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Abstract. The problem of existence and asymptotic behaviour of solutions of the quasi-
linear and quadratic singularly perturbed Neumann’s problem as a small parameter at the
highest derivative tends to zero is studied.
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1. INTRODUCTION

In the paper [2] the author established sufficient conditions for the existence and
uniform convergence of the solutions of a semilinear singularly perturbed differential
equation ey” + ky = f(¢,y) to a solution of the reduced problem ku = f(¢,u) as the
small positive parameter ¢ tends to zero. The purpose of this paper is an extension
of Theorem 1 of the above cited paper to more general cases. We will consider

Neumann’s problem

/! /
(NPo) , ey F(t,yl,y), a<t<b,
Yy (a,s) =0, y (b,&‘) =0,
where F € C! ([a, b] x IRZ) and ¢ is a small positive parameter. The proofs of the
theorems are based upon the method of lower and upper solutions.

As usual, we say that a € C?([a,b]) is a lower solution for (NPg) if o/(a,c) >
0, &/(b,e) < 0, and e’ (t,e) = F (t,a(t,e),d/(t,e)) for every ¢t € [a,b]. An up-
per solution 3 € C?([a,b]) satisfies 3 (a,e) < 0, B(b,e) > 0, and £8”(t,e) <
F(t,B(t,e), 3 (t,€)) for every ¢ € [a,b].
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Definition 1.  We say that a function F' satisfies the Bernstein-Nagumo con-
dition if for each M > O there exists a continuous function hps: [0,00) — [ansr, 00)
with aps > 0 and [j° ey ds = 0o such that for all y, lyl < M, all t € [a,b] and all
z € R we have

[F(t,y, 2)| < har(|2]).

Remark. As a remark we conclude that the functions of the form F (¢,y,y") =
fty)y +g(t,y) and F (t,y,y) = f(t,y)y/2 + g(t, y) satisfy the Bernstein-Nagumo
condition.

Lemma 1. If o,  are lower and upper solutions for (NPg) such that a(t,e) <
B(t,e) on [a,b] and F satisfies the Bernstein-Nagumo condition, then there exists a
solution y of (NPg) with a(t,e) < y(t,e) < B(t,e), a <t < b.

Notation. Let

Ds(u) ={(t,y) €R* : a
Dsq(u) ={(t.y) € R?:a

ba |y - U(t)‘ < 6}a

<
<a+67ye R} ﬁD(;(U),

<t
<t
and

D(;J,(u):{(,y)el]@2 b—d<t< ,yEIR}ﬁD(;u)

where § < b — a is a positive constant and u = wu(t) is a solution of the reduced
problem F (t,u,u’) = 0 defined on [a, b] such that u € C?([a,b]).

Let h(t,y) denote F' (t,y,u'(t)).

2. QUASILINEAR NEUMANN’S PROBLEM

In this section we consider the quasilinear Neumann’s problem

ey’ = f(t,y)y' +g(t,y), a<t<b,

(NP1) V(@) =0, y(b.2) =0

where f,g € C'(Ds(u)). Concerning the behaviour of solutions of (NP;) for ¢ — 0
we have the following result.

Theorem 1. Consider the problem (NPp). Let there exist a solution u €
C? ([a, b]) of the reduced problem. Let &, m be positive constants such that ah(t’y) >
m for every (t,y) € Ds(u). Let f(t,y) < 0 and f(t,y) = 0 for every (t,y) € Dl;,a(u)
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and (t,y) € Dsp(u), respectively. Then there exists ¢y such that for any ¢ € (0, &g
the problem (NP;) has a solution satisfying the inequality

ly(t,e) —u(®)] < wvi(t,e) + va(t,€) + Ce
on [a, b], where

v1(t,€) = v/ (a)] exp [*\/?(b—t)] +6Xp[ \/T(t—b)]
O e [ VEO o] - e TG

va(t,€) = |/ (b)] exp [—\/?(a —t)] + exp [—\/?(t —a)]
| VE (0 [VEE- o] —ew [~ b))

and C' is a positive constant.

Proof. We define the lower solutions by
alt,e) = u(t) —vi(t,e) —va(t,e) — I'(e)
and the upper solutions by
B(t,e) = u(t) + vi(t,e) + va(t,e) + I'(e).

Here I'(e) = =X, where v is a constant which will be defined below. One can easily
check that the functions «, 3 satisfy the boundary conditions required for the lower
and upper solutions of (NP;) and a < 8 on [a,b]. Now we show that eo//(t,e) >
flt alte))d (t,e) + g(t, ot e)) and e (t,e) < f(t, B(t,€))B (t, €) + g(t, B(t,€)) on
[a, b]. By the Taylor theorem we obtain

Eo/’—F(t « 0/)

= — (F (t,o,a') = F (t,u,u))
= - [(F(t,a.u) = F(t,u, ') + (F (t,.d’) = F (t,a,u))]
— o’ - [Lt A () + ft,0) @ )]

Oh(t,n)

=eu” —ev] —evl) + (v1 +v2 + 1)+ f(t, ) (v] + v3)

dy
>eu —ev) —evl +m(vy +va+ )+ f(t,a) (v] + vh)
=cu" + ey + f(t, ) (v] + v5)

> —¢|u"| + ey + f(t,a) (v] +v5)

and

F(t,3,0)—ef" > —clu"| +ey+ f(L, 6)(v] + v3).
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where (t,7(t,€)) is a point between (¢, a(t,)) and (¢, u(t)), (t,n(t,e)) € Ds(u) for
sufficiently small ¢.

Let u/'(a) # 0, u/(b) # 0 (if v/(a) = 0 or v/ (b) = 0, we proceed anal-
ogously). From the above assumptions we obtain that f(¢,«) (v] +v5) > 0 and
f(&,B) (v] +v5) > 0on [a,a+ 5] U b— S,b] for ¢ € (0,&,] where § = min {§,6;},
and 01,¢1 are such that v] + v, < 0 (v] +v4 > 0) on [a,a+ d1] ([b— d1,b]) and
(t,a) C Dj(u), (t,3) C Ds(u) for € € (0,£1]. On the interval [a + 5,b— S] we
have |f(t, ) (v] + v5)| < c1e and | f(¢, 5) (v] + v})| < c1e for sufficiently small ¢, for
instance if € € (0,£¢], €0 < €1 and ¢; is a suitable positive constant (if u'(a) = 0
(v (b) = 0) then | f(t,) (v} +v})| < cie and |f(t, B) (v} + vh)| < c1e on [a,b — 5]
([a+ 5, b]).

Thus if we choose a constant v > ¢; +max{|u”(t)| ,t € [a,b]} then e/ (t,&) >
[t a(t.e))a'(t,e) + g(t.a(t.)) and e (L, ) < f(t, B(t,€))B' (t,€) + g(t, B(t,€)) on
[a,b]. The existence of a solution of (NP;) satisfying the above inequalities follows
from Lemma. This completes the proof. O

Example 1.  As an illustrative example we consider the (NP;) for the differ-
ential equation ey’ = yy’ — (t — %) on [0, 1]. General solution of the reduced problem
uu — (t - %) =0isu® =t>—t+k,k € R; however, only u(t) =t — % satisfies the
assumptions asked on the solution of the reduced problem. On the basis of Theo-
rem 1, there is gg such that for every € € (0, €o] the problem has a solution satisfying

|y(t,s) — (t — %)| < w1 4 vy + ¢ on [0, 1].

3. QUADRATIC NEUMANN’S PROBLEM

Now we will consider the quadratic Neumann’s problem

ey = ft.y)y® +9(t,y). a<t<b,

(NP3)
yl(aa 6) =0, yl(bv 6) =0,

where f,g € C1(Ds(u)).

Theorem 2. Consider the problem (NP3). Let there exist a solution u €
C? ([a, b]) of the reduced problem. Let 8, m be positive constants such that %Z’y) >
m for every (t,y) € Ds(u). Let f(t,y) < 0 (f(¢t,y) = 0) for (t,y) € Dsq(u) when
u'(a) >0 (v(a) <0) and f(t,y) <O (f(t,y) = 0) for (t,y) € Dsp(u) when u'(b) <0
(u’'(b) > 0). Then there exists g such that for any € € (0, g9 the problem (NP3) has

a solution satisfying the inequality
|y(ta E) - U(t)| < U1 (ta E) + U2(ta 6) +Ce
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on [a,b] where vy, vy are the functions from Theorem 1 and C' is a positive constant.

Proof. The idea of the proof is essentially the same as in the proof of Theorem
1. Let us define the lower solutions by

alt,e) = u(t) —vi(t,e) — va(t,e) — I'(e)
and the upper solutions by
B(t,e) = u(t) + vi(t,e) +va(t,e) + I'(e).
Analogously as in Theorem 1 we obtain

ed! — F(t,a,a') > —e|u"| +ve — f(t,oz)(o/2 - u’Z)
= —e[u"|+7e + f(t,0) (V] +v3) (2u" — v} — 1))

and
F(t,8,0) —ef” > —¢lu"| +7e + (1, 0) (8" — )
= —¢c|[u| + e+ f(t, B) (v} + vh) (2u" + v + v)).

Similarly as in the previous theorem we conclude (for u'(a) # 0, u/(b) # 0) that
[t a) (v +v3) 2u" — v —v5) 20, f(t,5) (v1 +v3) 2u' +v] +v5) 20

on [a,a—i—g] U [b—s,b] and

\f(t.5)

—~

vy 4 v5) (2u” + vy + v3)

on [a+8,b—4] for ¢ € (0, o), sufficiently small § > 0 and a suitable positive constant
ca. Therefore, for v > ¢; + max{|u”(t)|,t € [a,b]} we have

ea’ (te) > f(t, alt, o)’ (t,e) + gt alt, <))
and

eB"(t.) < f(t,B(t, )37 (t ) + g(t. B(t. <))

on [a,b]. Hence Theorem 2 is proved. O
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Example 2. Consider problem (NP3) for differential equation ey’ = yy’ 2
(t+1) on [—2,1]. Obviously u(t) = t+ 1 is the only solution of the reduced problem
uw'> = (t + 1) = 0 satisfying the assumptions of Theorem 2. Hence, there is o such
that for every e € (0, eg] the problem has a solution satisfying

ly(t,e) — (t+1)| < vy + va + coe

on [—2,1].
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