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A generalization of Scholz’s reciprocity law

par Mark BUDDEN, Jeremiah EISENMENGER et Jonathan

KISH

Résumé. Nous donnons une généralisation de la loi de réciprocité
de Scholz fondée sur les sous-corps K2t−1 et K2t de Q(ζp) de degrés
2t−1 et 2t sur Q, respectivement. La démonstration utilise un
choix particulier d’élément primitif pourK2t surK2t−1 et est basée
sur la division du polynôme cyclotomique Φp(x) sur les sous-corps.

Abstract. We provide a generalization of Scholz’s reciprocity
law using the subfields K2t−1 and K2t of Q(ζp), of degrees 2t−1

and 2t over Q, respectively. The proof requires a particular choice
of primitive element for K2t over K2t−1 and is based upon the
splitting of the cyclotomic polynomial Φp(x) over the subfields.

1. Introduction

In 1934, Scholz [12] proved a rational quartic reciprocity law via class
field theory. While the law still bears Scholz’s name, it was recently noted
by Lemmermeyer (see the notes at the end of Chapter 5 in [11]) that it
had been proved much earlier in 1839 by Schönemann [13]. Since then,
Scholz’s reciprocity law has been proved using many different methods (see
[3], [7], [10], and [14] for other proofs). The unfamiliar reader is referred
to Emma Lehmer’s expository article [9] for an overview of rational reci-
procity laws and Williams, Hardy, and Friesen’s article [15] for a proof of
an all-encompassing rational quartic reciprocity law that was subsequently
simplified by Evans [4] and Lemmermeyer [10].

We begin by stating Scholz’s reciprocity law and an octic version of the
law proved by Buell and Williams [2]. We will need the following notations.
For a quadratic field extension Q(

√
d) of Q, with squarefree positive d ∈ Z,

let εd denote the fundamental unit and h(d) denote the class number. The
standard notation

( ·
·
)

will be used to denote the Legendre symbol. We will
also need to define the rational power residue symbol. Assume that a is an
integer such that (a, p) = 1 that satisfies

a
p−1

n ≡ 1 (mod p)
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for a rational prime p and a positive integer n. Then define the rational
symbol (

a

p

)
2n

≡ a
p−1
2n (mod p).

This symbol takes on the same values as
(
a
p

)
Q(ζ2n)

, the 2nth power residue

symbol where p is any prime above p in Q(ζ2n). For our purposes, n
will usually be a power of 2. It should also be noted that the Legendre
symbol is equivalent to our rational power residue symbol when n = 1. By
convention, we define

(
a
p

)
1

= 1 for all a such that (a, p) = 1.

Theorem 1.1 (Scholz’s Reciprocity Law). Let p ≡ q ≡ 1 (mod 4) be
distinct rational primes such that

(
p
q

)
=
(
q
p

)
= 1. Then(

p

q

)
4

(
q

p

)
4

=
(
εp
q

)
=
(
εq
p

)
.

In [1], Buell and Williams conjectured, and in [2] they proved, an oc-
tic reciprocity law of Scholz-type which we refer to below as Buell and
Williams’ reciprocity law. Although their law is more complicated to state,
it does provide insight into the potential formulation of a general rational
reciprocity law of Scholz-type.

Theorem 1.2 (Buell and Williams’ Reciprocity Law). Let p ≡ q ≡ 1
(mod 8) be distinct rational primes such that

(
p
q

)
4

=
(
q
p

)
4

= 1. Then

(
p

q

)
8

(
q

p

)
8

=


(
εp

q

)
4

(
εq

p

)
4

if N(εpq) = −1

(−1)h(pq)/4
(
εp

q

)
4

(
εq

p

)
4

if N(εpq) = 1

where N is the norm map for the extension Q(
√
pq) over Q.

Buell and Williams succeed in providing a rational octic reciprocity law
involving the fundamental units of quadratic fields, but it loses some of
the simplicity of the statement of Scholz’s reciprocity law and requires the
introduction of class numbers. It seems more natural to use units from the
unique quartic subfield of Q(ζp) when constructing such an octic law. This
was our motivation in the formulation of a general rational reciprocity law
similar to that of Scholz.

In Section 2, we describe a primitive element for the unique subfield K2t

of Q(ζp) satisfying [K2t : Q] = 2t, when p ≡ 1 (mod 2t) and
(

2
p

)
2t−2

=
1. Our choice of a primitive element involves a specific choice of a unit
η2t ∈ O×K2t−1

. Section 3 provides the proof of a generalization of Scholz’s
reciprocity law after giving a thorough description of the rational residue
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symbols used in the theorem. We show that whenever p ≡ q ≡ 1 (mod 2t)
are distinct primes with t ≥ 2 and(

p

q

)
2t−1

=
(
q

p

)
2t−1

=
(

2
p

)
2t−2

= 1,

then (
p

q

)
2t

(
q

p

)
2t

=
(
β2t

λ

)
2t−1

where β2t =
t∏

k=2

η2k−2

2k ∈ O×K2t−1
and λ ∈ OK2t−1 is any prime above q.

Our proof is based upon the splitting of the cyclotomic polynomial Φp(x)
over the fields in question. In the special case where t = 2, we note that(η4
λ

)
=
(
εp

q

)
, resulting in the statement of Scholz’s reciprocity law.

Since our rational reciprocity law takes on a simpler octic form than Buell
and Williams’ reciprocity law, comparing the two results in an interesting
corollary. It is observed that if p ≡ q ≡ 1 (mod 8) are distinct primes
satisfying (

p

q

)
4

=
(
q

p

)
4

= 1,

then (η8

λ

)
=
(
εq
p

)
4

(−N(εpq))h(pq)/4,

where λ ∈ OK4 is any prime above q.
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arguments and fixed an oversight in Section 3. Thanks are also due to the
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2. Subfields of Q(ζp)

When p is an odd rational prime, it is well-known that the unique qua-
dratic subfield of Q(ζp) is K2 = Q(

√
p∗) where p∗ = (−1)(p−1)/2p. In this

section, we provide a useful description of the subfield K2t of Q(ζp) of de-

gree 2t over Q when p ≡ 1 (mod 2t) and
(

2
p

)
2t−2

= 1. We will need the

following variant of Gauss’s Lemma that is due to Emma Lehmer (see [8]
or Proposition 5.10 of [11]) which we state without proof.

Lemma 2.1. Let ` and q = 2mn+1 be rational primes such that
(
`
q

)
n

= 1
and let

A = {α1, α2, . . . , αm}
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be a half-system of nth power residues. Then

`αj ≡ (−1)a(j)απ(j) (mod q)

for some permutation π of {1, 2, . . . ,m} and(
`

q

)
2n

= (−1)µ where µ =
m∑
i=1

a(i).

It should be noted that Lemma 2.1 can be applied to the evaluation of(
`
q

)
2n

for all 1 ≤ ` < q by using Dirichlet’s theorem on arithmetic progres-
sions and the observation that the rational residue symbol is well-defined
on congruence classes modulo q. The statement of Scholz’s Reciprocity
Law utilizes the fundamental unit of K2. Our general rational reciprocity
law will similarly require the units described in the following theorem.

Theorem 2.2. Let p ≡ 1 (mod 2t) be a rational prime with t ≥ 2 such
that

(
2
p

)
2t−2

= 1 and set

A2t =
{

1 ≤ a ≤ p− 1
2

∣∣∣∣ (ap
)

2t−1

= 1
}

and

B2t =
{

1 ≤ b ≤ p− 1
2

∣∣∣∣ ( bp
)

2t−2

= 1 and
(
b

p

)
2t−1

= −1
}
.

Then the element

η2t =

∏
b∈B2t

(
ζb2p − ζ

−b
2p

)
∏

a∈A2t

(
ζa2p − ζ

−a
2p

)
is a unit in OK2t−1 .

Proof. Let p ≡ 1 (mod 2t) be a prime such that
(

2
p

)
2t−2

= 1 (ie., 2 ∈
A2t∪B2t) and suppose that η2t is defined as in the statement of the theorem.
We begin by noting that ζ2p ∈ Q(ζp). This is easily checked by observing
that Q(ζp) ⊆ Q(ζ2p) and that both fields have degree p − 1 over Q. One
can check that η2t ∈ Z[ζp]× by computing the norm of η2t in Q(ζp) and
noting that A2t and B2t have the same cardinality. Next, we show that
η2t ∈ OK2t−1 . To do this, we define the element

η̃2t =

∏
b∈B2t

(
ζbp − ζ−bp

)
∏

a∈A2t

(
ζap − ζ−ap

) .
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If
(

2
p

)
2t−1

= 1, then 2a ≡ ±a′ (mod p), 2b ≡ ±b′ (mod p), and

η̃2t =

∏
b∈B2t

(
ζbp − ζ−bp

)
∏

a∈A2t

(
ζap − ζ−ap

) =

∏
b∈B2t

(
ζ2b

2p − ζ
−2b
2p

)
∏

a∈A2t

(
ζ2a

2p − ζ
−2a
2p

) =

∏
b′∈B2t

(
ζb
′

2p − ζ
−b′
2p

)
∏

a′∈A2t

(
ζa
′

2p − ζ
−a′
2p

) = η2t .

Applying a similar argument to the case
(

2
p

)
2t−1

= −1, we have that

η̃2t =
{
η2t if 2 ∈ A2t

η−1
2t if 2 ∈ B2t .

Next, we show that η̃2t ∈ K2t−1 by showing that it is fixed under all au-
tomorphisms σr ∈ Gal(Q(ζp)/Q) with r ∈ (Z/pZ)×2t−1

. For such residues,
we have ra ≡ ±a′ (mod p) and rb ≡ ±b′ (mod p), which gives

σr(η̃2t) =

∏
b∈B2t

(
ζrbp − ζ−rbp

)
∏

a∈A2t

(
ζrap − ζ−rap

) = (−1)µB
2t +µA

2t

∏
b′∈B2t

(
ζb
′
p − ζ−b

′
p

)
∏

a′∈A2t

(
ζa′p − ζ−a

′
p

) ,
where µA2t (respectively, µB2t ) counts the number of negatives resulting
from ra ≡ −a′ (mod p) (respectively, rb ≡ −b′ (mod p)). By Lemma 2.1,
it follows that

σr(η̃2t) =
(
r

p

)
2t

η̃2t .

Thus, we see that η̃2t ∈ K2t−1 ∩ Z[ζp] = OKt−1
2

. Similarly, it can be shown

that η̃−1
2t ∈ K2t−1 ∩ Z[ζp] = OKt−1

2
and we conclude that

η2t , η−1
2t ∈ K2t−1 ∩ Z[ζp] = OKt−1

2
,

resulting in the claim of the theorem. �

The description of η4 and the fact that

K4 = Q
(√

η4(−1)(p−1)/4
√
p

)
when p ≡ 1 (mod 4) was shown in Proposition 5.9 and the discussion in
Section 3.4 of Lemmermeyer’s book [11], where it was subsequently used to
prove Scholz’s Reciprocity Law. The following theorem includes a proof of
this claim along with its extension to describe the subfield K2t when t ≥ 3.

Theorem 2.3. If p ≡ 1 (mod 2t) is prime with t ≥ 2 and
(

2
p

)
2t−2

= 1,

then K2t = Q(α2t), where

α2t = η
1/2
2t η

1/4
2t−1 · · · η

1/2t−1

4 (−1)(p−1)/2t+1
p(2t−1−1)/2t
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and K2t is the unique subfield of Q(ζp) satisfying [K2t : Q] = 2t.

Proof. We begin with the cases t = 2, 3 then proceed by induction on t.
Define

N2t =
∏
b∈B2t

(
ζb2p − ζ−b2p

)
and R2t =

∏
a∈A2t

(
ζa2p − ζ−a2p

)
so that η2t = N2t

R2t
for all t ≥ 2. First consider the case when p ≡ 1 (mod 4)

and

N2
4R

2
4 =

( ∏
b∈B4

(ζb2p − ζ−b2p )

)2( ∏
a∈A4

(ζa2p − ζ−a2p )

)2

=
p−1∏
k=1

(ζk2p − ζ−k2p ) =
p−1∏
k=1

ζk2p(1− ζ−kp )

= (−1)(p−1)/2NQ(ζp)/Q(1− ζp) = p.

Then the sign of N4R4 is (−1)(p−1)/4 resulting in

N4R4 = (−1)(p−1)/4p1/2.

Substituting N4η
−1
4 = R4, we have

N2
4 = η4(−1)(p−1)/4p1/2 =⇒ N4 = η

1/2
4 (−1)(p−1)/8p1/4.

Since N4 6∈ K2, but N4 ∈ Q(ζp), and using the fact that Q(ζp) is a cyclic
extension of Q, we see that K4 = K2(N4) = Q(N4). Now for the t = 3 case
we assume p ≡ 1 (mod 8), in which case we have

(
2
p

)
= 1. Then

N2
4R

2
4 = N2

4N
2
8R

2
8 = p,

N2
8R

2
8 =

(
η4(−1)(p−1)/4p1/2

)−1
p = η−1

4 (−1)(p−1)/4p1/2,

and
N8R8 = η

−1/2
4 (−1)(p−1)/8p1/4.

Using η8 = N8
R8

, we have

N2
8 = η8η

−1/2
4 (−1)(p−1)/8p1/4,

and

N8 = η
1/2
8 η

−1/4
4 (−1)(p−1)/16p1/8.

We handle the remaining cases by induction on t ≥ 3. Suppose that for
k > 3, p ≡ 1 (mod 2k),

(
2
p

)
2k−2

= 1, and

N2k−1 = η
1/2

2k−1η
−1/4

2k−2 · · · η
−1/2k−2

4 (−1)(p−1)/2k
p1/2k−1
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is a primitive element for K2k−1 . Using η2k−1 = N
2k−1

R
2k−1

, η2k = N
2k

R
2k

, and

R2k−1 = N2kR2k = N2
2kη
−1
2k , we have

N2
2k = η2kR2k−1 = η2kN2k−1η−1

2k−1 ,

N2
2k = η2kη

−1/2

2k−1 · · · η
−1/2k−2

4 (−1)(p−1)/2k
p1/2k−1

,

and

N2k = η
1/2

2k η
−1/4

2k−1 · · · η
−1/2k−1

4 (−1)(p−1)/2k+1
p1/2k

.

Again applying the fact that Gal (Q(ζp)/Q) is cyclic we have that

K2k = K2k−1(N2k) = Q(N2k)

is the unique subfield of Q(ζp) with [K2k : Q] = 2k. For our purposes, we
will need the following description of K2t . Note that the element

α2t =
t∏

j=2

N2j

is also a primitive element for K2t over K2t−1 and a simple inductive argu-
ment shows that

α2t = η
1/2
2t η

1/4
2t−1 · · · η

1/2t−1

4 (−1)(p−1)/2t+1
p(2t−1−1)/2t

for all t ≥ 2. �

3. Generalized Scholz-type reciprocity law

Before describing the main result, we need to explain the meaning of the
symbol

( η
λ

)
2t whenever p ≡ q ≡ 1 (mod 2t),

(
p
q

)
2t−1

= 1, η ∈ O×K2t−1
, and

λ ∈ OK2t−1 is any prime above q. In this case, q splits completely in OK2t−1

and we have
OK2t−1/λOK2t−1

∼= Z/qZ.
Recall that if γ, δ ∈ OK2t−1 , we write

γ ≡ δ (mod λ)

if and only if λ divides γ − δ (see Chapter 9, Section 2 of [5]). While this
definition makes sense for γ and δ in the ring of integers of integers of any
extension field of K2t−1 , every element of OK2t−1 can be identified with a
unique element from the set

{0, 1, . . . , q − 1}

since its elements are incongruent modulo λ and may therefore be used as
coset representatives in OK2t−1/λOK2t−1 .
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Let aλ ∈ {0, 1, . . . , q − 1} be the unique element (which depends upon
the choice of λ) such that

η ≡ aλ (mod λ).

Whenever we have
a

(q−1)/2t−1

λ ≡ 1 (mod q),
then one can define(η

λ

)
2t

:=
(
aλ
q

)
2t

≡ a(q−1)/2t

λ (mod q).

Of course, the symbol
( η
λ

)
2t is only defined when

( η
λ

)
2t−1 = 1. This symbol

is well-defined, but we must not forget its dependence on λ.
Next, we state our rational reciprocity law using the rational symbols

defined above. The proof of the reciprocity law depends upon the splitting
of the cyclotomic polynomial Φp(x) over the subfields K2t−1 and K2t and
is modelled after the proof of quadratic reciprocity given after Proposition
3.4 in Lemmermeyer’s book [11].

Theorem 3.1. If p ≡ q ≡ 1 (mod 2t) are distinct odd primes with t ≥ 2
and (

p

q

)
2t−1

=
(
q

p

)
2t−1

=
(

2
p

)
2t−2

= 1,

then (
p

q

)
2t

(
q

p

)
2t

=
(
β2t

λ

)
2t−1

where β2t =
t∏

k=2

η2k−2

2k ∈ O×K2t−1
and λ ∈ OK2t−1 is any prime above q.

Proof. Let p and q be primes satisfying the hypotheses of Theorem 3.1.
The minimal polynomial of ζp over K2t−1 is given by

ϕ(x) =
∏

r∈R2t−1

(x− ζrp) ∈ OK2t−1 [x],

where

R2t−1 =
{

1 ≤ r ≤ p− 1
∣∣∣∣ (rp

)
2t−1

= 1
}
.

Factoring ϕ(x) over OK2t , we obtain ϕ(x) = ψ1(x)ψ2(x) where

ψ1(x)
∏
r∈R2t

(x− ζrp) and ψ2(x) =
∏

n∈N2t

(x− ζnp ),

R2t is defined analogously to R2t−1 , and N2t = R2t−1 − R2t . Also define
the polynomial

ϑ(x) = ψ1(x)− ψ2(x) ∈ OK2t [x].
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Let σ denote the nontrivial automorphism in Gal(K2t/K2t−1), and note
that σ = σm|K2t where

σm ∈ Gal(Q(ζp)/K2t−1) ⊂ Gal(Q(ζp)/Q)

is the automorphism σm(ζp) = ζmp with m ∈ N2t . It follows that

σ(ϑ(x)) = −ϑ(x)

and since K2t = K2t−1(α2t), we have

σ(α2tϑ(x)) = α2tϑ(x) ∈ OK2t−1 [x].

Thus, it is possible to write ϑ(x) = α2tφ(x) for some φ(x) ∈ OK2t−1 [x].
Following the discussion before Theorem 3.1, let λ denote any prime above
q in OK2t−1 . Consider the congruence

(3.1) (ϑ(x))q = (ψ1(x)− ψ2(x))q ≡
(
q

p

)
2t

ϑ(xq) (mod λ),

which is actually defined on the ring OK2t . On the other hand, we have

(ϑ(x))q ≡ αq2t(φ(x))q (mod λ).

By an analogue of Fermat’s little theorem, whenever κ ∈ OK2t−1 ,

κq ≡ κN(λ)−1κ ≡ κ (mod λ),

where the norm map N is the norm of the field extension K2t−1 over Q.
Since φ(x) ∈ OK2t−1 [x], we have

(ϑ(x))q ≡ αq−1
2t α2tφ(xq) (mod λ)(3.2)

≡ (α2t

2t)(q−1)/2t
ϑ(xq) (mod λ).

Comparing (3.1) and (3.2) gives

(3.3)
(
q

p

)
2t

ϑ(xq) ≡ (α2t

2t)(q−1)/2t
ϑ(xq) (mod λ).

Next, we show that

ϑ(X) = ψ1(X)− ψ2(X) 6≡ 0 (mod λ).

By Kummer’s Theorem ([6], Theorem 7.4), the ideal generated by q in Z[ζp]
decomposes in exactly the same way as Φp(X) decomposes in (Z/qZ)[X].
Since p and q are distinct primes, the ideal generated by q in Z[ζp] is
unramified. If

ϕ(X) ≡ (ψ1(X))2 (mod λ),
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then we can pick {0, 1, . . . q−1} as coset representatives of OK2t−1/λOK2t−1

∼= Z/qZ to obtain a square factor of Φp(X) in (Z/qZ)[X], contradicting the
observation that q does not ramify in Z[ζp]. Thus, (3.3) simplifies to

(3.4)
(
q

p

)
2t

≡ (α2t

2t)(q−1)/2t
(mod λ),

and we note that α2t ∈ OK2t−1 , which can therefore be identified with an
element in {0, 1, . . . , q − 1}. The proof is completed by induction on t ≥ 2.
If t = 2, we have(

q

p

)
4

≡ (α4
4)(q−1)/4 ≡

(
η2

4p

λ

)
4

(mod λ).

Both residue symbols only take on the values ±1 so that we have(
q

p

)
4

=
(
η2

4p

λ

)
4

=
(η4

λ

)
2

(p
λ

)
4

=
(η4

λ

)
2

(
p

q

)
4

since
( p
λ

)
4

is independent of the choice of λ. Now suppose that the theorem
holds for t = k − 1 ≥ 2, p ≡ q ≡ 1 (mod 2k), and(

p

q

)
2k−1

=
(
q

p

)
2k−1

=
(

2
p

)
2k−2

= 1.

In particular, we have(
p

q

)
2k−1

(
q

p

)
2k−1

=
(
β2k−1

λ

)
2k−2

= 1.

Then (3.4) gives(
q

p

)
2k

≡ (α2k

2k)(q−1)/2k ≡

(
β2

2kp

λ

)
2k

≡
(
β2k

λ

)
2k−1

(p
λ

)
2k

(mod λ).

Again, the value of
( p
λ

)
2k is independent of the choice of λ and all of the

residue symbols only take on the values ±1, resulting in(
p

q

)
2k

(
q

p

)
2k

=
(
β2k

λ

)
2k−1

.

Finally, it should be noted that the symbol(
β2k

λ

)
2k−1

=

(
η2k−2

2k β2k−1

λ

)
2k−1

=
(η2k

λ

)(β2k−1

λ

)
2k−1

is defined by the inductive hypothesis, completing the proof of the theorem.
�
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Theorem 3.1 holds regardless of the choice of prime λ above q. Noting
that the left-hand side of the law is independent of λ, we see that the
residuacity of β2t only depends upon the prime q. Hence, we may write(

β2t

q

)
2t−1

=
(
β2t

λ

)
2t−1

,

allowing us to interpret our law as a true rational reciprocity law.
When p ≡ 1 (mod 4), it is known that η4 = εhp for an odd integer h, and

a proof can be found in Proposition 3.24 of [11]. In particular, if(
p

q

)
=
(
q

p

)
= 1,

then (
β4

λ

)
=
(η4

λ

)
=
(
εp
q

)
,

so that Theorem 3.1 results in Scholz’s reciprocity law. The octic case of
Theorem 3.1 states that if p ≡ 1 (mod 8) and(

p

q

)
4

=
(
q

p

)
4

= 1,

then (
p

q

)
8

(
q

p

)
8

=
(
β8

λ

)
4

=
(η8

λ

)(η4

λ

)
4
.

The separation of the last residue symbol is justified since η4 is a quadratic
residue by Scholz’s reciprocity law. Our law takes on a simpler form than
that of Buell and Williams and comparing the two octic laws results in the
following corollary.

Corollary 3.2. If p ≡ q ≡ 1 (mod 8) are distinct primes satisfying(
p

q

)
4

=
(
q

p

)
4

= 1,

then (η8

λ

)
=
(
εq
p

)
4

(−N(εpq))h(pq)/4,

where λ ∈ OK4 is any prime above q.

In conclusion, we note that Lemmermeyer commented at the end of [10]
that he had “generalized Scholz’s reciprocity law to all number fields with
odd class number in the strict sense.” Lemmermeyer’s generalization has
not been published, but has appeared in his online notes on class field tow-
ers. His generalization is quite different from ours and does not lend itself
to an easy comparison. Despite the differences in the two generalizations,
all of the work contained here was motivated by the techniques used by
Lemmermeyer [11] leading up to his proof of Scholz’s Reciprocity Law.
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[12] A. Scholz, Über die Lösbarkeit der Gleichung t2−Du2 = −4. Math. Z. 39 (1934), 95–111.
[13] T. Schönemann, Theorie der Symmetrischen Functionen der Wurzeln einer Gleichung.

Allgemeine Sätze über Congruenzen nebst einigen Anwendungen derselben. J. Reine Angew.

Math. 19 (1839), 289–308.
[14] K. Williams, On Scholz’s Reciprocity Law. Proc. Amer. Math. Soc. 64 No. 1 (1977), 45–46.

[15] K. Williams, K. Hardy, and C. Friesen, On the Evaluation of the Legendre Symbol“
A+B

√
m

p

”
. Acta Arith. 45 (1985), 255–272.

Mark Budden

Department of Mathematics
Armstrong Atlantic State University

11935 Abercorn St.
Savannah, GA USA 31419

E-mail : Mark.Budden@armstrong.edu

URL: http://www.math.armstrong.edu/faculty/budden

Jeremiah Eisenmenger

Department of Mathematics
University of Florida
PO Box 118105

Gainesville, FL USA 32611-8105
E-mail : eisenmen@math.ufl.edu

Jonathan Kish

Department of Mathematics
University of Colorado at Boulder

Boulder, CO USA 80309
E-mail : jonathan.kish@colorado.edu


