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Two divisors of (n2 + 1)/2 summing up to n + 1

par Mohamed AYAD et Florian LUCA

Résumé. Dans cette courte note, on donne une réponse affirma-
tive à une question d’Ayad posée dans [1].

Abstract. In this short note, we give an affirmative answer to
a question of Ayad from [1].

1. Main result

In [1], Mohamed Ayad asked to prove that there does not exist an odd
prime p and two positive divisors d1 and d2 of (p2 +1)/2 such that d1 +d2 =
p+ 1. In this note, we prove a bit more, namely:

Theorem 1.1. There does not exist an odd integer n > 1 and two positive
divisors d1 and d2 of (n2 + 1)/2 such that d1 + d2 = n+ 1.

The condition n > 1 cannot be dropped since for n = 1 we may take
d1 = d2 = 1.

Proof. Let n > 1 be an odd integer for which there exist two divisors d1

and d2 as in the statement of the theorem. Since n is odd, we get that
n2 ≡ 1 (mod 8), therefore (n2 + 1)/2 is odd. We show that d1 and d2 are
coprime. Indeed, if not there exists an odd prime q | gcd(d1, d2). Hence,
q | d1 + d2, therefore n ≡ −1 (mod q). Since also q | d1 | n2 + 1, we get
that n2 ≡ −1 (mod q). From the above two congruences we obtain that
(−1)2 ≡ −1 (mod q), so q | 2, which is impossible.

Since d1 and d2 divide (n2 + 1)/2 and are coprime, we get that d1d2 |
(n2 + 1)/2. Write d1d2 = (n2 + 1)/(2d). Then

(d1 − d2)2 = (d1 + d2)2 − 4d1d2 = (n+ 1)2 − 2
(
n2 + 1
d

)
=

((d− 2)n+ d)2 + 4− 4d
d(d− 2)

.

Now notice that all divisors of n2 + 1 are congruent to 1 modulo 4. In
particular, this applies to d1, d2 and d. Hence, n = d1 +d2−1 is congruent
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to 1 modulo 4 as well. It follows that

X =
∣∣∣∣(d− 2)n+ d

4

∣∣∣∣ , Y =
∣∣∣∣d1 − d2

4

∣∣∣∣ , s =
d− 1

4

are non-negative integers satisfying

(1.1) X2 −DY 2 = s,

with D = d(d − 2) = (4s)2 − 1. If s = 0, then X2 + Y 2 = 0, so Y = 0,
leading to d1 = d2. Since these two divisors are also coprime, we get that
d1 = d2 = 1, therefore n + 1 = d1 + d2 = 2, contradicting the fact that
n > 1. Hence, we may assume that s ≥ 1. The above Diophantine equation
(1.1) leads to ∣∣∣∣XY −√D

∣∣∣∣ =
s

Y (X +
√
DY )

.

Note that X > Y
√
D, therefore X +

√
DY > 2

√
DY > 2sY , because√

D =
√

(4s)2 − 1 > s, therefore∣∣∣∣XY −√D
∣∣∣∣ < 1

2Y 2
.

It is a known criterion due to Legendre that the above inequality implies
that X/Y must be a convergent of

√
D. With λ = 4s, it is easily checked

that we have the following continued fraction expansion√
λ2 − 1 = [λ− 1, 1, {2(λ− 1), 1}],

where {. . .} emphasizes the period. Using the above continued fraction,
one checks easily that if pm/qm denotes the mth convergent to

√
λ2 − 1,

then p2
m − Dq2

m = −2λ + 2 or 1, according to whether m is even or odd.
Hence, for our values of X and Y we should have that

X2 −DY 2 ∈ {−8s+ 2, 1},
and comparing it with equation (1.1) we get that the only chance is s = 1,
leading to d = 5 and D = 15. Hence, (X,Y ) is a solution of the Pell
equation

(1.2) X2 − 15Y 2 = 1.

The minimal solution of the above Pell equation is (X1, Y1) = (4, 1). Hence,
if we write (Xt, Yt) for the tth solution of Pell equation (1.2), we then get
that

Xt +
√

15Yt = (4 +
√

15)t holds for all t ≥ 1.
Using the above representation, one checks easily that Xt ≡ 1 (mod 3) for
all positive integers t. Thus, if Xt = s(n+1)−(n−1)/4 = (n+1)−(n−1)/4
for some positive integer n, we would then get that n = (4Xt − 5)/3, but
since 4Xt − 5 ≡ −1 (mod 3), we get that (4Xt − 5)/3 is never an integer
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for any positive integer t. Thus, there is no solution and the theorem is
completely proved. �

2. Applications

Next, we present a corollary to Theorem 1.1 which has already been
proved in [1] by a different method.

Corollary 2.1. Let p be an odd prime number. Let a and b be two distinct
complex numbers. Then any primitive of the polynomial

((x− a)(x− b))(p2−1)/2

is indecomposable over C.

Proof. In order to prove the above corollary we will need, aside from Theo-
rem 1.1, to recall a result from [1]. Let f(x) be a polynomial with complex
coefficients of degree m. Let F be the set of the critical points of f(x) and
assume that F contains r elements. For any z ∈ F denote by νf (z) the
valency of z; i.e., νf (z) = mf ′(z) + 1, where mf ′(z) is the multiplicity of z
as a root of f ′. Assume that f = g ◦h, where g and h are polynomials with
complex coefficients of degree at least 2. Let k = deg h. It is then proved in
[1] that there exist distinct elements x1, . . . , xs in F , and positive divisors
d1, . . . , ds of νf (x1), . . . , νf (xs), respectively, such that 1 < di ≤ νf (xi) and
k − 1 =

∑i=s
i=1(di − 1).

We can now embark to the proof of Corollary 2.1. Let f(x) be a prim-
itive of ((x− a)(x− b))(p2−1)/2. Suppose that there exits some non-trivial
decomposition of f(x) in the form f(x) = g(h(x)). Since deg f = p2, we get
that k = deg h = p. With the previous notations, we have F = {a, b}, and
νf (a) = νf (b) = (p2 + 1)/2. If s = 1, then k = p divides (p2 + 1)/2, which
is clearly impossible. Thus, s = 2 and there exist two positive divisors d1

and d2 of (p2 +1)/2 such that k−1 = p−1 = d1−1+d2−1. However, this
is impossible by Theorem 1, which completes the proof of Corollary 1. �

Finally, we present a Diophantine application of Corollary 2.1. Let a < b
and c < d be integers, e be an integer and p and q be odd primes. Consider
the Diophantine equation

(2.1)
∫ x

0
((t− a)(t− b))(p2−1)/2 dt−

∫ y

0
((s− c)(s− d))(q2−1)/2 ds = e

in integer solutions (x, y). In some cases, it can have infinitely many integer
solutions (x, y). Indeed, suppose that p = q and that c − a = d − b = f .
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Then,∫ y

0
((s− c)(s− d))(q2−1)/2 ds =

∫ y

0
((s− a− f)(s− b− f))(p2−1)/2 ds

=
∫ y−f

−f
((t− a)(t− b))(p2−1)/2 dt

=
∫ y−f

0
((t− a)(t− b))(p2−1)/2 dt+ h,

where h =
∫ 0
−f ((t− a)(t− b))(p2−1)/2 dt, so equation (2.1) is

F (x)− F (y − f) = e1,

where F (x) =
∫ x

0 ((t− a)(t− b))(p2−1)/2 dt and e1 = e + h = e − F (−f).
If e1 = 0, then the above equation has infinitely many solutions (namely
x = y − f).

The next corollary shows that the above instance is the only one in which
the Diophantine equation (2.1) can have infinitely many integer solutions
(x, y).

Corollary 2.2. Let a < b, c < d, p ≤ q and e be fixed integers, where
p and q are odd primes. If the Diophantine equation (2.1) has infinitely
many integer solutions x, y, then p = q, c − a = d − b = f and e =∫ −f

0 ((t− a)(t− b))(p2−1)/2 dt.

Proof. Assume that p ≤ q and that the given equation has infinitely many
positive integer solutions x, y. Let F (x) =

∫ x
0 ((t− a)(t− b))(p2−1)/2 dt

and G(x) =
∫ x

0 ((t− c)(t− d))(q2−1)/2 dt + e. By Corollary 2.1, both F (x)
and G(x) are indecomposable. By the main finiteness criterion from [3], it
follows that (F (x), G(x)) = (φ ◦ u ◦ κ(x), φ ◦ v ◦ `(x)), where φ(x) ∈ Q[X]
is a non-constant polynomial, κ(x) and `(x) are linear polynomials in Q[x]
and the pair of polynomials (u(x), v(x)) belongs to five kinds of standard
pairs, which are all listed both in [3] as well as on page 182 of [2]. Since for
us F and G are indecomposable, it follows that either φ is linear or both u
and v are linear polynomials.

Assume first that φ is linear. Note that for us the critical sets of F (x)
and G(x) are F = {a, b} and G = {c, d} respectively. Furthermore, the
two critical points in F have the same valency and the same is true for
G. In what follows, α and β are non-zero rational numbers, µ, ν, d are
positive integers, ρ is a non-negative integer and ν(x) ∈ Q[X] is a non-zero
polynomial which may be constant.

Since the standard pair of the first kind is (xd, αxρν(x)d), where 0 ≤ ρ <
d, gcd(ρ, d) = 1, ρ+deg ν(x) > 0 (or switched), it follows that in such pairs
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one of the polynomials has a critical set consisting of at most one element.
Hence, (F (x), G(x)) cannot be equal to (φ ◦ u ◦ κ(x), φ ◦ v ◦ `(x)) for some
linear polynomials φ(x), κ(x) and `(x) and a standard pair of the first kind
(u(x), v(x)).

Since the standard pair of the second kind is (x2, (αx2 + β)ν(x)2) (or
switched), it follows as in the previous case that in such pairs one of the
polynomials has a critical set consisting of at most one element, and the
same contradiction as in the previous case is obtained.

To introduce standard pairs of third and fourth kind, we need to in-
troduce the Dickson polynomials. Denote by Dµ(x, δ) the µth Dickson
polynomial defined by the functional equation

Dµ(z + δ/z, δ) = zµ + (δ/z)µ,

or explicitly by

Dµ(z, δ) =
bµ/2c∑
i=0

dµ,iz
µ−2i, where dµ,i =

µ

µ− i

(
µ− i
i

)
(−δ)i.

Then the standard pairs of third and fourth kind are the pairs of the
form (Dµ(x, αν), Dν(x, αµ)), where gcd(µ, ν) = 1, together with the pairs
(α−µ/2Dµ(x, α),−β−ν/2Dν(x, β)), where gcd(µ, ν) = 2, respectively. It is
known that the derivatives of the Dickson polynomials have only simple
roots (a verification of this simple fact is done at the end of Section 6
in [4], for example). Since for us all roots of both F ′ and G′ are of
multiplicity larger than 1, we get that (F (x), G(x)) cannot be equal to
(φ ◦ u ◦ κ(x), φ ◦ v ◦ `(x)) for some linear polynomials φ(x), κ(x) and `(x)
and a standard pair of the third or fourth kind (u(x), v(x)).

Finally, a standard pair of the fifth kind is ((αx2 − 1)2, 3x4 − 4x3) (or
switched) which have degrees at most 4, whereas deg g = (q2 +1)/2 ≥ (32 +
1)/2 ≥ 5, so again (F (x), G(x)) cannot be equal to (φ◦u◦κ(x), φ◦v ◦ `(x))
for some linear polynomials φ(x), κ(x) and `(x) and a standard pair of the
fifth kind (u(x), v(x)).

Assume now that φ is not linear. Then degF = degG, therefore p = q.
Further, we may take u(x) = v(x) = x. Let κ(x) = κ1x + κ0 and `(x) =
`1x + `0. Identifying the leading coefficients in F (x) = φ(u((κ(x))) and
G(x) = φ(v(`(x))), respectively, we get that a0κ

(p2+1)/2
1 = a0`

(p2+1)/2
1 =

2/(p2+1), where a0 6= 0 is the leading coefficient of φ(x). Hence, κ(p2+1)/2
1 =

`
(p2+1)/2
1 and since (p2 + 1)/2 is odd, we get that κ1 = `1. Thus,

G(x) = φ(κ1x+ `0) = φ(κ1(x+ (`0 − κ0)/κ1) + κ0) = F (x− f),
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where f = −(`0 − κ0)/κ1. Taking derivatives we get G′(x) = F ′(x− f), so

((x− c)(x− d))(p2−1)/2 = ((x− f − a)(x− f − b))(p2−1)/2 ;

hence, c− a = d− b = f . The statement about e is now immediate. �
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