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Abstract. In this paper we study the algebraic properties of fi-

nite refinable sets which was introduced for the fast solution of integral

equations. Furthermore, the family of refinable sets is classified accord-

ing to the algebraic characteristics. Some open problems are raised for

the future study.
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1. Introduction

The concept of refinable set was initially introduced in [1], as a prepar-

ative step of the fast collocation methods for solving integral equations

(see [2]). The analysis of fast collocation scheme is based on the special

properties of multiscale basis functions and multiscale functionals, while

the refinable sets are used for the construction of multiscale functionals.

In [1], the refinable set is defined as follows.

Definition 1.1. Let (X, d) be a complete metric space and Φ := {φe :

e ∈ Zµ}, Zµ := {0, 1, . . . , µ − 1} be a family of contractive mappings on

X, where µ is a positive integer. For any subset A ⊂ X, define

Φ(A) :=
⋃

e∈Zµ

φe(A). (1.1)

We say that a subset T ⊂ X is refinable relative to the mappings Φ if

T ⊂ Φ(T ).

This definition of refinable set aims at the needs of applications, thus

involves analytic concepts such as metric, contractive mapping. Utilizing

these concepts, the topological properties of refinable sets were studied

35
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in [1]. In this paper, we attempt to focus us on the algebraic aspect of

this concept. Before the detailed discussions, we would like to give some

simple examples to get the readers familiar with this terminology. Let

X be the real number field equipped with the standard one-dimensional

Euclidean metric d, and Φ := {φ0, φ1} is defined by

φ0(t) :=
t

2
, φ1(t) :=

t + 1

2
, t ∈ X.

It is not difficult to verify that the following subsets are refinable relative

to Φ:

G0 :=

{

1

3
,
2

3

}

, G1 :=

{

1

7
,
2

7
,
4

7

}

, G2 :=

{

1

5
,
2

5
,
3

5
,
4

5

}

,

G′
0 :=

{

1

6
,
1

3
,
2

3

}

, G′′
0 :=

{

1

3
,
2

3
,
5

6

}

.

The sets G0, G1 and G2 are “independent”, while G′
0 and G′′

0 are as-

sociated with G0. To observe the relations among G0, G′
0 and G′′

0, we

notice

Φ(G0) =

{

1

6
,
1

3
,
2

3
,
5

6

}

,

and find that G′
0 and G′′

0 are both the subsets of Φ(G0). The set G0 is

simpler than G′
0 and G′′

0 to the extent that we can find a proper refinable

subset of G′
0 or G′′

0 while any proper subset of G0 is no longer refinable. It

is one of the elementary problems of this paper to find and characteristic

the simplest refinable set.

In section 2 we introduce several terminologies in the context of re-

finable sets such as source, image, kernel, degree, circle, which help to

describe the algebraic properties. For a refinable set T , a kernel of T is a

subset V ⊂ T such that Φ(V ) ⊃ T . Our first task is to characteristic the

simplest refinable set, which have itself as the unique kernel. We prove

that T is the simplest if and only if for any t ∈ T , |Φ(t) ∩ T | = 1. We

then observe this kind of refinable set itself is a circle, and any element

of it is a fixed point of some composite mapping of those in Φ. Based on

the above observations, we divide the whole family of refinable sets into

three classes, and define two operations on the family so that all refinable

sets can be generated from the simplest sets, which is called the refinable

sets of the first kind.

In section 3, we turn to consider the upper bound for the number

of the first kind refinable sets, and our estimate shows that they form a

countable family. We also impose extra conditions on the mapping family
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Φ to get an accurate counting of the number of the first kind refinable

sets.

There are still quite a few interesting issues left to be open. Since we

only discuss in this paper the properties of the finite refinable sets, it is

natural to ask whether the infinite refinable sets behave analogously. Is

the family of infinite refinable sets countable? It is also not clear whether

the finite refinable sets of the third kind generate a countable family.

2. Algebraic Characteristic of Refinable Sets

Definition 1.1 of refinable set involves some analytic concepts. In order

to focus us on the algebraic aspect, we weaken the conditions on X and

Φ to give a more general definition.

Definition 2.1. Let X be a number field, Φ := {φe : X → X : e ∈ Zµ}

is a family of mappings defined on X. A subset T ⊂ X is said to be

refinable relative to mappings Φ, if T ⊂ Φ(T ). Alternatively, we call T

a refinable set relative to Φ, or simply a refinable set.

Remark: This definition states the concept in a more general back-

ground, and emphasizes the ultimate characteristic of refinable set, that

is, a refinable set should be contained in its image under the mappings

Φ.

In this paper we only study finite refinable sets. Hence when T is

claimed to be refinable, |T |, the number of elements of T , is a finite

positive integer.

We derive from the definition of refinable set the following lemma,

which is frequently used as the equivalent definition of refinable set.

Lemma 2.2. T ∈ R(Φ) if and only if T = Φ(T ) ∩ T .

We introduce below some concepts for the further discussion of refin-

able sets.

Definition 2.3. For T ∈ R(Φ), we call t ∈ T a (refinable) source of T ,

if there exists t′ ∈ T and φe ∈ Φ such that t′ = φe(t). In this case we call

t′ an image of t in T under the mapping φe. If a subset V ⊂ T satisfies

Φ(V ) ⊃ T , then V is called a (refinable) kernel of T . Since the kernel of

T may not be unique, we denote the set of all kernels of T by Θ(T ), and

N (T ) := min{|V | : V ∈ Θ(T )} (2.2)

is called the (refinable) index of T .
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It is easy to see that T ∈ Θ(T ), hence Θ(T ) is always nonempty,

0 < N (T ) ≤ |T |, and N (T ) = |T | if and only if Θ(T ) = {T} is a

single element set. When 0 < N (T ) < |T |, we can not hold in hand the

uniqueness of kernel V satisfying |V | = N (T ). A necessary condition

of this kind of kernel is easy to conclude, which is summarized in the

following lemma. We remark that it is not a sufficient condition.

Lemma 2.4. Let T ∈ R(Φ), V ∈ Θ(T ), |V | = N (T ). Then any element

of V is a source of T .

The proof of the following lemma is also trivial.

Lemma 2.5. Let T ∈ R(Φ). If G ∈ Θ(T ), then

(i) G ∈ R(Φ), hence Θ(T ) ⊂ R(Φ);

(ii) Any subset V satisfying G ⊂ V ⊂ T is in Θ(T ), thus V ∈ R(Φ).

Similar to Lemma 2.2, we have V ∈ Θ(T ) if and only if T = Φ(V )∩T .

Definition 2.6. Let T ∈ R(Φ), and v ∈ T is a source of T . We call

|Φ(v)∩T | the degree of v. A source with degree 1 is called a single source,

otherwise a multiple source.

The following theorem characterizes the refinable set T with the prop-

erty N (T ) = |T | through refinable sources.

Theorem 2.7. Let T ∈ R(Φ). Then N (T ) = |T | if and only if each

element of T is a single source of T . In this case, different elements of

T have different images in T .

Proof. We first prove the necessity. Since N (T ) = |T |, T is the unique

kernel of itself. By Lemma 2.4, each element of T is a source. Assume

that t0 ∈ T is a multiple source, i.e., |Φ(t0) ∩ T | > 1. List the elements

of T as follows,

T = {t0, t1, . . . , tn−1},

where n = |T |, and for k ∈ Zn, we denote Tk := {ti : i ∈ Zk}, T ′
k :=

Φ(Tk) ∩ T . We prove by induction that

|T ′
i | > i, i ∈ Zn \ {0}. (2.3)

The inequality holds for i = 1 since t0 is a multiple source. Assume that

it also holds for i = k, and consider the case of i = k + 1. If

[Φ(tk) ∩ T ] ⊂ Tk,

then

T = Φ(T ) ∩ T = Φ(T \ {tk}) ∩ T,
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thus T \{tk} ∈ Θ(T ), which contradicts with the assumption. Therefore,

[Φ(tk) ∩ T ] \ T ′
k 6= ∅.

Since

T ′
k+1 = T ′

k

⋃

[(Φ(tk) ∩ T ) \ T ′
k],

where

T ′
k

⋂

[(Φ(tk) ∩ T ) \ T ′
k] = ∅,

we have

|T ′
k+1| = |T ′

k| + |[Φ(tk) ∩ T ] \ T ′
k| > k + 1.

hence (2.3) is proven. Put i = n − 1, we obtain |Φ(Tn−1) ∩ T | > n − 1,

i.e.,

Φ(Tn−1) ∩ T = T.

This implies Tn−1 ∈ Θ(T ), contradicting with the assumption. Hence t0
is a single source and the necessity is proven.

We now prove the sufficiency. Suppose that each element t ∈ T is a

single source of T , and there is a kernel V ∈ Θ(T ), |V | ≤ n − 1. Since

any element v ∈ V is a single source of T , there holds

|Φ(V ) ∩ T | ≤ n − 1,

which contradicts with Φ(V ) ∩ T = T , hence N (T ) = |T |.

If each element of T is a single source, then for any V ⊂ T , we have

|Φ(V )∩T | ≤ |V |, and the equality holds if and only if different elements

of V have different images in T . On the other hand, T ∈ R(Φ) implies

|Φ(T )∩T | = |T |. Therefore, different elements of T have different images

in T . �

Definition 2.8. Let T ∈ R(Φ), V := {vi : i ∈ Zm} ⊂ T , in which the

vi’s are distinct. If there exists e := [ei : i ∈ Zm] ∈ Z
m
µ such that for any

i ∈ Zm, vi+1 = φei
(vi), in which we denote vm := v0, then V is called a

circle in T .

The concept of circle is elementary in the discussion of refinable sets,

because the circle itself is refinable, and we have

Lemma 2.9. If T ∈ R(Φ), then T contains a circle.

Proof. Pick t0 ∈ T . Since T ⊂ Φ(T ), we have t0 ∈ Φ(T ), i.e., there

exists t1 ∈ T and φe1
∈ Φ such that t0 = φe1

(t1). Similarly, we can

find t2 ∈ T , φe2
∈ Φ satisfying t1 = φe2

(t2). Continuing this process

will create a sequence t0, t1, t2, . . .. Denote k := |T |, then there are two

identical elements in the first k + 1 items of the sequence. We denote

these two elements by ti and tj, where i < j, and require the elements of
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{ti, ti+1, . . . , tj−1} are distinct. Thus V := {ti, ti+1, . . . , tj−1} is a circle in

T . �

For two circles V1 and V2 in T , we call V1 and V2 disjoint, if V1∩Φ(V2) =

∅ and V2∩Φ(V1) = ∅. The following proposition uses circle to characterize

the refinable sets with N (T ) = |T |.

Proposition 2.10. Let T ∈ R(Φ), and N (T ) = |T |. Then any element

of T is contained in some circle, i.e., for any v ∈ T , there is a circle

V ⊂ T , such that v ∈ V . Moreover, the circles in T are disjoint.

Proof. Since N (T ) = |T |, each element of T is a single source. Given

v0 ∈ T , we can obtain in similar way to the proof of Lemma 2.9 a sequence

v0, v1, . . . , vk, where k := |T |. Furthermore, there is l ∈ Zk+1 \ {0} such

that vl = v0. In fact, by Lemma 2.9, there exist i, j ∈ Zk+1, i < j,

such that vi = vj. If i = 0, that is just what we want. If i 6= 0,

noting that vi−1 ∈ Φ(vi) ∩ T , vj−1 ∈ Φ(vj) ∩ T , and vi = vj are both

single sources of T , we conclude vi−1 = vj−1. Continuing this process,

we finally obtain v0 = vj−i. Let m be the smallest integer such that

v0 = vm, then v0, v1, . . . , vm−1 are distinct. This is because if i, j ∈ Zm,

i < j such that vi = vj, then i > 0 by the definition of m. Then we have

v0 = vj−i, but j − i < m, which contradicts with the definition of m.

Hence V := {vj : j ∈ Zm} is a circle in T .

We now prove the uniqueness of the circle containing v. Assume that

there are two circles in T , V := {v0, v1, . . . , vk−1} and V ′ := {v0, v
′
1, . . . , v

′
p−1},

in which vi+1 = φei
(vi), i ∈ Zk, v′

i+1 = φe′i
(v′

i), i ∈ Zp, v0 = v′
0 = vk = v′

p.

Since v1 and v′
1 are both images of v0 in T , but v0 is a single source of T ,

we have v1 = v′
1. Similarly we conclude vi = v′

i, i ∈ Zq, q := min{k, p}.

Since V 6= V ′, k 6= p. Without loss of generality, we assume k < p, then

v′
k and v0 are both images of vk−1. But vk−1 is a single source, hence

v0 = v′
k, which is a contradiction with the assumption. Thus the circle

containing v0 is unique.

We have concluded that for any two circles V1 and V2 in T , there

holds V1 ∩ V2 = ∅. Since any element of T is a single source, we have

V2 = Φ(V2) ∩ T , thus V1 ∩ Φ(V2) = ∅. Similarly V2 ∩ Φ(V1) = ∅. �

We conclude from the proposition above that a refinable set T satisfy-

ing N (T ) = |T | has simple structure.

Theorem 2.11. Let T ∈ R(Φ), N (T ) = |T |. Then there is a positive

integer n such that

T =
⋃

i∈Zn

Ti,
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where Ti, i ∈ Zn are disjoint circles in T .

Proof. According to Proposition 2.10, for any element t ∈ T , we can find

unique circle in T , denoted by Vt, containing t. Thus

T =
⋃

t∈T

Vt.

There may be identical circles in the above equality. We throw away the

repeated circles to get

T =
⋃

t∈U

Vt,

where U ⊂ T , so that any two circles emerging in the above equality

are not identical. Thus the circles are disjoint according to Proposition

2.10. �

Theorem 2.12. Let T ∈ R(Φ), then the following four conclusions are

equivalent.

(i) Θ(T ) = {T}, or Θ(T ) is a single element set.

(ii) N (T ) = |T |.

(iii) Any element of T is a single source.

(iv) T can be represented as union of disjoint circles.

Proof. The equivalence of (i) and (ii) is obvious. We are to prove (iii) ⇒
(ii) ⇒ (iv) ⇒ (iii). By Theorem 2.7, (iii) ⇒(ii); According to Theorem

2.11, (ii)⇒(iv); it is left to prove (iv)⇒(iii). Since any element of T is

in some circle, it is a source of T . On the other hand, if v ∈ T is a

multiple source, we assume v is in circle V , then v has an image v ′ /∈ V .

But v′ should be in another circle V ′, which contradicts with the disjoint

assumption on V and V ′. �

We now define two operations, which are based on the following fact.

Lemma 2.13. Let T, T ′ ∈ R(Φ), then

(i) T ∪ T ′ ∈ R(Φ). (ii) For any v ∈ Φ(T ) \ T , T ∪ {v} ∈ R(Φ).

Definition 2.14. Let T, T ′ ∈ R(Φ), v ∈ Φ(T ) \ T , {v} /∈ R(Φ), then

we call T ∪ T ′ union of the first kind, T ∪ {v} union of the second kind.

The proof of the following lemma is easy.

Lemma 2.15. Let T ∈ R(Φ), v /∈ T , {v} /∈ R(Φ), T ∪ {v} ∈ R(Φ),

then v ∈ Φ(T ) \ T .

Definition 2.16. Let T ∈ R(Φ). If T itself is a circle, then we call T a

refinable set of the first kind; if T is the union of refinable sets of the first
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kind, then T is called a refinable set of the second kind; in other cases T

is called a refinable set of the third kind.

Proposition 2.17. If Φ contains only one mapping, T ∈ R(Φ), then

N (T ) = |T |, thus T is of the first or second kind.

Theorem 2.18. Any refinable set of the second kind is the union of the

first kind of refinable sets of the first kind; any refinable set of the third

kind can be obtained by finite many unions of the second kind from a

refinable set of the second kind.

Since the refinable sets of the first kind can generate the whole family

R(Φ), it is important to characterize these sets. For e := (e0, e1, . . . , e`−1) ∈

Z
`
µ, we define composite mapping φe := φe0

◦ φe1
◦ · · · ◦ φe`−1

.

Theorem 2.19. Let T ∈ R(Φ) be a refinable set of the first kind, then

for any t ∈ T , there exists e ∈ Z
k
µ such that t is a fixed point of φe, in

which k := |T |.

Proof. According to the definition, we can write T as T := {t0, t1, . . . , tk−1},

where ti+1 = φei
(ti), φei

∈ Φ, i ∈ Zk, tk = t0. Let e := (ek−1, ek−2, . . . , e0),

then t0 = φe(t0), i.e., t0 is the fixed point of φe. For t1, Φe
′(t1) = t1, where

e′ := (e0, ek−1, . . . , e1). In similar way we can prove that other elements

are all fixed points. �

3. Refinable Sets of the First Kind

In this section we are focused on counting the number of the refinable

sets of the first kind in R(Φ). Generally R(Φ) is an infinite set, so

is the collection of the refinable sets of the first kind. What we are

concerned about is the number of refinable sets of the first kind with a

given cardinality. Denote by Rr
I(Φ) the refinable sets of the first kind in

R(Φ) with cardinality r, and let dxe denote the largest integer not more

than x.

We first make a partition of Z
r
µ. Define transformation w : Z

r
µ → Z

r
µ

as follows: for e := (e0, e1, . . . , er−1) ∈ Z
r
µ,

w(e) = (er−1, e0, e1, . . . , er−2) ∈ Z
r
µ.

We call w the right translation with screw on Z
r
µ. It is easy to see

wk(e) = (er−k, . . . , er−1, e0, . . . , er−k−1),

and

wr(e) = e, wr+k(e) = wk(e).
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For e ∈ Z
r
µ, define

Ξ(e) := {wk(e) : k ∈ N0},

where we indicate w0(e) = e. By the property of w, Ξ(e) is a finite

set, and |Ξ(e)| ≤ r. If |Ξ(e)| = m, then we can write Ξ(e) equivalently

as Ξ(e) = {wk(e) : k ∈ Zm}. For e, e′ ∈ Z
r
µ, either Ξ(e) = Ξ(e′), or

Ξ(e)∩Ξ(e′) = ∅. Hence Ξ(Zr
µ) := {Ξ(e) : e ∈ Z

r
µ} is a partition of Z

r
µ. For

a positive integer k ≤ r, define Ξk(Z
r
µ) := {Ξ(e) ∈ Ξ(Zr

µ) : |Ξ(e)| = k}.

The following lemma is a direct corollary of Theorem 2.19.

Lemma 3.1. Let T ∈ Rr
I(Φ), t0 ∈ T , e ∈ Z

r
µ, φe(t0) = t0. Then for any

t ∈ T , there exists e′ ∈ Ξ(e), such that φe
′(t) = t.

Lemma 3.2. If Ξk(Z
r
µ) 6= ∅, then k|r.

Proof. Pick Ξ(e) ∈ Ξk(Z
r
µ), where e := (e0, e1, . . . , er−1), then Ξ(e) =

{e, w(e), . . . , wk−1(e)}, and wk(e) = e. According to the definition of w,

e` = e`+k, ` ∈ Zr, (3.4)

where for ` ≥ r we let e` = e`−r. Divide r by k to obtain r = kp + q,

q ∈ Zp. If k is not a factor of r, then q 6= 0. By (3.4), ekp = ek(p+1) = ek−q.

But e0 = ekp, thus e0 = ek−q. Similarly we have e` = e`+k−q, ` ∈ Zr,

or wk−q(e) = e, hence |Ξ(e)| ≤ k − q < k, which contradicts with the

assumptions. Therefore q = 0, and k|r. �

In the case of k|r, we can define a correspondence Ωk : Rk
I (Φ) →

Ξk(Z
r
µ) as follows: for V ∈ Rk

I (Φ), we arbitrarily pick v ∈ V , then by

Theorem 2.19, there exists e ∈ Z
k
µ such that φe(v) = v. Since k|r, we can

concatenate r
k

e’s to form ẽ ∈ Z
r
µ. Then we identify Ξ(ẽ) ∈ Ωk(V ). Note

that such Ξ(ẽ) may not unique. We still need to show Ξ(ẽ) ∈ Ξk(Z
r
µ),

which holds if |Ξ(ẽ)| = k. Denote s := |Ξ(e)|, then V = {v′ : v′ =

φe(v), e ∈ Ξ(e)}. Thus s ≥ k. On the other hand |Ξ(e)| ≤ k. Hence

|Ξ(ẽ)| = |Ξ(e)| = k, so Ξ(ẽ) ∈ Ξk(Z
r
µ).

Theorem 3.3. Let k|r, then for V, V ′ ∈ Rk
I (Φ), V 6= V ′, there holds

Ωk(V ) ∩ Ωk(V
′) = ∅.

Proof. Since V 6= V ′, |V | = |V ′|, there is v ∈ V \ V ′ and v′ ∈ V ′ \ V .

Suppose v and v′ are the fixed points of φe and φe
′ , respectively, e, e′ ∈

Z
k
µ, then e /∈ Ξ(e′), e′ /∈ Ξ(e). Concatenate r

k
e’s and e′’s to obtain ẽ and

ẽ′ respectively, then ẽ /∈ Ξ(ẽ′), ẽ′ /∈ Ξ(ẽ). Hence Ξ(ẽ) ∩ Ξ(ẽ′) = ∅. �

Theorem 3.4. For any positive integer r, there holds

|Rr
I(Φ)| ≤

⌈

µr

r

⌉

. (3.5)
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Proof. It follows from Theorem 3.3 that

|Rr
I(Z

r
µ)| ≤ |Ξr(Z

r
µ)|.

On the other hand,

|Ξr(Z
r
µ)| · r ≤ |Zr

µ| = µr.

Then the theorem is proved. �

Corollary 3.5. The family of the refinable sets of the first kind is count-

able. Moreover, the refinable sets of the second kind also form a countable

family.

The above theorem only provides a rough upper bound of |Rr
I(Φ)|.

We can improve the estimate if stronger condition is imposed on Φ. For

this purpose, we set the following hypothesis.

Hypothesis Λ: There exists a positive integer m, such that for any

r < m, if e1, e2 ∈ Z
r
µ, e1 6= e2, then φe1

and φe2
have unique fixed points

t1 and t2, and t1 6= t2.

This hypothesis is fulfilled in many important practical cases, for ex-

ample, Φ is a family of contractive mappings, and for e, e′ ∈ Z
r
µ, e 6= e′,

there holds int(φe) ∩ int(φe
′) = ∅.

Theorem 3.6. Assume that Φ satisfies hypothesis Λ. For r ∈ Zm \ {0},

we denote P (r) := |Rr
I(Φ)|, then

P (r) =

µr −
∑

k∈ϕ(r)

k · P (k)

r
, (3.6)

where ϕ(r) = {p : p ∈ Zr \ {0}, p|r}.

Proof. We are to prove that for k|r, Ωk is a bijection. Under the condi-

tions of the theorem, for any V ∈ Rk
I (Φ), v ∈ V , the e ∈ Z

k
µ such that

φe(v) = v is unique, hence Ωk is a mapping. We then conclude from The-

orem 3.3 that Ωk is injective. On the other hand, for any Ξ(e) ∈ Ξk(Z
r
µ),

φe has unique fixed point v0. Then for m = 1, 2, . . . , k − 1, we find the

unique fixed points vm of φwm(e), respectively. Thus V := {vi : i ∈ Zm} is

a refinable set of the first kind, and |V | = k. Therefore, Ωk is surjective.

Given e ∈ Z
r
µ, we have |Ξ(e)| ≤ r, hence

Ξ(Zr
µ) =

r
⋃

k=1

Ξk(Z
r
µ).
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By Lemma 3.2,

Ξ(Zr
µ) =

⋃

k∈ϕ(r)∪{r}

Ξk(Z
r
µ).

Given e ∈ Z
r
µ, |Ξ(e)| is uniquely determined, hence the subsets Ξk(Z

r
µ)

of Ξ(Zr
µ) are disjoint. By counting the number of vectors of Z

r
µ in the

subsets Ξk(Z
r
µ), we conclude that

µr =
∑

k∈ϕ(r)∪{r}

k · |Ξk(Z
r
µ)|.

Since Ωk is bijective, P (k) = |Ξk(Z
r
µ)|, hence

P (r) =

µr −
∑

k∈ϕ(r)

k · P (k)

r
.

�

Corollary 3.7. Suppose that Φ satisfies hypothesis Λ, then for a prime

number r ∈ Zm \ {0}, there holds

P (r) =
µr − µ

r
. (3.7)

4. Open Problems

In this paper our discussions are restricted to finite refinable sets. It

is left to study the algebraic properties of infinite refinable sets. The

cardinality of the family of the third kind finite refinable sets is also not

clear.

Another interesting issue is the relation between the number of the

refinable sets and the properties of X and Φ. That is, if we impose more

hypotheses on X and Φ, what will happen to the number of the refinable

sets?
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