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Abstract. We obtain complete convergence results for arrays of row-

wise independent Banach space valued random elements. In the main

result no assumptions are made concerning the geometry of the un-

derlying Banach space. As corollaries we obtain results on complete

convergence in stable type p Banach spaces.

1. Introduction.

The concept of complete convergence was introduced by Hsu and Rob-

bins (1947) as follows. A sequence of random variables {Un, n ≥ 1} is

said to converge completely to a constant c if
∑∞

n=1 P{|Un − c| > ε} < ∞

for all ε > 0. By the Borel-Cantelli lemma, this implies Un → c almost

surely (a.s.) and the converse implication is true if the {Un, n ≥ 1} are

independent. Hsu and Robbins (1947) proved that the sequence of arith-

metic means of independent and identically distributed random variables

converges completely to the expected value if the variance of the sum-

mands is finite.
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This result has been generalized and extended in several directions

(see Pruitt (1966), Rohatgi (1971), Hu, Moricz, and Taylor (1989), Gut

(1992), Wang, Rao, and Yang (1993), Kuczmaszewska and Szynal (1994),

Sung (1997), Hu, Rosalsky, Szynal, and Volodin (1999), Hu, Li, Rosalsky

and Volodin (2002), and Ahmed, Giuliano Antonini, and Volodin (2002)

among others). Some of these articles concern a Banach space setting.

A sequence of Banach space valued random elements is said to converge

completely to the 0 element of the Banach space if the corresponding

sequence of norms converges completely to 0.

Hu, Rosalsky, Szynal, and Volodin (1999) presented a general result

(cf. Theorem 1.1 below) establishing complete convergence for the row

sums of an array of rowwise independent but not necessarily identically

distributed Banach space valued random elements. Their result also spec-

ified the corresponding rate of convergence. The Hu, Rosalsky, Szynal,

and Volodin (1999) result unifies and extends previously obtained results

in the literature in that many of them (for example, results of Hsu and

Robbins (1947), Hu, Li, Rosalsky, and Volodin (2002), Hu, Moricz, and

Taylor (1989), Gut (1992), Kuczmaszewska and Szynal (1994), Pruitt

(1966), Rohatgi (1971), Sung (1997), and Wang, Rao, and Yang (1993))

follow from it.

In the following we assume that {Vnk, k ≥ 1, n ≥ 1} is an array of

rowwise independent random elements in a separable real Banach space

and {ank, k ≥ 1, n ≥ 1} is an array of constants. Denote

Sn ≡
∞
∑

k=1

ankVnk.

In the next theorem the weights ank are built into the array (that is,

ank = 1 for all k and n).

Theorem 1.1 (Hu, Rosalsky, Szynal, and Volodin (1999)). Let {cn, n ≥

1} be a sequence of positive constants. Suppose that

∞
∑

n=1

cn

∞
∑

k=1

P{||Vnk|| > ε} < ∞ for all ε > 0,(1)

∞
∑

n=1

cn

(

∞
∑

k=1

E||Vnk||
q

)J

< ∞ for some 0 < q ≤ 2 and J ≥ 2,(2)

∞
∑

k=1

Vnk
P
→ 0, and
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if lim inf
n→∞

cn = 0, then

∞
∑

k=1

P{||Vnk|| > δ} = o(1) for some δ > 0.(3)

Then
∞
∑

n=1

cnP{||Sn|| > ε} < ∞ for all ε > 0.

It is implicitly assumed in Theorem 1.1 that the series Sn converges

a.s.

The article Hu, Li, Rosalsky, and Volodin (2002) is devoted to pre-

senting applications of Theorem 1.1 to obtain new complete convergence

results. Theorem 1.2 generalizes results of Hsu and Robbins (1947),

Hu, Moricz, and Taylor (1989), Gut (1992), Kuczmaszewska and Szynal

(1994), Pruitt (1966), Rohatgi (1971), Sung (1997), and Wang, Rao, and

Yang (1993) in three directions, namely:

(i) Banach space valued random elements instead of random variables

are considered.

(ii) An array rather than a sequence is considered.

(iii) The rate of convergence is obtained.

Theorem 1.2. (Hu, Li, Rosalsky, and Volodin (2002)). Suppose that

the array {Vnk, k ≥ 1, n ≥ 1} is stochastically dominated by a random

variable X. Assume that

sup
k≥1

|ank| = O(n−γ) for some γ > 0, and

∞
∑

k=1

|ank| = O(nα) for some α ∈ [0, γ).

If

E|X|1+
1+α+β

γ < ∞ for some β ∈ (−1, γ − α − 1], and

Sn
P
→ 0,

then
∞
∑

n=1

nβP{||Sn|| > ε} < ∞ for all ε > 0.

The proof of Theorem 1.2 is rather complicated once it uses the Stielt-

jes integral techniques, summation by parts lemma and so on. The initial
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objective of an investigation resulted in the paper Ahmed, Giuliano An-

tonini, and Volodin (2002) was only to find a simpler proof. But it

appears that they were able to establish a more general result and with

simpler proof. The result presented in Theorem 1.3 below is more general

than the main result of Hu, Li, Rosalsky, and Volodin (2002), since rates

of convergence for moving averages can be established, which cannot be

proved using Theorem 1.2.

Theorem 1.3. Suppose that the array {Vnk, k ≥ 1, n ≥ 1} is stochasti-

cally dominated by a random variable X. Assume that

sup
k≥1

|ank| = O(n−γ) for some γ > 0,

and
∞
∑

k=1

|ank| = O(nα) for some α < γ.

Let β be such that α + β 6= −1 and fix δ > 0 such that α
γ

+ 1 < δ ≤ 2. If

E|X|ν < ∞ where ν = max(1 +
1 + α + β

γ
, δ),

and

Sn
P
→ 0,

then
∞
∑

n=1

nβP{||Sn|| > ε} < ∞ for all ε > 0.

If we assume that the Banach space has the geometric property of

being of an appropriate stable type, then we can drop the condition that

Sn converges in probability. For this we need the following result.

Theorem 1.4 (Adler, Ordóñez Cabrera, Rosalsky, and Volodin (1999))

Assume that underlying Banach space has stable type p, 1 < p < 2. Sup-

pose that the array {Vnk, k ≥ 1, n ≥ 1} has mean 0 and is stochastically

dominated by a random variable X. Moreover, assume that

sup
n≥1

∞
∑

k=1

|ank|
p < ∞, and sup

k≥1
|ank| = o(1).

If limt→∞ tpP{|X| > t} = 0, then Sn
P
→ 0.



A NOTE ON THE RATE OF COMPLETE CONVERGENCE 25

In the present paper we generalize Theorem 1.3 in two directions. First

of all, instead of condition
∞
∑

k=1

|ank| = O(nα) for some α < γ,

in Theorem 3.1 we consider the condition
∞
∑

k=1

|ank|
θ = O(nα) for some suitable choice of the parameters.

Secondary, in Theorem 3.2 we deal with the special case α + β = −1.

The plan of the paper is as follows. In Section 2, we recall some

well known definitions pertaining to the current work. In Section 3, we

apply Theorem 1.1 to obtain complete convergence for row sums with

corresponding rates of convergence (Theorems 3.1 and 3.2). As in The-

orems 1.1, 1.2, and 1.3, in Theorems 3.1 and 3.2 no assumptions are

made concerning the geometry of the underlying Banach space. We use

the geometrical assumption (type p) on the underlying Banach space in

Theorems 3.3 and 3.4.

2. Preliminaries

Let (Ω, F, P ) be a probability space and let B be a separable real

Banach space with norm || · ||. A random element is defined to be an

F -measurable mapping of Ω into B equipped with the Borel σ-algebra

(that is, the σ-algebra generated by the open sets determined by || · ||).

A detailed account of basic properties of random elements in separable

real Banach spaces can be found in Taylor (1978).

Let {Vnk, k ≥ 1, n ≥ 1} be an array of rowwise independent, but

not necessarily identically distributed, random elements taking values

in B. The array of random elements {Vnk, k ≥ 1, n ≥ 1} is said to

be stochastically dominated by a random variable X if there exists a

constant D < ∞ such that P{||Vnk|| > x} ≤ DP{|DX| > x} for all

x > 0 and for all n ≥ 1 and k ≥ 1. Let {ank, k ≥ 1, n ≥ 1} be an array

of constants (called weights) and consider the sequence of weighted sums

Sn ≡
∑∞

k=1 ankVnk, n ≥ 1.

Let 0 < p ≤ 2 and let {θn, n ≥ 1} be independent and identically dis-

tributed stable random variables each with characteristic function φ(t)

= exp{−|t|p},−∞ < t < ∞. The real separable Banach space B is

said to be of stable type p if
∑∞

n=1 θnvn converges almost surely when-

ever {vn, n ≥ 1} ⊆ B with
∑∞

n=1 ||vn||
p < ∞. Equivalent characteri-

zations of a Banach space being of stable type p, properties of stable
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type p Banach spaces, as well as various relationships between the condi-

tions “Rademacher type p” and “stable type p” may be found in Adler,

Ordóñez Cabrera, Rosalsky, and Volodin (1999), Section 2.

Finally, the symbol C denotes throughout a generic constant (0 < C <

∞) which is not necessarily the same one in each appearance, for x ≥ 0

the symbol [x] denotes the greatest integer in x, and for a finite set A

the symbol #A denotes the number of elements in the set A.

3. Main Results

With the preliminaries accounted for, the main result may now be

established. For the case θ > 1 it is implicitly assumed that the series

Sn converges a.s. (cf. Remark (i) after Theorem 3.2)

Theorem 3.1. Suppose that the array {Vnk, k ≥ 1, n ≥ 1} is stochasti-

cally dominated by a random variable X. Assume that

sup
k≥1

|ank| = O(n−γ) for some γ > 0, and(4)

∞
∑

k=1

|ank|
θ = O(nα)(5)

for some 0 < θ ≤ 2 and any α such that θ + α
γ

< 2.

Let β be such that α + β 6= −1 and fix δ > θ such that α
γ

+ θ < δ ≤ 2.

If

E|X|ν < ∞ where ν = max(θ +
1 + α + β

γ
, δ), and(6)

Sn
P
→ 0,

then
∞
∑

n=1

nβP{||Sn|| > ε} < ∞ for all ε > 0.

Proof. Note that the result is of interest only for β ≥ −1. In addition,

since δ > θ + α
γ
, we have that α − γ(δ − θ) < 0.

Let cn = nβ, n ≥ 1. Then we only need to verify that the conditions

(1), (2), and (3) (if β < 0) of Theorem 1.1 hold with ankVnk playing the

role of Vnk in the formulation of that theorem. Without loss of generality,

ε can be taken to be 1 and in view of (4) and (5) we can assume that

sup
k≥1

|ank| = n−γ,(7)
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and

∞
∑

k=1

|ank|
θ = nα.(8)

Now to verify (1), let bnj = 1/|anj|, ( where 1/0 = ∞),

Inj = {k : (nj)γ ≤ bnk < (n(j + 1))γ} and

Jnj = ∪j
k=1Ink = {k : bnk < (n(j + 1))γ}, j ≥ 1, n ≥ 1.

Noting that by (7) ∪j≥1Inj = N for all n ≥ 1, where N is the set of

positive integers.

Note that for all m ≥ 1, n ≥ 1 by (8)

nα ≥
∑

k∈Jnm

|ank|
θ =

∑

k∈Jnm

1/|bnk| ≥
#Jnm

(n(m + 1))γ
,

and hence

#Jnm ≤ nα+γθ(m + 1)γθ.

Observe that since the sets Inj, j ≥ 1 are disjoint, for any fixed n ≥ 1,

we have that

m
∑

j=1

#Inj = #Jnm ≤ nα+γθ(m + 1)γθ.



28 A.VOLODIN, R.GIULIANO ANTONINI, AND T.-C.HU

Therefore

∞
∑

n=1

nβ
∞
∑

k=1

P{‖ankVnk‖ ≥ 1} =
∞
∑

n=1

nβ
∞
∑

k=1

P{‖Vnk‖ ≥ bnk}

≤ C
∞
∑

n=1

nβ
∞
∑

k=1

P{|X| ≥ bnk} ≤ C
∞
∑

n=1

nβ
∞
∑

j=1

(#Inj)P{|X| ≥ (nj)γ}

≤ C

∞
∑

n=1

nβ

∞
∑

j=1

(#Inj)P{|X|1/γ ≥ nj}

≤ C
∞
∑

n=1

nβ
∞
∑

j=1

(#Inj)
∞
∑

k=nj

P{k ≤ |X|1/γ < k + 1}

= C

∞
∑

n=1

nβ

∞
∑

k=n

P{k ≤ |X|1/γ < k + 1}

[k/n]
∑

j=1

(#Inj)

≤ C
∞
∑

n=1

nβ
∞
∑

k=n

P{k ≤ |X|1/γ < k + 1}nα+γ([k/n] + 1)γθ

≤ C
∞
∑

n=1

nβnα+γθn−γθ
∞
∑

k=n

kγθP{k ≤ |X|1/γ < k + 1}

≤ C

∞
∑

k=1

kγθP{k ≤ |X|1/γ < k + 1}

k
∑

n=1

nα+β (∗)

≤ C

∞
∑

k=1

kα+β+γθ+1P{k ≤ |X|1/γ < k + 1} because α + β 6= −1

≤ CE|X|θ+ θ+α+β
γ < ∞ by (6).

To verify (2), note that for any J > β+1
γ(δ−θ)−α

∑∞

n=1 nβ
(
∑∞

k=1 E||ankVnk||
δ
)J

=
∑∞

n=1 nβ
(
∑∞

k=1 |ank|
δE||Vnk||

δ
)J

≤
∑∞

n=1 nβ
(

supk≥1 |ank|
δ−θ
∑∞

k=1 |ank|
δ−θE||Vnk||

δ
)J

≤ C
∑∞

n=1 nβ
(

n−γ(δ−θ)nαE|X|δ
)J

(by (7), (8), and stochastic domination)

= C
∑∞

n=1 nβ+J(α−γ(δ−θ)) < ∞.
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Finally, to verify (3) if β < 0, note that for any λ > 0

∞
∑

k=1

P{||ankVnk|| > λ} ≤
∞
∑

k=1

λ−δE||ankVnk||
δ (by the Markov inequality)

≤ C sup
k≥1

|ank|
δ−θ

∞
∑

k=1

|ank|
θE||Vnk||

δ

≤ Cn−γ(δ−θ)+αE|X|δ = o(1) (by (7), (8), and stochastic domination).

For the special case α + β = −1 we can establish the following result.

Theorem 3.2. Suppose that the array {Vnk, k ≥ 1, n ≥ 1} is stochasti-

cally dominated by a random variable X. Assume that

sup
k≥1

|ank| = O(n−γ) for some γ > 0,

and

∞
∑

k=1

|ank|
θ = O(nα) for some 0 < θ ≤ 2 and any α, such that θ +

α

γ
< 2.

Let β = −1 − α and fix δ > θ such that α
γ

+ θ < δ ≤ 2. If E|X|δ < ∞

and

Sn
P
→ 0,

then

∞
∑

n=1

nβP{||Sn|| > ε} < ∞ for all ε > 0.

Proof. Let cn = nβ, n ≥ 1. Then we only need to verify that the

conditions (1), (2), and (3) (if β < 0) of Theorem 1.1 hold with ankVnk

playing the role of Vnk in the formulation of that theorem. We mention

that conditions (2) and (3) can be checked exactly in the same way as in

the theorem above. While for condition (1) we need to make the following
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changes right after the inequality (*):

∞
∑

n=1

nβ
∞
∑

k=1

P{‖ankVnk‖ ≥ 1}

≤ C

∞
∑

k=1

kγθP{k ≤ |X|1/γ < k + 1}

k
∑

n=1

nα+β

≤ C
∞
∑

k=1

kγθ log kP{k ≤ |X|1/γ < k + 1} because α + β = −1

≤ CE|X|θ log |X| ≤ CE|X|δ < ∞ and since δ > θ.

Remarks. (i) We can verify that if θ ≤ 1, then it follows from the

assumptions of Theorems 3.1 and 3.2 that the series Sn converges a.s.

Note at the outset that the stochastic domination hypothesis ensures

that E||Vnk|| ≤ CE|X|, k ≥ 1, n ≥ 1 and hence for all n ≥ 1, by the

Beppo Levi theorem and the assumptions of Theorem 3.1

E

(

∞
∑

k=1

||ankVnk||

)

=
∞
∑

k=1

E||ankVnk|| ≤ CE|X|
∞
∑

k=1

|ank|

≤ C sup
k≥1

|ank|
1−θ

∞
∑

k=1

|ank|
θ ≤ Cnα−γ(1−θ) < ∞.

Thus for all n ≥ 1,
∑∞

k=1 ||ankVnk|| < ∞ a.s. and so for all n ≥ 1 and all

K ≥ 1,

sup
L>K

∣

∣

∣

∣

∣

∣

∣

∣

L
∑

k=1

ankVnk −
K
∑

k=1

ankVnk

∣

∣

∣

∣

∣

∣

∣

∣

= sup
L>K

∣

∣

∣

∣

∣

∣

∣

∣

L
∑

k=K+1

ankVnk

∣

∣

∣

∣

∣

∣

∣

∣

≤ sup
L>K

L
∑

k=K+1

||ankVnk|| =

∞
∑

k=K+1

||ankVnk||
K→∞
−→ 0 a.s.

Thus for all n ≥ 1, with probability 1, {
∑K

k=1 ankVnk, K ≥ 1} is a

Cauchy sequence in X whence
∑∞

k=1 ankVnk converges a.s.

(ii) Take θ = 1 in order to obtain Theorem 1.3.

(iii) Since Theorem 3.1 is stronger than Theorem 1.3, which is, in its turn

is stronger than Theorem 1.2, the results of the papers Hsu and Robbins

(1947), Hu, Moricz, and Taylor (1989), Gut (1992), Wang, Rao, and

Yang (1993), Kuczmaszewska and Szynal (1994), Pruitt (1966), Rohatgi

(1971), and Sung (1997) follow from it in the same way as was proved in

Hu, Li, Rosalsky, and Volodin (2002).
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(iv) Of course, the conditions of Theorems 3.1 and 3.2 can be slightly

generalized on the case supk≥1 |ank| = f(n) and
∑∞

k=1 |ank|
θ = g(n) where

f(n) and g(n) are regularly varying functions with indexes −γ and α,

correspondenly. The same is true for Theorems 3.3 and 3.4 below.

We can drop the convergence in probability condition if we assume

that underling Banach space is of stable type.

Theorem 3.3. Assume that underlying Banach space has stable type

p, 1 < p < 2. Suppose that the array {Vnk, k ≥ 1, n ≥ 1} has mean

zero and is stochastically dominated by a random variable X. Moreover,

assume that

sup
k≥1

|ank| = O(n−γ) for some γ > 0,

and

∞
∑

k=1

|ank|
θ = O(nα) for some 0 < θ ≤ p and any α such that θ +

α

γ
≤ p.

Let β be such that α + β 6= −1 and fix δ > θ such that θ + α
γ

< δ ≤ 2. If

E|X|ν < ∞, where ν = max(θ +
1 + α + β

γ
, δ, p)

then
∞
∑

n=1

nβP{||Sn|| > ε} < ∞ for all ε > 0.

Proof. We need to check that

Sn ≡
∞
∑

k=1

ankVnk
P
→ 0.

To do this we apply Theorem 1.4. Since p ≥ θ + α
γ
, we have

sup
n≥1

∞
∑

k=1

|ank|
p = sup

n≥1

∞
∑

k=1

|ank|
p−θ|ank|

θ

= sup
n≥1

(sup
k≥1

|ank|)
p−θ

∞
∑

k=1

|ank|
θ

≤ C sup
n≥1

nα−γ(p−θ) < ∞.

All other assumptions of Theorem 3.1 are obviously satisfied.
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For the special case α + β = −1 we can establish the following result.

The proof repeats the proof of Theorem 3.3 with the only difference being,

that we need to refer to Theorem 3.2 instead of Theorem 3.1. Because

of this we omit the proof.

Theorem 3.4. Assume that underlying Banach space has stable type

p, 1 < p < 2. Suppose that the array {Vnk, k ≥ 1, n ≥ 1} has mean

zero and is stochastically dominated by a random variable X. Moreover,

assume that

sup
k≥1

|ank| = O(n−γ) for some γ > 0,

and
∞
∑

k=1

|ank|
θ = O(nα) for some 0 < θ ≤ p and any α such that θ +

α

γ
≤ p.

Let β = −1−α and fix δ > θ such that θ+ α
γ

< δ ≤ 2. If E|X|max(p,δ) < ∞

then
∞
∑

n=1

nβP{||Sn|| > ε} < ∞ for all ε > 0.
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