Sequences of algebraic integers and density modulo 1

par Roman URBAN

RÉSUMÉ. Nous établissons la densité modulo 1 des ensembles de la forme

$$\{\mu^m \lambda^n \xi + r_m : n, m \in \mathbb{N}\},\$$

où $\lambda, \mu \in \mathbb{R}$ sont deux entiers algébriques de degré $d \geq 2$, qui sont rationnellement indépendants et satisfont des hypothèses techniques supplémentaires, $\xi \neq 0$, et r_m une suite quelconque de nombres réels.

ABSTRACT. We prove density modulo 1 of the sets of the form

$$\{\mu^m \lambda^n \xi + r_m : n, m \in \mathbb{N}\},\$$

where $\lambda, \mu \in \mathbb{R}$ is a pair of rationally independent algebraic integers of degree $d \geq 2$, satisfying some additional assumptions, $\xi \neq 0$, and r_m is any sequence of real numbers.

1. Introduction

It is a very well known result in the theory of distribution modulo 1 that for every irrational ξ the sequence $\{n\xi : n \in \mathbb{N}\}$ is dense modulo 1 (and even uniformly distributed modulo 1) [11].

In 1967, in his seminal paper [4], Furstenberg proved the following

Theorem 1.1 (Furstenberg, [4, Theorem IV.1]). If p, q > 1 are rationally independent integers (i.e., they are not both integer powers of the same integer) then for every irrational ξ the set

(1.2)
$$\{p^n q^m \xi : n, m \in \mathbb{N}\}$$

is dense modulo 1.

Manuscrit reçu le 17 aout 2006.

Mots clefs. Density modulo 1, algebraic integers, topological dynamics, ID-semigroups.

Research supported in part by the European Commission Marie Curie Host Fellowship for the Transfer of Knowledge "Harmonic Analysis, Nonlinear Analysis and Probability" MTKD-CT-2004-013389 and by the MNiSW research grant N201 012 31/1020.

Roman Urban

One possible direction of generalizations is to consider p and q in Theorem 1.1 not necessarily integer. This was done by Berend in [3].

According to [10], Furstenberg conjectured that under the assumptions of Theorem 1.1, the set $\{(p^n + q^m)\xi : n, m \in \mathbb{N}\}$ is dense modulo 1. As far as we know, this conjecture is still open. However, there are some results concerning related questions. For example, B. Kra in [9], proved the following

Theorem 1.3 (Kra, [9, Theorem 1.2 and Corollary 2.2]). For i = 1, 2, let $1 < p_i < q_i$ be two rationally independent integers. Assume that $p_1 \neq p_2$ or $q_1 \neq q_2$. Then, for every $\xi_1, \xi_2 \in \mathbb{R}$ with at least one $\xi_i \notin \mathbb{Q}$, the set

$$\{p_1^n q_1^m \xi_1 + p_2^n q_2^m \xi_2 : n, m \in \mathbb{N}\}\$$

is dense modulo 1.

Furthermore, let r_m be any sequence of real numbers and $\xi \notin \mathbb{Q}$. Then, the set

$$\{p_1^n q_1^m \xi + r_m : n, m \in \mathbb{N}\}$$

is dense modulo 1.

Inspired by Berend's result [3], we prove some kind of a generalization of the second part of Theorem 1.3 (some kind of an extension of the first part is given in [15]). Namely, we allow algebraic integers, satisfying some additional assumption, to appear in (1.4) instead of integers, and we prove the following

Theorem 1.5. Let λ, μ be a pair of rationally independent real algebraic integers of degree $d \geq 2$, with absolute values greater than 1. Let $\lambda_2, \ldots, \lambda_d$ denote the conjugates of $\lambda = \lambda_1$. Assume that either λ or μ has the property that for every $n \in \mathbb{N}$, its n-th power is of degree d, and that μ may be expressed in the form $g(\lambda)$, where g is a polynomial with integer coefficients, *i.e.*,

(1.6)
$$\mu = g(\lambda), \text{ for some } g \in \mathbb{Z}[x].$$

Assume further that

(1.7) for each
$$i = 2, \ldots, d$$
, either $|\lambda_i| > 1$ or $|g(\lambda_i)| > 1$,

and

(1.8) for each
$$i = 2, \ldots, d, |\lambda_i| \neq 1$$
.

Then for any non-zero ξ , and any sequence of real numbers r_m , the set

(1.9)
$$\{\mu^m \lambda^n \xi + r_m : n, m \in \mathbb{N}\}$$

is dense modulo 1.

As an example illustrating Theorem 1.5 we can consider the following expressions

$$(\sqrt{23}+1)^n(\sqrt{23}+2)^m+2^m\beta \text{ or } (3+\sqrt{3})^n(\sqrt{3})^m5+7^m\beta, \ \beta \in \mathbb{R}.$$

Remark. We believe that assumption (1.6) is not necessary to conclude density modulo 1 of the sets of the form (1.9).

Another kind of a generalization of Furstenberg's Theorem 1.1, which we are going to use in the proof of our result, is to consider higher-dimensional analogues. A generalization to a commutative semigroup of non-singular $d \times d$ -matrices with integer coefficients acting by endomorphisms on the d-dimensional torus $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$, and to the commutative semigroups of continuous endomorphisms of other compact abelian groups was given by Berend in [1] and [2], respectively (see Sect. 2.3). Recently some results for non-commutative semigroups of endomorphisms of \mathbb{T}^d have been obtained in [5, 6, 13].

The structure of the paper is as follows. In Sect. 2 we recall some notions and facts from ergodic theory and topological dynamics. Following Berend [1, 2], we recall the definition of an ID-semigroup of endomorphisms of the *d*-dimensional torus \mathbb{T}^d . Then we state Berend's theorem, [1], which gives conditions that guarantee that a given semigroup of endomorphisms of \mathbb{T}^d is an ID-semigroup. This theorem is crucial for the proof of our main result. Finally in Sect. 3, using some ideas from [9, 3] we prove Theorem 1.5.

Acknowledgements. The author wishes to thank the anonymous referee for remarks that improved the overall presentation of the result.

2. Preliminaries

2.1. Algebraic numbers. We say that $P \in \mathbb{Z}[x]$ is monic if the leading coefficient of P is one, and reduced if its coefficients are relatively prime. A real algebraic integer is any real root of a monic polynomial $P \in \mathbb{Z}[x]$, whereas an algebraic number is any root (real or complex) of a (not necessarily monic) non-constant polynomial $P \in \mathbb{Z}[x]$. The minimal polynomial of an algebraic number θ is the reduced element Q of $\mathbb{Z}[x]$ of the least degree such that $Q(\theta) = 0$. If θ is an algebraic number, the roots of its minimal polynomial are simple. The degree of an algebraic number is the degree of its minimal polynomial.

Let θ be an algebraic integer of degree n and let $P \in \mathbb{Z}[x]$ be the minimal polynomial of θ . The n-1 other distinct (real or complex) roots $\theta_2, \ldots, \theta_n$ of P are called *conjugates* of θ .

2.2. Topological transitivity, ergodicity and hyperbolic toral endomorphisms. We start with some basic notions, [12, 7]. We consider a discrete topological dynamical system (X, f) given by a compact metric

Roman Urban

space X and a continuous map $f: X \to X$. We say that a topological dynamical system (X, f) (or simply that a map f) is topologically transitive if for any two nonempty open sets $U, V \subset X$ there exists $n = n(U, V) \in \mathbb{N}$ such that $f^n(U) \cap V \neq \emptyset$. One can show that f is topologically transitive if for every nonempty open set U in $X, \bigcup_{n\geq 0} f^{-n}(U)$ is dense in X (see [8] for other equivalent definitions). If there exists a point $x \in X$ such that its orbit $\{f^n(x) : n \in \mathbb{N}\}$ is dense in X, then we say that x is a transitive point. Under some additional assumptions on X, the map f is topologically transitive if and only if there is a transitive point $x \in X$. Namely, we have the following

Proposition 2.1 ([14]). If X has no isolated point and f has a transitive point then f is topologically transitive. If X is separable, second category and f is topologically transitive then f has a transitive point.

Consider a probability space (X, \mathcal{F}, μ) and a continuous transformation $f: X \to X$. We say that the map f is *measure preserving*, and that μ is f-invariant, if for every $A \in \mathcal{F}$ we have $\mu(f^{-1}(A)) = \mu(A)$. Recall that f is said to be *ergodic* if every set A such that $f^{-1}(A) = A$ has measure 0 or 1.

Let L be a hyperbolic matrix, that is a $d \times d$ -matrix with integer entries, with non-zero determinant, and without eigenvalues of absolute value 1. Then $L\mathbb{Z}^d \subset \mathbb{Z}^d$, so L determines a map of the d-dimensional torus $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$. Such a map is called a hyperbolic toral endomorphism. It is known (see e.g. [12]) that the Haar measure m of \mathbb{T}^d is invariant under surjective continuous homomorphisms. In particular, it is L-invariant. We state two propositions about toral endomorphisms. Their proofs can be found in [12].

Proposition 2.2. Let $L : \mathbb{T}^d \to \mathbb{T}^d$ be a hyperbolic toral endomorphism. Then L is ergodic.

The next proposition gives an elementary and useful relation between ergodicity and topological transitivity.

Proposition 2.3. Let L be a continuous endomorphism of \mathbb{T}^d which preserves the Haar measure m. If L is ergodic then it is topologically transitive. In particular, if L is a hyperbolic toral endomorphism then L has a transitive point $t \in \mathbb{T}^d$, i.e., $\{L^n t : n \in \mathbb{N}\}$ is dense in \mathbb{T}^d .

We will also need the following lemma about finite invariant sets of ergodic endomorphisms. For the proof see [1, Lemma 5.2].

Lemma 2.4. Let $L : \mathbb{T}^d \to \mathbb{T}^d$ be an ergodic endomorphism. A finite *L*-invariant set is necessarily composed of torsion elements only.

2.3. ID semigroups of endomorphisms acting on \mathbb{T}^d . Following [1, 2], we say that the semigroup Σ of endomorphisms of a compact group

G has the *ID-property* (or simply that Σ is an *ID-semigroup*) if the only infinite closed Σ -invariant subset of G is G itself. (ID-property stands for *infinite invariant is dense.*) A subset $A \subset G$ is said to be Σ -*invariant* if $\Sigma A \subset A$.

We say, exactly like in the case of real numbers, that two endomorphisms σ and τ are *rationally dependent* if there are integers m and n, not both of which are 0, such that $\sigma^m = \tau^n$, and *rationally independent* otherwise.

Berend in [1] gave necessary and sufficient conditions in arithmetical terms for a commutative semigroup Σ of endomorphisms of the *d*-dimensional torus $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ to have the ID-property. Namely, he proved the following.

Theorem 2.5 (Berend, [1, Theorem 2.1]). A commutative semigroup Σ of continuous endomorphisms of \mathbb{T}^d has the ID-property if and only if the following hold:

- (i) There exists an endomorphism $\sigma \in \Sigma$ such that the characteristic polynomial f_{σ^n} of σ^n is irreducible over \mathbb{Z} for every positive integer n.
- (ii) For every common eigenvector v of Σ there exists an endomorphism σ_v ∈ Σ whose eigenvalue in the direction of v is of norm greater than 1.
- (iii) Σ contains a pair of rationally independent endomorphisms.

Remark. Let Σ be a commutative ID-semigroup of endomorphisms of \mathbb{T}^d . Then the Σ -orbit of the point $x \in \mathbb{T}^d$ is finite if and only if x is a rational element, i.e., x = r/q, $r \in \mathbb{Z}^d$, $q \in \mathbb{N}$ (see [1]).

3. Proof of Theorem 1.5

Let $\lambda > 1$ be a real algebraic integer of degree d with minimal (monic) polynomial $Q_{\lambda} \in \mathbb{Z}[x]$,

$$Q_{\lambda}(x) = x^d + c_{d-1}x^{d-1} + \ldots + c_1x + c_0.$$

We associate with λ the following *companion matrix* of Q_{λ} ,

$$\sigma_{\lambda} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -c_0 & -c_1 & -c_2 & \dots & -c_{d-1} \end{pmatrix}$$

Remark. We can think of σ_{λ} as a matrix of multiplication by λ in the algebraic number field $\mathbb{Q}(\lambda)$. Namely, if $x \in \mathbb{Q}(\lambda)$ has coordinates $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_{d-1})$ in the basis consisting of $1, \lambda, \ldots, \lambda^{d-1}$, then λx has coordinates $\alpha \sigma_{\lambda}$.

Let $\mu = g(\lambda)$, where $g \in \mathbb{Z}[x]$ is a polynomial with integer coefficients, and define the matrix $\sigma_{\mu} = g(\sigma_{\lambda})$.

Denote by Σ the semigroup of endomorphisms of \mathbb{T}^d generated by σ_{λ} and σ_{μ} . The vector $v = (1, \lambda, \lambda^2, \dots, \lambda^{d-1})^t$ is an eigenvector of the matrix σ_{λ} with an eigenvalue λ , that is $\sigma_{\lambda}v = \lambda v$. Since Σ is a commutative semigroup, it follows that v is a common eigenvector of Σ , in particular $\sigma_{\mu}v = g(\sigma_{\lambda})v = g(\lambda)v = \mu v$.

Clearly, under the assumptions on λ and μ , the operators σ_{λ} and σ_{μ} are rationally independent endomorphisms of \mathbb{T}^d and the characteristic polynomial either of σ_{λ}^n or σ_{μ}^n is irreducible over \mathbb{Z} for every $n \in \mathbb{N}$. Furthermore, it follows from (1.7) that the condition (ii) of Theorem 2.5 is also satisfied. Thus we have proved the following

Lemma 3.1. Let λ and μ be as in Theorem 1.5. Let Σ be the semigroup of endomorphisms of \mathbb{T}^d generated by σ_{λ} and σ_{μ} . Then Σ is the ID-semigroup.

The next lemma is a generalization of [9, Lemma 2.1] to the higherdimensional case. Let X be a compact metric space with a distance d. Consider the space C_X of all closed subsets of X. The Hausdorff metric d_H on the space C_X is defined as

$$d_H(A, B) = \max\{\max_{x \in A} d(x, B), \max_{x \in B} d(x, A)\},\$$

where $d(x, B) = \min_{y \in B} d(x, y)$ is the distance of x from the set B. It is known that if X is a compact metric space then \mathcal{C}_X is also compact.

Lemma 3.2. Let σ, τ be a pair of rationally independent and commuting endomorphisms of \mathbb{T}^d . Assume that the semigroup $\Sigma = \langle \sigma, \tau \rangle$ generated by σ and τ satisfies the conditions of Theorem 2.5, and σ is a hyperbolic toral endomorphism of \mathbb{T}^d . Let A be an infinite σ -invariant subset of \mathbb{T}^d . Then for every $\varepsilon > 0$ there exists $m \in \mathbb{N}$ such that the set $\tau^m A$ is ε -dense.

Proof. It is clear that, taking the closure of A if necessary, we can assume that A is closed. We consider the space $\mathcal{C}_{\mathbb{T}^d}$ of all closed subsets of \mathbb{T}^d with the Hausdorff metric d_H . Let

$$\mathcal{F} := \overline{\{ au^n A : n \in \mathbb{N}\}} \subset \mathcal{C}_{\mathbb{T}^d}.$$

Since the set A is σ -invariant, it follows that every element (set) $F \in \mathcal{F}$ is also σ -invariant. Define,

$$T = \bigcup_{F \in \mathcal{F}} F \subset \mathbb{T}^d.$$

Since A is an infinite set and $A \subset T$, it follows that T is infinite. Notice that T is closed in \mathbb{T}^d , since \mathcal{F} is closed in $\mathcal{C}_{\mathbb{T}^d}$. Moreover, T is σ - and τ -invariant. Hence, by Theorem 2.5, we get

$$T = \mathbb{T}^d$$

Since σ is a hyperbolic toral endomorphism, it follows by Proposition 2.3, that there exists $t \in T$ such that the orbit $\{\sigma^n t : n \in \mathbb{N}\}$ is dense in \mathbb{T}^d , i.e.,

(3.3)
$$\overline{\{\sigma^n t : n \in \mathbb{N}\}} = \mathbb{T}^d$$

Clearly, $t \in F$ for some $F \in \mathcal{F}$. By definition of \mathcal{F} , there is a sequence $\{n_k\} \subset \mathbb{N}$ such that $F = \lim_k \tau^{n_k} A$, and the limit is taken in the Hausdorff metric d_H . Since $t \in F$ and F is σ -invariant, we get $F \supset \overline{\{\sigma^n t : n \in \mathbb{N}\}} = \mathbb{T}^d$ (see (3.3)). Hence, $F = \mathbb{T}^d$. Therefore, for sufficiently large $k, \tau^{n_k} A$ is ε -dense.

Now we are ready to give

Proof of Theorem 1.5. Let $\alpha = \xi(1, \lambda, \lambda^2, \dots, \lambda^{d-1})^t \in \mathbb{R}^d$ be a common eigenvector of the semigroup Σ . Consider

$$A = \{\sigma_{\lambda}^{n} \pi(\alpha) : n \in \mathbb{N}\} = \{\pi(\lambda^{n}\xi, \lambda^{n+1}\xi, \dots, \lambda^{n+d-1}\xi)^{t} : n \in \mathbb{N}\},\$$

where $\pi : \mathbb{R}^d \to \mathbb{T}^d$ is the canonical projection. By (1.8), σ_{λ} is a hyperbolic toral endomorphism. In particular, by Proposition 2.2, σ_{λ} is ergodic. Since $\pi(\alpha)$ is not a torsion element, it follows from Lemma 2.4 that A is infinite. By Lemma 3.1, $\Sigma = \langle \sigma_{\lambda}, \sigma_{\mu} \rangle$ is the ID-semigroup of \mathbb{T}^d . Thus, by Lemma 3.2 applied to σ_{λ} and σ_{μ} , there exists $m \in \mathbb{N}$ such that $\sigma_{\mu}^m A$ is ε -dense. Let $v_m = \pi(r_m, 0, \ldots, 0)^t$. Since

$$\sigma^m_{\mu}A + v_m = \{\pi(\mu^m\lambda^n\xi + r_m, \mu^m\lambda^{n+1}\xi, \dots, \mu^m\lambda^{n+d-1}\xi)^t : n \in \mathbb{N}\}$$

is a translate of an ε -dense set, it is also ε -dense. Now, taking the projection of the set $\sigma^m_{\mu}A + v_m$ on the first coordinate we get the result.

References

- D. BEREND, Multi-invariant sets on tori. Trans. Amer. Math. Soc. 280 (1983), no. 2, 509– 532.
- [2] D. BEREND, Multi-invariant sets on compact abelian groups. Trans. Amer. Math. Soc. 286 (1984), no. 2, 505–535.
- [3] D. BEREND, Dense (mod 1) dilated semigroups of algebraic numbers. J. Number Theory 26 (1987), no. 3, 246–256.
- [4] H. FURSTENBERG, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 1–49.
- [5] Y. GUIVARC'H AND A. N. STARKOV, Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms. Ergodic Theory Dynam. Systems 24 (2004), no. 3, 767–802.
- [6] Y. GUIVARC'H AND R. URBAN, Semigroup actions on tori and stationary measures on projective spaces. Studia Math. 171 (2005), no. 1, 33–66.
- [7] A. KATOK AND B. HASSELBLATT, Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications 54, Cambridge University Press, Cambridge, 1995.
- [8] S. KOLYADA AND L. SNOHA, Some aspects of topological transitivity a survey. Grazer Math. Ber. 334 (1997), 3–35.
- B. KRA, A generalization of Furstenberg's Diophantine theorem. Proc. Amer. Math. Soc. 127 (1999), no. 7, 1951–1956.

Roman Urban

- [10] D. MEIRI, Entropy and uniform distribution of orbits in \mathbb{T}^d . Israel J. Math. **105** (1998), 155–183.
- [11] L. KUIPERS AND H. NIEDERREITER, Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.
- [12] R. MAÑÉ, Ergodic theory and differentiable dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer-Verlag, Berlin, 1987.
- [13] R. MUCHNIK, Semigroup actions on \mathbb{T}^n . Geometriae Dedicata 110 (2005), 1–47.
- S. SILVERMAN, On maps with dense orbits and the definition of chaos. Rocky Mt. J. Math. 22 (1992), no. 1, 353–375.
- [15] R. URBAN, On density modulo 1 of some expressions containing algebraic integers. Acta Arith., 127 (2007), no. 3, 217–229.

Roman URBAN Institute of Mathematics Wroclaw University Plac Grunwaldzki 2/4 50-384 Wroclaw, Poland *E-mail*: urban@math.uni.wroc.pl