Sequences of algebraic integers and density modulo 1

par Roman URBAN

RÉsumé. Nous établissons la densité modulo 1 des ensembles de la forme

$$
\left\{\mu^{m} \lambda^{n} \xi+r_{m}: n, m \in \mathbb{N}\right\}
$$

où $\lambda, \mu \in \mathbb{R}$ sont deux entiers algébriques de degré $d \geq 2$, qui sont rationnellement indépendants et satisfont des hypothèses techniques supplémentaires, $\xi \neq 0$, et r_{m} une suite quelconque de nombres réels.

Abstract. We prove density modulo 1 of the sets of the form

$$
\left\{\mu^{m} \lambda^{n} \xi+r_{m}: n, m \in \mathbb{N}\right\}
$$

where $\lambda, \mu \in \mathbb{R}$ is a pair of rationally independent algebraic integers of degree $d \geq 2$, satisfying some additional assumptions, $\xi \neq 0$, and r_{m} is any sequence of real numbers.

1. Introduction

It is a very well known result in the theory of distribution modulo 1 that for every irrational ξ the sequence $\{n \xi: n \in \mathbb{N}\}$ is dense modulo 1 (and even uniformly distributed modulo 1) [11].

In 1967, in his seminal paper [4], Furstenberg proved the following
Theorem 1.1 (Furstenberg, [4, Theorem IV.1]). If $p, q>1$ are rationally independent integers (i.e., they are not both integer powers of the same integer) then for every irrational ξ the set

$$
\begin{equation*}
\left\{p^{n} q^{m} \xi: n, m \in \mathbb{N}\right\} \tag{1.2}
\end{equation*}
$$

is dense modulo 1.

[^0]One possible direction of generalizations is to consider p and q in Theorem 1.1 not necessarily integer. This was done by Berend in [3].

According to [10], Furstenberg conjectured that under the assumptions of Theorem 1.1, the set $\left.\left\{\left(p^{n}+q^{m}\right)\right\}: n, m \in \mathbb{N}\right\}$ is dense modulo 1. As far as we know, this conjecture is still open. However, there are some results concerning related questions. For example, B. Kra in [9], proved the following

Theorem 1.3 (Kra, [9, Theorem 1.2 and Corollary 2.2]). For $i=1,2$, let $1<p_{i}<q_{i}$ be two rationally independent integers. Assume that $p_{1} \neq p_{2}$ or $q_{1} \neq q_{2}$. Then, for every $\xi_{1}, \xi_{2} \in \mathbb{R}$ with at least one $\xi_{i} \notin \mathbb{Q}$, the set

$$
\left\{p_{1}^{n} q_{1}^{m} \xi_{1}+p_{2}^{n} q_{2}^{m} \xi_{2}: n, m \in \mathbb{N}\right\}
$$

is dense modulo 1 .
Furthermore, let r_{m} be any sequence of real numbers and $\xi \notin \mathbb{Q}$. Then, the set

$$
\begin{equation*}
\left\{p_{1}^{n} q_{1}^{m} \xi+r_{m}: n, m \in \mathbb{N}\right\} \tag{1.4}
\end{equation*}
$$

is dense modulo 1 .
Inspired by Berend's result [3], we prove some kind of a generalization of the second part of Theorem 1.3 (some kind of an extension of the first part is given in [15]). Namely, we allow algebraic integers, satisfying some additional assumption, to appear in (1.4) instead of integers, and we prove the following

Theorem 1.5. Let λ, μ be a pair of rationally independent real algebraic integers of degree $d \geq 2$, with absolute values greater than 1. Let $\lambda_{2}, \ldots, \lambda_{d}$ denote the conjugates of $\lambda=\lambda_{1}$. Assume that either λ or μ has the property that for every $n \in \mathbb{N}$, its n-th power is of degree d, and that μ may be expressed in the form $g(\lambda)$, where g is a polynomial with integer coefficients, i.e.,

$$
\begin{equation*}
\mu=g(\lambda), \text { for some } g \in \mathbb{Z}[x] \text {. } \tag{1.6}
\end{equation*}
$$

Assume further that

$$
\begin{equation*}
\text { for each } i=2, \ldots, d \text {, either }\left|\lambda_{i}\right|>1 \text { or }\left|g\left(\lambda_{i}\right)\right|>1 \text {, } \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for each } i=2, \ldots, d,\left|\lambda_{i}\right| \neq 1 . \tag{1.8}
\end{equation*}
$$

Then for any non-zero ξ, and any sequence of real numbers r_{m}, the set

$$
\begin{equation*}
\left\{\mu^{m} \lambda^{n} \xi+r_{m}: n, m \in \mathbb{N}\right\} \tag{1.9}
\end{equation*}
$$

is dense modulo 1 .

As an example illustrating Theorem 1.5 we can consider the following expressions

$$
(\sqrt{23}+1)^{n}(\sqrt{23}+2)^{m}+2^{m} \beta \text { or }(3+\sqrt{3})^{n}(\sqrt{3})^{m} 5+7^{m} \beta, \beta \in \mathbb{R}
$$

Remark. We believe that assumption (1.6) is not necessary to conclude density modulo 1 of the sets of the form (1.9).

Another kind of a generalization of Furstenberg's Theorem 1.1, which we are going to use in the proof of our result, is to consider higher-dimensional analogues. A generalization to a commutative semigroup of non-singular $d \times d$-matrices with integer coefficients acting by endomorphisms on the d-dimensional torus $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$, and to the commutative semigroups of continuous endomorphisms of other compact abelian groups was given by Berend in [1] and [2], respectively (see Sect. 2.3). Recently some results for non-commutative semigroups of endomorphisms of \mathbb{T}^{d} have been obtained in $[5,6,13]$.

The structure of the paper is as follows. In Sect. 2 we recall some notions and facts from ergodic theory and topological dynamics. Following Berend $[1,2]$, we recall the definition of an ID-semigroup of endomorphisms of the d-dimensional torus \mathbb{T}^{d}. Then we state Berend's theorem, $[1]$, which gives conditions that guarantee that a given semigroup of endomorphisms of \mathbb{T}^{d} is an ID-semigroup. This theorem is crucial for the proof of our main result. Finally in Sect. 3, using some ideas from [9, 3] we prove Theorem 1.5.

Acknowledgements. The author wishes to thank the anonymous referee for remarks that improved the overall presentation of the result.

2. Preliminaries

2.1. Algebraic numbers. We say that $P \in \mathbb{Z}[x]$ is monic if the leading coefficient of P is one, and reduced if its coefficients are relatively prime. A real algebraic integer is any real root of a monic polynomial $P \in \mathbb{Z}[x]$, whereas an algebraic number is any root (real or complex) of a (not necessarily monic) non-constant polynomial $P \in \mathbb{Z}[x]$. The minimal polynomial of an algebraic number θ is the reduced element Q of $\mathbb{Z}[x]$ of the least degree such that $Q(\theta)=0$. If θ is an algebraic number, the roots of its minimal polynomial are simple. The degree of an algebraic number is the degree of its minimal polynomial.

Let θ be an algebraic integer of degree n and let $P \in \mathbb{Z}[x]$ be the minimal polynomial of θ. The $n-1$ other distinct (real or complex) roots $\theta_{2}, \ldots, \theta_{n}$ of P are called conjugates of θ.
2.2. Topological transitivity, ergodicity and hyperbolic toral endomorphisms. We start with some basic notions, $[12,7]$. We consider a discrete topological dynamical system (X, f) given by a compact metric
space X and a continuous map $f: X \rightarrow X$. We say that a topological dynamical system (X, f) (or simply that a map f) is topologically transitive if for any two nonempty open sets $U, V \subset X$ there exists $n=n(U, V) \in \mathbb{N}$ such that $f^{n}(U) \cap V \neq \emptyset$. One can show that f is topologically transitive if for every nonempty open set U in $X, \bigcup_{n \geq 0} f^{-n}(U)$ is dense in X (see [8] for other equivalent definitions). If there exists a point $x \in X$ such that its orbit $\left\{f^{n}(x): n \in \mathbb{N}\right\}$ is dense in X, then we say that x is a transitive point. Under some additional assumptions on X, the map f is topologically transitive if and only if there is a transitive point $x \in X$. Namely, we have the following
Proposition 2.1 ([14]). If X has no isolated point and f has a transitive point then f is topologically transitive. If X is separable, second category and f is topologically transitive then f has a transitive point.

Consider a probability space (X, \mathcal{F}, μ) and a continuous transformation $f: X \rightarrow X$. We say that the map f is measure preserving, and that μ is f-invariant, if for every $A \in \mathcal{F}$ we have $\mu\left(f^{-1}(A)\right)=\mu(A)$. Recall that f is said to be ergodic if every set A such that $f^{-1}(A)=A$ has measure 0 or 1.

Let L be a hyperbolic matrix, that is a $d \times d$-matrix with integer entries, with non-zero determinant, and without eigenvalues of absolute value 1. Then $L \mathbb{Z}^{d} \subset \mathbb{Z}^{d}$, so L determines a map of the d-dimensional torus $\mathbb{T}^{d}=$ $\mathbb{R}^{d} / \mathbb{Z}^{d}$. Such a map is called a hyperbolic toral endomorphism. It is known (see e.g. [12]) that the Haar measure m of \mathbb{T}^{d} is invariant under surjective continuous homomorphisms. In particular, it is L-invariant. We state two propositions about toral endomorphisms. Their proofs can be found in [12].

Proposition 2.2. Let $L: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ be a hyperbolic toral endomorphism. Then L is ergodic.

The next proposition gives an elementary and useful relation between ergodicity and topological transitivity.
Proposition 2.3. Let L be a continuous endomorphism of \mathbb{T}^{d} which preserves the Haar measure m. If L is ergodic then it is topologically transitive. In particular, if L is a hyperbolic toral endomorphism then L has a transitive point $t \in \mathbb{T}^{d}$, i.e., $\left\{L^{n} t: n \in \mathbb{N}\right\}$ is dense in \mathbb{T}^{d}.

We will also need the following lemma about finite invariant sets of ergodic endomorphisms. For the proof see [1, Lemma 5.2].
Lemma 2.4. Let $L: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ be an ergodic endomorphism. A finite L-invariant set is necessarily composed of torsion elements only.
2.3. ID semigroups of endomorphisms acting on \mathbb{T}^{d}. Following $[1$, 2], we say that the semigroup Σ of endomorphisms of a compact group
G has the ID-property (or simply that Σ is an ID-semigroup) if the only infinite closed Σ-invariant subset of G is G itself. (ID-property stands for infinite invariant is dense.) A subset $A \subset G$ is said to be Σ-invariant if $\Sigma A \subset A$.

We say, exactly like in the case of real numbers, that two endomorphisms σ and τ are rationally dependent if there are integers m and n, not both of which are 0 , such that $\sigma^{m}=\tau^{n}$, and rationally independent otherwise.

Berend in [1] gave necessary and sufficient conditions in arithmetical terms for a commutative semigroup Σ of endomorphisms of the d-dimensional torus $\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$ to have the ID-property. Namely, he proved the following.
Theorem 2.5 (Berend, [1, Theorem 2.1]). A commutative semigroup Σ of continuous endomorphisms of \mathbb{T}^{d} has the ID-property if and only if the following hold:
(i) There exists an endomorphism $\sigma \in \Sigma$ such that the characteristic polynomial $f_{\sigma^{n}}$ of σ^{n} is irreducible over \mathbb{Z} for every positive integer n.
(ii) For every common eigenvector v of Σ there exists an endomorphism $\sigma_{v} \in \Sigma$ whose eigenvalue in the direction of v is of norm greater than 1.
(iii) Σ contains a pair of rationally independent endomorphisms.

Remark. Let Σ be a commutative ID-semigroup of endomorphisms of \mathbb{T}^{d}. Then the Σ-orbit of the point $x \in \mathbb{T}^{d}$ is finite if and only if x is a rational element, i.e., $x=r / q, r \in \mathbb{Z}^{d}, q \in \mathbb{N}$ (see [1]).

3. Proof of Theorem 1.5

Let $\lambda>1$ be a real algebraic integer of degree d with minimal (monic) polynomial $Q_{\lambda} \in \mathbb{Z}[x]$,

$$
Q_{\lambda}(x)=x^{d}+c_{d-1} x^{d-1}+\ldots+c_{1} x+c_{0} .
$$

We associate with λ the following companion matrix of Q_{λ},

$$
\sigma_{\lambda}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
-c_{0} & -c_{1} & -c_{2} & \ldots & -c_{d-1}
\end{array}\right) .
$$

Remark. We can think of σ_{λ} as a matrix of multiplication by λ in the algebraic number field $\mathbb{Q}(\lambda)$. Namely, if $x \in \mathbb{Q}(\lambda)$ has coordinates $\alpha=$ $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}\right)$ in the basis consisting of $1, \lambda, \ldots, \lambda^{d-1}$, then λx has coordinates $\alpha \sigma_{\lambda}$.

Let $\mu=g(\lambda)$, where $g \in \mathbb{Z}[x]$ is a polynomial with integer coefficients, and define the matrix $\sigma_{\mu}=g\left(\sigma_{\lambda}\right)$.

Denote by Σ the semigroup of endomorphisms of \mathbb{T}^{d} generated by σ_{λ} and σ_{μ}. The vector $v=\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{d-1}\right)^{t}$ is an eigenvector of the matrix σ_{λ} with an eigenvalue λ, that is $\sigma_{\lambda} v=\lambda v$. Since Σ is a commutative semigroup, it follows that v is a common eigenvector of Σ, in particular $\sigma_{\mu} v=g\left(\sigma_{\lambda}\right) v=g(\lambda) v=\mu v$.

Clearly, under the assumptions on λ and μ, the operators σ_{λ} and σ_{μ} are rationally independent endomorphisms of \mathbb{T}^{d} and the characteristic polynomial either of σ_{λ}^{n} or σ_{μ}^{n} is irreducible over \mathbb{Z} for every $n \in \mathbb{N}$. Furthermore, it follows from (1.7) that the condition (ii) of Theorem 2.5 is also satisfied. Thus we have proved the following
Lemma 3.1. Let λ and μ be as in Theorem 1.5. Let Σ be the semigroup of endomorphisms of \mathbb{T}^{d} generated by σ_{λ} and σ_{μ}. Then Σ is the ID-semigroup.

The next lemma is a generalization of [9, Lemma 2.1] to the higherdimensional case. Let X be a compact metric space with a distance d. Consider the space \mathcal{C}_{X} of all closed subsets of X. The Hausdorff metric d_{H} on the space \mathcal{C}_{X} is defined as

$$
d_{H}(A, B)=\max \left\{\max _{x \in A} d(x, B), \max _{x \in B} d(x, A)\right\}
$$

where $d(x, B)=\min _{y \in B} d(x, y)$ is the distance of x from the set B. It is known that if X is a compact metric space then \mathcal{C}_{X} is also compact.

Lemma 3.2. Let σ, τ be a pair of rationally independent and commuting endomorphisms of \mathbb{T}^{d}. Assume that the semigroup $\Sigma=\langle\sigma, \tau\rangle$ generated by σ and τ satisfies the conditions of Theorem 2.5, and σ is a hyperbolic toral endomorphism of \mathbb{T}^{d}. Let A be an infinite σ-invariant subset of \mathbb{T}^{d}. Then for every $\varepsilon>0$ there exists $m \in \mathbb{N}$ such that the set $\tau^{m} A$ is ε-dense.

Proof. It is clear that, taking the closure of A if necessary, we can assume that A is closed. We consider the space $\mathcal{C}_{\mathbb{T}^{d}}$ of all closed subsets of \mathbb{T}^{d} with the Hausdorff metric d_{H}. Let

$$
\mathcal{F}:=\overline{\left\{\tau^{n} A: n \in \mathbb{N}\right\}} \subset \mathcal{C}_{\mathbb{T}^{d}}
$$

Since the set A is σ-invariant, it follows that every element (set) $F \in \mathcal{F}$ is also σ-invariant. Define,

$$
T=\bigcup_{F \in \mathcal{F}} F \subset \mathbb{T}^{d}
$$

Since A is an infinite set and $A \subset T$, it follows that T is infinite. Notice that T is closed in \mathbb{T}^{d}, since \mathcal{F} is closed in $\mathcal{C}_{\mathbb{T}^{d}}$. Moreover, T is σ - and τ-invariant. Hence, by Theorem 2.5, we get

$$
T=\mathbb{T}^{d}
$$

Since σ is a hyperbolic toral endomorphism, it follows by Proposition 2.3, that there exists $t \in T$ such that the orbit $\left\{\sigma^{n} t: n \in \mathbb{N}\right\}$ is dense in \mathbb{T}^{d}, i.e.,

$$
\begin{equation*}
\overline{\left\{\sigma^{n} t: n \in \mathbb{N}\right\}}=\mathbb{T}^{d} \tag{3.3}
\end{equation*}
$$

Clearly, $t \in F$ for some $F \in \mathcal{F}$. By definition of \mathcal{F}, there is a sequence $\left\{n_{k}\right\} \subset \mathbb{N}$ such that $F=\lim _{k} \tau^{n_{k}} A$, and the limit is taken in the Hausdorff metric d_{H}. Since $t \in F$ and F is σ-invariant, we get $F \supset \overline{\left\{\sigma^{n} t: n \in \mathbb{N}\right\}}=\mathbb{T}^{d}$ (see (3.3)). Hence, $F=\mathbb{T}^{d}$. Therefore, for sufficiently large $k, \tau^{n_{k}} A$ is ε dense.

Now we are ready to give
Proof of Theorem 1.5. Let $\alpha=\xi\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{d-1}\right)^{t} \in \mathbb{R}^{d}$ be a common eigenvector of the semigroup Σ. Consider

$$
A=\left\{\sigma_{\lambda}^{n} \pi(\alpha): n \in \mathbb{N}\right\}=\left\{\pi\left(\lambda^{n} \xi, \lambda^{n+1} \xi, \ldots, \lambda^{n+d-1} \xi\right)^{t}: n \in \mathbb{N}\right\}
$$

where $\pi: \mathbb{R}^{d} \rightarrow \mathbb{T}^{d}$ is the canonical projection. By (1.8), σ_{λ} is a hyperbolic toral endomorphism. In particular, by Proposition $2.2, \sigma_{\lambda}$ is ergodic. Since $\pi(\alpha)$ is not a torsion element, it follows from Lemma 2.4 that A is infinite. By Lemma 3.1, $\Sigma=\left\langle\sigma_{\lambda}, \sigma_{\mu}\right\rangle$ is the ID-semigroup of \mathbb{T}^{d}. Thus, by Lemma 3.2 applied to σ_{λ} and σ_{μ}, there exists $m \in \mathbb{N}$ such that $\sigma_{\mu}^{m} A$ is ε-dense. Let $v_{m}=\pi\left(r_{m}, 0, \ldots, 0\right)^{t}$. Since

$$
\sigma_{\mu}^{m} A+v_{m}=\left\{\pi\left(\mu^{m} \lambda^{n} \xi+r_{m}, \mu^{m} \lambda^{n+1} \xi, \ldots, \mu^{m} \lambda^{n+d-1} \xi\right)^{t}: n \in \mathbb{N}\right\}
$$

is a translate of an ε-dense set, it is also ε-dense. Now, taking the projection of the set $\sigma_{\mu}^{m} A+v_{m}$ on the first coordinate we get the result.

References

[1] D. Berend, Multi-invariant sets on tori. Trans. Amer. Math. Soc. 280 (1983), no. 2, 509532.
[2] D. Berend, Multi-invariant sets on compact abelian groups. Trans. Amer. Math. Soc. 286 (1984), no. 2, 505-535.
[3] D. Berend, Dense $(\bmod 1)$ dilated semigroups of algebraic numbers. J. Number Theory 26 (1987), no. 3, 246-256.
[4] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 1-49.
[5] Y. Guivarc'h and A. N. Starkov, Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms. Ergodic Theory Dynam. Systems 24 (2004), no. 3, 767-802.
[6] Y. Guivarc'h and R. Urban, Semigroup actions on tori and stationary measures on projective spaces. Studia Math. 171 (2005), no. 1, 33-66.
[7] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, Cambridge, 1995.
[8] S. Kolyada and L. Snoha, Some aspects of topological transitivity - a survey. Grazer Math. Ber. 334 (1997), 3-35.
[9] B. Kra, A generalization of Furstenberg's Diophantine theorem. Proc. Amer. Math. Soc. 127 (1999), no. 7, 1951-1956.
[10] D. Meiri, Entropy and uniform distribution of orbits in \mathbb{T}^{d}. Israel J. Math. 105 (1998), 155-183.
[11] L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley \& Sons], New York-London-Sydney, 1974.
[12] R. Mañé, Ergodic theory and differentiable dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer-Verlag, Berlin, 1987.
[13] R. Muchnik, Semigroup actions on \mathbb{T}^{n}. Geometriae Dedicata 110 (2005), 1-47.
[14] S. Silverman, On maps with dense orbits and the definition of chaos. Rocky Mt. J. Math. 22 (1992), no. 1, 353-375.
[15] R. Urban, On density modulo 1 of some expressions containing algebraic integers. Acta Arith., 127 (2007), no. 3, 217-229.

Roman Urban

Institute of Mathematics
Wroclaw University
Plac Grunwaldzki 2/4
50-384 Wroclaw, Poland
E-mail: urban@math.uni.wroc.pl

[^0]: Manuscrit reçu le 17 aout 2006.
 Mots clefs. Density modulo 1, algebraic integers, topological dynamics, ID-semigroups.
 Research supported in part by the European Commission Marie Curie Host Fellowship for the Transfer of Knowledge "Harmonic Analysis, Nonlinear Analysis and Probability" MTKD-CT-2004-013389 and by the MNiSW research grant N201 012 31/1020.

