respect to $D\theta$.

Given a continuous function F on [a, b] and a pseudopartition $P = \{(\theta_1, x_1), \ldots, (\theta_p, x_p)\}$ in [a, b] we define

$$\sum_{P} \int_{[a,b]} FD\theta = \sum_{i=1}^{p} \int_{[a,b]} FD\theta_i$$

The following lemma was proved in [4, Lemma 3.1].

Lemma 1.2. Let f be a bounded function on [a, b] whose derivative f'(x) exists at $x \in [a, b]$. Given $\varepsilon > 0$, there is a $\delta > 0$ such that

$$\left|f'(x)|\theta|_1 + \int_{[a,b]} fD\theta\right| < \varepsilon |\theta|_1$$

for each $\theta \in BV_+([a, b])$ satisfying $d(S_\theta \cup \{x\}) < \delta$ and $r(\theta, x) > \varepsilon$.

Proposition 1.3. Let $f \in \mathcal{I}([a,b])$. If $F(x) = \int_{[a,x]}^{*} f$ for each $x \in [a,b]$, then the function $F: [a,b] \to \mathbb{R}$ is continuous. In addition, for almost all $x \in [a,b]$, F is derivable at x and F'(x) = f(x).

Proof. Since $\mathcal{I}([a, b])$ is a subfamily of the family $\mathcal{R}_t^*([a, b])$ introduced in [2, Section 3], the proposition follows from [8, Proposition 2.4].

For each figure $A \subset [a, b]$ and for each function F defined on [a, b] we set

$$F(A) = \sum_{h=1}^{n} [F(b_h) - F(a_h)],$$

where $[a_1, b_1], \ldots, [a_n, b_n]$ are the connected components of A.

A function F (or a sequence $\{F_n\}$ of functions) is called AC^{*} (see [3]) (respectively uniformly AC^{*} (see [1])) on a set $E \subset [a, b]$ whenever for every $\varepsilon > 0$ there exist a positive number α and a positive function δ on E satisfying the condition

$$\sum_{i=1}^{p} |F(A_i)| < \varepsilon \quad \left(\sup_{n} \sum_{i=1}^{p} |F_n(A_i)| < \varepsilon \right)$$

for each tight ε -regular δ -fine partition $P = \{(A_1, x_1), \dots, (A_p, x_p)\}$ in [a, b] anchored in E with $\sum_{i=1}^{p} |A_i| < \alpha$. A function F (a sequence $\{F_n\}$) is called ACG^{*} (uniformly ACG^{*}) on a set $E \subset [a, b]$ whenever there are sets $E_n \subset E$, $n = 1, 2, \dots$ such that $E = \bigcup_{n=1}^{\infty} E_n$ and F is AC^{*} (uniformly AC^{*}) on each E_n .

2. CHARACTERIZATION OF PRIMITIVES

The following condition (denoted by WSL°) is a modification of the Strong Lusin condition, introduced by P.Y. Lee in [6].

Definition 2.1. Let $N \subset [a, b]$ be a set of measure zero. A continuous function F is said to satisfy condition WSL[°] on N if, given $\varepsilon > 0$, there exists a positive function δ on [a, b] such that

$$\left|\sum_{x_i\in N}\int_{[a,b]}FD\theta_i\right|<\varepsilon$$

for each ε -regular δ -fine pseudopartition $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ of [a, b].

Proposition 2.2. Let $f \in \mathcal{I}([a,b])$ and $F(x) = \int_{[a,x]}^{*} f$. Then F is continuous, derivable a.e. on [a,b] and satisfies condition WSL° on $N = \{x: F'(x) \text{ does not exist}\}$.

Proof. By Proposition 1.3, F is continuous and F'(x) = f(x) a.e. in [a, b]. Then |N| = 0 and by [4, Corollary 2.10] we can assume f(x) = 0 on N and f(x) = F'(x) elsewhere. By Lemma 1.2, for each $\varepsilon > 0$ and for each $x \in [a, b] \setminus N$ we can find a $\delta_0(x) > 0$ such that

$$\left| f(x)|\theta|_1 + \int_{[a,b]} FD\theta \right| < \frac{\varepsilon}{2(b-a)} |\theta|_1$$

for every $\theta \in BV_+([a, b])$ satisfying $d(S_\theta \cup \{x\}) < \delta_0(x)$ and $r(\theta, x) > \varepsilon$. Since $f \in \mathcal{I}([a, b])$, there is a positive function δ on [a, b] ($\delta \leq \delta_0$) such that

$$\left|\sigma(f,P) - [F(b) - F(a)]\right| < \frac{\varepsilon}{2}$$

for each ε -regular δ -fine pseudopartition P of [a, b].

Let $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ be an ε -regular δ -fine pseudopartition of [a, b]. Then

$$\sigma(f,P) = \sum_{i=1}^{p} f(x_i) \int_{[a,b]} \theta_i = \sum_{x_i \in [a,b] \setminus N} f(x_i) \int_{[a,b]} \theta_i$$

and

$$-[F(b) - F(a)] = \int_{[a,b]} FD\chi_{[a,b]} = \sum_{x_i \in N} \int_{[a,b]} FD\theta_i + \sum_{x_i \in [a,b] \setminus N} \int_{[a,b]} FD\theta_i$$

Hence

$$\begin{split} \left| \sum_{x_i \in N} \int_{[a,b]} FD\theta_i \right| &\leq \left| \sum_{i=1}^p f(x_i) \int_{[a,b]} \theta_i + \int_{[a,b]} FD\chi_{[a,b]} \right| \\ &+ \left| \sum_{x_i \in [a,b] \setminus N} \left(f(x_i) |\theta_i|_1 + \int_{[a,b]} FD\theta_i \right) \right| \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)} \sum_{x_i \in [a,b] \setminus N} |\theta_i|_1 \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)} (b-a) = \varepsilon. \end{split}$$

Thus the claim is proved.

Proposition 2.3. A function f on [a, b] belongs to $\mathcal{I}([a, b])$ if and only if there exists a continuous function F such that for almost all $x \in [a, b]$ F is derivable at x with F'(x) = f(x) and satisfies condition WSL° on the set $N = \{x:$ F'(x) does not exist $\}$. In particular, $F(x) = \int_{[a,x]}^{*} f$.

425

Proof. The necessity is given in Proposition 2.2. Now suppose that there exists a function F on [a, b] satisfying the hypotheses of the theorem. Then |N| = 0. Assume f(x) = 0 on N and f(x) = F'(x) elsewhere. Since F satisfies condition WSL° on N, given $\varepsilon > 0$, there exists a positive function δ on [a, b] such that

$$\left|\sum_{x_i \in N} \int_{[a,b]} FD\theta_i\right| < \frac{\varepsilon}{2}$$

for each ε -regular δ -fine pseudopartition $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ of [a, b]. By Lemma 1.2, to each $x \in [a, b] \setminus N$ such a $\delta_0(x) > 0$ corresponds that

$$\left| f(x)|\theta|_1 + \int_{[a,b]} FD\theta \right| < \frac{\varepsilon}{2(b-a)} |\theta|_1$$

for each $\theta \in BV_+([a, b])$ satisfying $d(S_\theta \cup \{x\}) < \delta_0(x)$ and $r(\theta, x) > \varepsilon$. Define

$$\delta^*(x) = \begin{cases} \min\{\delta(x), \delta_0(x)\} & \text{if } x \in [a, b] \setminus N, \\ \delta(x) & \text{if } x \in N. \end{cases}$$

Then for each ε -regular δ^* -fine pseudopartition $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ of [a, b] we have

$$\begin{split} \left| \sum_{i=1}^{p} f(x_i) \int_{[a,b]} \theta_i - [F(b) - F(a)] \right| \\ &= \left| \sum_{i=1}^{p} f(x_i) \int_{[a,b]} \theta_i + \int_{[a,b]} FD\chi_{[a,b]} \right| \\ &\leq \left| \sum_{x_i \in N} \int_{[a,b]} FD\theta_i \right| + \sum_{x_i \in [a,b] \setminus N} \left| f(x_i) \int_{[a,b]} \theta_i + \int_{[a,b]} FD\theta_i \right| < \varepsilon \end{split}$$

Hence $f \in \mathcal{I}([a, b])$.

R e m a r k 2.4. Let $F: [a, b] \to \mathbb{R}$ be a continuous function. If F is differentiable a.e. on [a, b] and satisfies condition WSL° on the set $N = \{x: F'(x) \text{ does not exist}\}$ then F is ACG^{*} on [a, b].

Indeed, by the previous theorem F' = f belongs to $\mathcal{I}([a, b])$, thus $f \in \mathcal{R}_t^*([a, b])$. By [3, Proposition 3.4] it follows that F is ACG^{*} on [a, b].

Definition 2.5. Let F be a continuous function on [a, b] and let $E \subset [a, b]$. The function F is called AC[°] on E if, given $\varepsilon > 0$, there exist a positive number α and a positive function δ on E such that

$$\sum_{i=1}^{p} \left| \int_{[a,b]} FD\theta_i \right| < \varepsilon$$

for each ε -regular δ -fine pseudopartition $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ in [a, b] anchored in E with $\sum_{i=1}^{p} |\theta_i|_1 < \alpha$. The function F is called ACG° on E if there are measurable sets $E_n \subset E, n = 1, 2, \dots$ such that $E = \bigcup_{i=1}^{\infty} E_n$ and F is AC° on each E_n .

Remark 2.6. If F is ACG° on $X \subset [a, b]$, then F is ACG^{*} on X. In particular, F is differentiable a.e. on X ([3], Corollary 3.3).

The following lemma is a straightforward modification of [3, Lemma 2.2].

Lemma 2.7. Let $X \subset [a, b]$ and let F be an ACG[°] function on X. If E is a subset of X of measure zero, given $\varepsilon > 0$, there exists a positive function δ on [a, b] such that $\sum_{i=1}^{p} |\int_{[a,b]} FD\theta_i| < \varepsilon$ for each ε -regular δ -fine pseudopartition P = $\{(\theta_1, x_1), \ldots, (\theta_p, x_p)\}$ in [a, b] anchored in E.

Proposition 2.8. Let F be a continuous function on [a, b]. Then F is differentiable a.e. in [a, b] and satisfies condition WSL[°] on the set $N = \{x: F'(x) \text{ does not exist}\}$ if and only if there exists a set X with $|[a, b] \setminus X| = 0$ such that the function F is ACG[°] on X and satisfies condition WSL[°] on $[a, b] \setminus X$.

Proof. Assume first that F is differentiable a.e. in [a, b] and satisfies condition WSL° on the set $N = \{x: F'(x) \text{ does not exist}\}$. We show that F is ACG° on $X = [a, b] \setminus N$. For n = 1, 2, ..., let $E_n = \{x \notin N: n - 1 \leq |F'(x)| < n\}$, then $X = \bigcup_{i=1}^{\infty} E_n$. By Lemma 1.2, for each $\varepsilon > 0$ and for each $x \in E_n$ there is a $\delta_n(x) > 0$ such that

$$\left|F'(x)|\theta|_1 + \int_{[a,b]} FD\theta\right| < \frac{\varepsilon}{2(b-a)}|\theta|_1$$

for all $\theta \in BV_+([a, b])$ satisfying $d(S_\theta \cup \{x\}) < \delta_n(x)$ and $r(\theta, x) > \varepsilon$. Now let $\alpha_n = \frac{\varepsilon}{2n}$. Then, for each ε -regular δ_n -fine pseudopartition $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ in [a, b] anchored in E_n with $\sum_{i=1}^p |\theta_i|_1 < \alpha_n$ it follows

$$\left|\sum_{i=1}^{p}\int_{[a,b]}FD\theta_{i}\right| \leqslant \sum_{i=1}^{p}\left|F'(x_{i})|\theta_{i}|_{1} + \int_{[a,b]}FD\theta_{i}\right| + \sum_{i=1}^{p}|F'(x_{i})||\theta_{i}|_{1} < \frac{\varepsilon}{2} + n\alpha_{n} = \varepsilon$$

Hence F is AC° on E_n .

Conversely, let $T = [a, b] \setminus X$ and fix $\varepsilon > 0$. By Remark 2.6 F is differentiable a.e. on X. Let $N = \{x: F'(x) \text{ does not exist}\}$, then $N = N_1 \cup N_2$ where $N_1 \subset X$ and $N_2 \subset T$. By Lemma 2.7 there exists a positive function δ_1 on [a, b] such that

 $\sum_{P} |\int_{[a,b]} FD\theta| < \frac{\varepsilon}{4}$ for each ε -regular δ_1 -fine pseudopartition P in [a,b] anchored in N_1 .

Since F satisfies condition WSL° on T, there exists a positive function δ_0 ($\delta_0 \leq \delta_1$) such that

$$\left|\sum_{x_i \in T} \int_{[a,b]} FD\theta_i\right| < \frac{\varepsilon}{4}$$

for each ε -regular δ_0 -fine pseudopartition $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ of [a, b]. Use Lemma 1.2 to find a positive function δ_2 in $T \setminus N_2$ such that

$$\left|F'(x)|\theta|_1 + \int_{[a,b]} FD\theta\right| < \frac{\varepsilon}{4(b-a)}|\theta|_1$$

for each $\theta \in BV_+([a,b])$ satisfying $d(S_{\theta} \cup \{x\}) < \delta_2(x)$ and $r(\theta, x) > \varepsilon$. For $n = 1, 2, \ldots$, set $T_n = E_n \cap (T \setminus N_2)$, E_n being the sets defined above. Since $|T_n| = 0$ there exists an open set O_n such that $T_n \subset O_n$ and $|O_n| < \varepsilon/n2^{n+2}$. Now define a positive function δ on [a, b] by setting

$$\delta(x) = \begin{cases} \min\{\delta_0(x), \delta_2(x), \varepsilon/n2^{n+2}\} & \text{if } x \in T_n, n = 1, 2, \dots, \\ \delta_0(x) & \text{elsewhere.} \end{cases}$$

Let $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ be an ε -regular δ -fine pseudopartition of [a, b]. It follows that

$$\begin{split} \left|\sum_{x_i \in N} \int_{[a,b]} FD\theta_i\right| &\leqslant \left|\sum_{x_i \in N_1} \int_{[a,b]} FD\theta_i\right| + \left|\sum_{x_i \in N_2} \int_{[a,b]} FD\theta_i\right| \\ &\leqslant \frac{\varepsilon}{4} + \left|\sum_{x_i \in N_2} \int_{[a,b]} FD\theta_i + \sum_{x_i \in T \setminus N_2} \int_{[a,b]} FD\theta_i\right| \\ &+ \left|\sum_{x_i \in T \setminus N_2} \int_{[a,b]} FD\theta_i\right| \\ &\leqslant \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \sum_{x_i \in T \setminus N_2} \left|F'(x_i)|\theta_i|_1 + \int_{[a,b]} FD\theta_i\right| \\ &+ \sum_{x_i \in T \setminus N_2} |F'(x_i)||\theta_i|_1 \\ &\leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{4} + \sum_{n=1}^{\infty} \sum_{x_i \in E_n} |F'(x_i)||\theta_i|_1 \leqslant \frac{3}{4}\varepsilon + \sum_{n=1}^{\infty} n \frac{\varepsilon}{n2^{n+2}} = \varepsilon. \end{split}$$

Combining Theorem 2.3 and Proposition 2.8 we get the following theorem.

Theorem 2.9. A function f on [a, b] belongs to $\mathcal{I}([a, b])$ if and only if there exist a subset X of [a, b] and a continuous function $F: [a, b] \to \mathbb{R}$ such that

(i) $|[a,b] \setminus X| = 0$,

- (ii) F is ACG^{\circ} on X,
- (iii) F satisfies condition WSL^{\circ} on $[a, b] \setminus X$,

(iv) F' = f a.e. on [a, b].

In particular, $F(x) = \int_{[a,x]}^{*} f$.

It is interesting to point out that the Saks-Henstock lemma for the \mathcal{I} -integral has not been proved nor a counterexample has been produced. The validity of the Saks-Henstock lemma would allow us to improve the formulation of the above descriptive characterization. More precisely, in the formulation of condition WSL° the expression $|\sum_{x_i \in N} \int_{[a,b]} FD\theta_i| < \varepsilon$ would be replaced by $\sum_{x_i \in N} |\int_{[a,b]} FD\theta_i| < \varepsilon$. Thus in Proposition 2.3 the function F would satisfy such condition on every set of measure zero, moreover the statement of Theorem 2.9 would be:

A function f on [a, b] belongs to $\mathcal{I}([a, b])$ if and only if there exists a continuous function F such that F is ACG[°] on [a, b] and F' = f a.e. on [a, b].

3. Controlled convergence

In this section we give a definition of *uniform generalized absolute continuity* and use it to prove a controlled convergence theorem for sequences of \mathcal{I} -integrable functions.

Definition 3.1. Let $\{F_n\}$ be a sequence of functions defined on [a, b]. We say that $\{F_n\}$ is uniformly AC^o on $E \subset [a, b]$ if, given $\varepsilon > 0$, there exist a positive function δ on [a, b] and a positive number α such that

$$\sup_{n} \sum_{i=1}^{p} \left| \int_{[a,b]} F_n D\theta_i \right| < \varepsilon$$

for each ε -regular δ -fine pseudopartition $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ in [a, b] anchored in E with $\sum_{i=1}^{p} |\theta_i|_1 < \alpha$. A sequence $\{F_n\}$ of functions is said to be *uniformly* ACG[°] on E if there are disjoint sets $E_k \subset E$, $k = 1, 2, \dots$ such that $E = \bigcup_{k=1}^{\infty} E_k$ and every F_n is uniformly AC[°] on each E_k .

Definition 3.2. Let N be a set of measure zero. A sequence of functions $\{F_n\}$ defined on [a, b] is said to satisfy *uniformly* condition WSL[°] on N if, given $\varepsilon > 0$, there exists a positive function δ on [a, b] such that

$$\sup_{n} \left| \sum_{x_i \in N} \int_{[a,b]} FD\theta_i \right| < \varepsilon$$

for each ε -regular δ -fine pseudopartition $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ of [a, b].

Lemma 3.3. Let $\{F_n\}$ be a sequence of functions and X a subset of [a, b] such that

(i) $|[a,b] \setminus X| = 0$,

(ii) $\{F_n\}$ is uniformly ACG^o on X,

(iii) $\{F_n\}$ satisfies uniformly condition WSL° on $[a, b] \setminus X$.

Then $\{F_n\}$ is uniformly ACG^{*} on [a, b].

Proof. Let $X = \bigcup_{k=1}^{\infty} E_k$, where the E_k 's are disjoint and the sequence $\{F_n\}$ is uniformly AC° on each E_k . Clearly the sequence $\{F_n\}$ is uniformly AC* on E_k for $k = 1, 2, \ldots$ We have to prove that the sequence $\{F_n\}$ is uniformly AC* on $[a, b] \setminus X$. Given $\varepsilon > 0$, there is a positive function δ on [a, b] such that

$$\sup_{n} \left| \sum_{x_i \in [a,b] \setminus X} F_n(A_i) \right| = \sup_{n} \left| \sum_{x_i \in [a,b] \setminus X} \int_{[a,b]} F_n D\chi_{A_i} \right| < \frac{\varepsilon}{2}$$

for each ε -regular δ -fine partition $P = \{(A_1, x_1), \ldots, (A_p, x_p)\}$ of [a, b]. Fix $n \ge 1$. By Theorem 2.9 the function f_n belongs to $\mathcal{I}([a, b])$, hence (see Remark 2.6) its primitive F_n is ACG^{*} on [a, b]. Thus, by [3, Lemma 2.2] there is a positive function δ_n on [a, b] $(\delta_n \le \delta)$ such that

$$\left|\sum_{i=1}^{s} F_n(A_i)\right| < \frac{\varepsilon}{2}$$

for each ε -regular δ_n -fine partition $\{(A_1, x_1), \ldots, (A_s, x_s)\}$ in [a, b] anchored in $[a, b] \setminus X$. Choose an ε -regular δ -fine partition $P = \{(A_1, x_1), \ldots, (A_p, x_p)\}$ anchored in $[a, b] \setminus X$. By Cousin's lemma there exists a special and tight δ_n -fine partition $P_1 = \{(B_1, y_1), \ldots, (B_r, y_r)\}$ of $[a, b] \setminus \cup P$. Then $P \cup P_1$ is an ε -regular δ -fine partition of [a, b]. Thus we obtain

$$\left|\sum_{i=1}^{p} F_n(A_i)\right| = \left|\sum_{i=1}^{p} F_n(A_i) + \sum_{y_r \in [a,b] \setminus X} F_n(B_j)\right| + \left|\sum_{y_r \in [a,b] \setminus X} F_n(B_j)\right| < \varepsilon.$$

Considering separately the subfigures A_i of P for which $F_n(A_i) \ge 0$ and those for which $F_n(A_i) < 0$ it follows that the inequality $|\sum_{i=1}^s F_n(A_i)| < \varepsilon$ can be replaced by $\sum_{i=1}^s |F_n(A_i)| < \varepsilon$. Thus we get

$$\sup_{n} \sum_{i=1}^{s} \left| F_n(A_i) \right| < 2\varepsilon$$

and this completes the proof.

Definition 3.4. A sequence $\{f_n\} \in \mathcal{I}([a, b])$ is called \mathcal{I} -control convergent to f on [a, b] if $f_n \to f$ a.e. in $[a, b], \{\int_{[a, x]}^* f_n\}$ is uniformly ACG° on X, where $[a, b] \setminus X$ is of measure zero, and $\{\int_{[a, x]}^* f_n\}$ satisfies uniformly condition WSL° on $[a, b] \setminus X$.

Theorem 3.5. If $\{f_n\} \in \mathcal{I}([a,b])$ is \mathcal{I} -control convergent to f on [a,b], then $f \in \mathcal{I}([a,b])$ and

$$\lim_{n} \int_{[a,b]}^{*} f_{n} = \int_{[a,b]}^{*} f_{n}.$$

Proof. By Lemma 3.3 the primitives $F_n(x) = \int_{[a,x]}^* f_n$ of f_n are uniformly ACG^{*}. Thus by [1, Theorem 4.3] we get that $\lim_n \int_{[a,b]}^* f_n = (\mathcal{R}_t) \int_{[a,b]}^* f$ and $F(x) = (\mathcal{R}_t) \int_{[a,x]}^* f$ is ACG^{*} on [a,b]. It remains to show that there exists a set X with $|[a,b] \setminus X| = 0$ such that F is ACG[°] on X and satisfies condition WSL[°] on $[a,b] \setminus X$. We note that the sequence $\{F_n\}$ is equicontinuous and since $F_n(a) = 0$, it is also equibounded. Then, by Ascoli's theorem, there is a subsequence $\{F_{n(j)}\}$ of $\{F_n\}$ that converges uniformly to F on [a,b]. Given $\varepsilon > 0$ and a fixed k, choose δ_k and δ on [a,b] and α_k according to Definition 3.1 and Definition 3.2. Then the uniform convergence of $\{F_{n(j)}\}$ to F implies that

$$\sum_{P} \left| \int_{[a,b]} FD\theta_i \right| \leqslant \sup_{n(j)} \sum_{P} \left| \int_{[a,b]} F_{n(j)}D\theta_i \right| < \varepsilon$$

for each ε -regular δ_k -fine pseudopartition P in [a, b] anchored in E_k with $\sum_{i=1}^{p} |\theta_i|_1 < \alpha_k$ and also

$$\sum_{x_i \in N} \int_{[a,b]} FD\theta_i \bigg| \leqslant \sup_{n(j)} \bigg| \sum_{x_i \in N} \int_{[a,b]} F_{n(j)}D\theta_i \bigg| < \varepsilon$$

for each ε -regular δ -fine pseudopartition P of [a, b]. Hence F is ACG° on $X = \bigcup_{k=1}^{\infty} E_k$ with $|[a, b] \setminus X| = 0$ and F satisfies condition WSL° on $[a, b] \setminus X$. Thus by Theorem 2.9 we conclude that $f \in \mathcal{I}([a, b])$ and $F(x) = \int_{[a, x]}^{*} f$.

Remark 3.6. Let g be a function of bounded variation on [a, b] and let $\{f_n\} \in \mathcal{I}([a, b])$ be \mathcal{I} -control convergent to f on [a, b]. Then, by the integration by parts formula [4, Proposition 3.3], we get

$$\lim_{n} \int_{[a,b]}^{*} f_{n}g = \lim_{n} \left[F_{n}(b)g(b) - \int_{[a,b]} F_{n} \,\mathrm{d}g \right] = F(b)g(b) - \int_{[a,b]} F \,\mathrm{d}g = \int_{[a,b]}^{*} fg.$$

A c k n o w l e d g e m e n t. The authors thank Professor B. Bongiorno and Professor L. Di Piazza for their advice during the preparation of this paper.

References

- B. Bongiorno, L. Di Piazza: Convergence theorems for generalized Riemann-Stieltjes integrals. Real Anal. Exchange 17 (1991–92), 339–361.
- [2] B. Bongiorno, M. Giertz, W. F. Pfeffer: Some nonabsolutely convergent integrals in the real line. Boll. Un. Mat. Ital. B (7) 6 (1992), 371–402.
- [3] B. Bongiorno, W. F. Pfeffer: A concept of absolute continuity and a Riemann type integral. Comment. Math. Univ. Carolin. 33 (1992), 184–196.
- [4] D. Caponetti, V. Marraffa: An integral in the real line defined by BV partitions of unity. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 69–82.
- [5] J. Kurzweil, J. Mawhin, W. F. Pfeffer: An integral defined by approximating BV partitions of unity. Czechoslovak Math. J. 41 (1991), 695–712.
- [6] P. Y. Lee: On ACG* functions. Real Anal. Exchange 15 (1989–90), 754–759.
- [7] W. F. Pfeffer: The Gauss-Green theorem. Adv. Math. 87 (1991), 93–147.
- [8] W. F. Pfeffer: A descriptive definition of a variational integral. Proc. Amer. Math. Soc. 114 (1992), 99–106.
- [9] W. F. Pfeffer: The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993.

Authors' addresses: Diana Caponetti, Dipartimento di Matematica, Università degli Studi della Calabria, 87036 Arcavacata di Rende (CS), Italy, Valeria Marraffa, Dipartimento di Matematica ed Applicazioni, Via Archirafi 34, 90123 Palermo, Italy.