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Substitutions on two letters, cutting segments

and their projections

par Sierk W. ROSEMA

Résumé. Dans cet article on considère la structure des projec-
tions des segments de coupure correspondant aux substitutions
unimodulaires sur un alphabet binaire. On montre qu’une telle
projection est un bloc de lettres si et seulement si la substitution
est sturmienne. Une double application de ce procédé à une substi-
tution de Christoffel donne la substitution originelle. On obtient
ainsi une dualité sur l’ensemble des substitutions de Christoffel.

Abstract. In this paper we study the structure of the projec-
tions of the finite cutting segments corresponding to unimodular
substitutions over a two-letter alphabet. We show that such a
projection is a block of letters if and only if the substitution is
Sturmian. Applying the procedure of projecting the cutting seg-
ments corresponding to a Christoffel substitution twice results in
the original substitution. This induces a duality on the set of
Christoffel substitutions.

1. Introduction

The history of Sturmian words goes back to J. Bernoulli in 1772 and
Christoffel [2] (1875). The first in depth study of Sturmian words was
made by Morse and Hedlund [6], [7] in 1938 and 1940. A Sturmian word
induces a broken half-line, the so-called cutting line, which approximates
a half-line through the origin quite well. See Series [14] (1985). We call
a substitution σ Sturmian if σ maps every Sturmian word to a Sturmian
word. In 1991 Séébold [13] showed that Sturmian substitutions that have
a fixed point are exactly those substitutions that have Sturmian words as
fixed points. For further information on Sturmian words and substitutions
we refer to Lothaire [5], Ch. 2 and Pytheas Fogg [8], Ch. 6.

In 1982 Rauzy [9] introduced a fractal which is defined as the closure of
the projection of the cutting line corresponding to the Tribonacci substitu-
tion 0 → 01, 1 → 02, 2 → 0. The analogues of this so-called Rauzy fractal
have been studied for many other substitutions, see [5], [8]. An important
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question is whether the projection of the cutting line generates a tiling or
not. This question was the motivation for the author and Tijdeman [12] to
have a closer look at the structure of the projections of the finite cutting
segments corresponding to σn(0) in case σ is the Fibonacci or Tribonacci
substitution. They found in the Fibonacci case that the projections of the
integer points of the cutting line generate a two-sided Fibonacci word. In
the Tribonacci case they found a close connection with number systems.
The latter connection was generalized by Fuchs and Tijdeman in [3]. In
the present paper we generalize the former property to unimodular substi-
tutions defined over two letters.

We examine for which substitutions the projected points form a (doubly-
infinite) word and which properties these words have. In Section 2 we
start with some notation and definitions. Next in Section 3 we give some
properties of the points that we get after projecting the cutting segment
corresponding to a substitution. We show that the order of the projected
points of σn(0) is preserved in the projection of σn+1(0). Then in Section
4 we define Sturmian substitutions, Sturmian matrices and prove some of
their properties.

In Section 5 we consider substitutions for which the incidence matrix is
unimodular, and we show that the projected points form a central word if
and only if the substitution is Sturmian. We show how the number of 0’s
and 1’s in these central words can be calculated from the incidence matrix
of the original substitution.

In the final Section 6 we consider a special class of Sturmian substitu-
tions, that we call Christoffel substitutions. We show that when one starts
with a Christoffel substitution, the projected points form Christoffel words,
and that the relation between these words is again given by a Christoffel
substitution. Moreover, if one applies the procedure of projecting the cut-
ting segment corresponding to these Christoffel words again, the result will
be the original substitution. This induces a duality on the set of Christoffel
substitutions.

2. Notations and definitions

An alphabet A is a finite set of elements that are called letters. In this
article we always assume A = {0, 1}. A word is a function u from a finite
or infinite block of integers to A. If this block of integers contains 0 we
call u a central word. If a ∈ A and u(k) = a we say u has the letter a at
position k, denoted by uk = a. If the block of integers is finite we call u a
finite word, otherwise it is an infinite word. If v = v0 . . . vm is a finite word
and if u = u0u1 . . . is a finite or infinite word, and there exists a k such
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Figure 1. The cutting segment corresponding to u = 01001.

that vl = uk+l for l = 0, . . .m, then v is called a subword of u. If a word u is
finite, we denote by |u| the number of letters in u, and by |u|a the number
of occurrences of the letter a in u.

A substitution σ is an application from an alphabet A to the set of
finite words. It extends to a morphism by concatenation, that is, σ(uv) =
σ(u)σ(v). It also extends in a natural way to a map over infinite words u.
A fixed point of a substitution σ is an infinite word u with σ(u) = u.

A substitution over the alphabet A is primitive if there exists a positive
integer k such that, for every a and b in A, the letter a occurs in σk(b).

We denote the largest integer y such that y ≤ x by bxc, the smallest
integer y such that y ≥ x by dxe and we put {x} = x− bxc.

Definition. Let u = u0 . . . um−1 be a finite word. The cutting segment in
the x-y-plane corresponding to u consists of m + 1 integer points pi given
by pi = (|u0 . . . ui−1|0, |u0 . . . ui−1|1) for i = 0, . . . ,m, connected by line
segments of lengths 1.

In Figure 1 we show the cutting segment corresponding to u = 01001.

Let u = u0 . . . um−1 be a finite word containing at least one zero. Con-
sider the cutting segment corresponding to u, and draw the line through
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Figure 2. Projecting the cutting segment corresponding to u = 01001.

the origin and the end point of the segment, given by y = |u|1
|u|0x. We project

each integer point pi on the cutting segment parallel to this line to the y-
axis. By P (pi) we denote the second coordinate of the projection of pi. It
is clear that P (p0) = P (pm). See Figure 2 for an example.

Lemma 2.1. Let u = u0 . . . um−1 be a finite word containing at least one
zero and let P (pi) for i = 0, . . . ,m be defined as above. Then for every
i = 0, . . . ,m we have P (pi) = (|u0 . . . ui−1|1|u|0 − |u0 . . . ui−1|0|u|1)/|u|0 ∈
Z/|u|0.

Proof. We use induction on i. Obviously P (p0) = 0. Assume the lemma
is valid for i ≥ 0. If ui = 0 then P (pi+1) = P (pi) − |u|1/|u|0 =
(|u0 . . . ui|1|u|0− |u0 . . . ui|0|u|1)/|u|0, and if ui = 1 then P (pi+1) = P (pi)+
1 = (|u0 . . . ui|1|u|0 − |u0 . . . ui|0|u|1)/|u|0. �

The following lemma says that when the numbers of 0’s and 1’s in u are
relatively prime, the points pi are projected to distinct points.

Lemma 2.2. Let u = u0 . . . um−1 be a finite word containing at least one
zero, let |u|1 > 0 if m > 1, let gcd(|u|0, |u|1) = 1 and let P (pi) for i =
0, . . . ,m be defined as above. Then for i, j ∈ {0, . . . ,m− 1} and i 6= j we
have P (pi) 6= P (pj).
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Proof. Suppose P (pi) = P (pj). Put x = |u0 . . . ui−1|1, y = |u0 . . . ui−1|0
and x′ = |u0 . . . uj−1|1, y′ = |u0 . . . uj−1|0. Then P (pi) = (x|u|0−y|u|1)/|u|0
and P (pj) = (x′|u|0−y′|u|1)/|u|0, hence x|u|0−y|u|1 = x′|u|0−y′|u|1. Since
gcd(|u|0, |u|1) = 1 and |x− x′| ≤ |u|1, |y− y′| ≤ |u|0 with at least one strict
inequality, we have x = x′, y = y′, hence i = j. �

Let D =
{
−|u|0P (pi)

∣∣∣i ∈ {0, . . . ,m− 1}
}

, hence D is a subset of Z
containing m elements under the hypotheses of Lemma 2.2. We define the
central function w : D → {0, . . . ,m− 1} as follows. If P (pi) = k/|u|0 then
w(−k) = i. We say w has number i at position −k. If k1 < k2 < k3 are
integers and w has numbers at positions k1, k3 but not at k2, we say w has
a gap at k2. If the central function w has no gap we call w a central block.
Note that a central function always has the number 0 at position 0. By |w|
we mean the number of positions on which w is defined, hence |w| = |u| if
w is the central function corresponding to u. The following lemma shows
that w(k + 1)− w(k) is constant modulo |u|.

Lemma 2.3. Let u be a finite word with gcd(|u|0, |u|1) = 1 and w the
central function corresponding to u. If w has a number at position k, then
w(k) = k|u|−1

1 (mod |u|), where the inverse is taken modulo |u|.

Proof. Suppose w has the number i at position k. Then we obtain succes-
sively from |u|0 + |u|1 = |u| that

|u0 . . . ui−1|0|u|1 − |u0 . . . ui−1|1|u|0 = k,

|u0 . . . ui−1|0|u|1 + |u0 . . . ui−1|1|u|1 ≡ k (mod |u|),
i|u|1 ≡ k (mod |u|).

�

Remark. If w(k) = i then w(k + |u|1) = i + 1 in case ui = 0, and w(k −
|u|0) = i+ 1 in case ui = 1. We say that to move from number i to i+ 1 in
w we either ”jump” |u|1 positions to the right or |u|0 positions to the left.
It follows that the |w| positions on which w is defined, represent exactly
the cosets modulo |w|.

Example 1. If u = 01001, the central function w associated with u is a
central block given by w = 20314, where we have underlined the number
at position 0. See Figure 2.

3. The central functions wn

In this section for every n we define a central function wn corresponding
to un = σn(0), where σ is a substitution. We give conditions on σ so that
the construction of wn is well-defined, and we show that the order of the
numbers in wn is preserved in wn+1.
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Let σ be a primitive substitution that has a fixed point. Without loss
of generality we may assume the fixed point starts with 0. Let Mσ =(
|σ(0)|0 |σ(0)|1
|σ(1)|0 |σ(1)|1

)
be its incidence matrix. Define un = σn(0) for n ∈

Z≥0 where we use the convention that σ0(v) = v for every word v. We
assume gcd(|un|0, |un|1) = 1 for every n ∈ Z≥0 and consider for each un the
corresponding central function wn.

Example 2. Let φ be the substitution defined by φ(0) = 01001, φ(1) = 01.
If we start with 0 and repeatedly apply φ we get successively

u0 = 0
u1 = 01001
u2 = 0100101010010100101
. . .

This yields the following table of central functions wn, where we have un-
derlined the number at position 0. Note that the central functions are
central blocks, that is, have no gap.
(3.1)

n wn

0 0
1 2 0 3 1 4
2 9 2 14 7 0 12 5 17 10 3 15 8 1 13 6 18 11 4 16

. . . . . .

We use the following lemmas to derive conditions on the incidence matrix
Mσ under which the central functions wn exist for all n.

Lemma 3.1. If M is a 2×2-matrix with integer coefficients and det(M) 6=
0, then trace(Mn)− (trace(M))n is divisible by det(M) for every n > 0.

Proof.

trace(Mn)− (trace(M))n = λn
1 + λn

2 − (λ1 + λ2)n

= −λ1λ2

n−1∑
k=1

(
n

k

)
λk−1

1 λn−k−1
2

with det(M) = λ1λ2. �

Lemma 3.2. Let M =
(
a b
c d

)
be a matrix with a, b, c, d ∈ R. Then

Mn = (a+ d)Mn−1 − (ad− bc)Mn−2 for n ≥ 2.

Proof. We have M2 = (a+ d)M − (ad− bc)M0. �
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Proposition 3.1. Let σ be a primitive substitution with a fixed point start-

ing with 0, let Mσ =
(
a b
c d

)
be its incidence matrix and let un = σn(0).

Then gcd(|un|0, |un|1) = 1 for every n ∈ Z≥0 if and only if gcd(a, b) =
gcd(a+ d, ad− bc) = 1.

Proof. Assume gcd(|un|0, |un|1) = 1 for every n ∈ Z≥0. We define an, bn, cn,

dn by Mn
σ =

(
an bn
cn dn

)
for n ∈ Z≥0. Since Mσn = Mn

σ , we have |un|0 =

an, |un|1 = bn. Hence gcd(a, b) = gcd(|u1|0, |u1|1) = 1. By the previous
lemma, |u2|0 = (a+d)a−(ad−bc), |u2|1 = (a+d)b. Since gcd(|u2|0, |u2|1) =
1, we have gcd(a+ d, ad− bc) = 1.

We now prove the other implication. Assume that gcd(a, b) = gcd(a +
d, ad− bc) = 1. From Lemma 3.1 and our assumption that gcd(trace(Mσ),
det(Mσ)) = 1 it follows that
(3.2)
gcd(an + dn, a1d1 − b1c1) = gcd(trace(Mn

σ ),det(Mσ)) = 1 for every n > 0.

We prove by induction on n that gcd(an, bn) = 1. We know that gcd(a1, b1)
= 1. Assume gcd(am, bm) = 1 for m = 1, . . . , n. Note that

Mn+1
σ =

(
an+1 bn+1

cn+1 dn+1

)
=

(
an bn
cn dn

) (
a b
c d

)
=

(
aan + cbn ban + dbn
acn + cdn bcn + ddn

)
.

Assume p is prime and p|an+1 and p|bn+1. Then p|abn+1 − ban+1 = aban +
adbn − aban − bcbn = bn(ad− bc). Hence p|bn or p|(ad− bc). Suppose p|bn.
From p|bn+1 = ban + dbn it follows that p|b and from p|an+1 = aan + cbn
that p|a, but gcd(a, b) = 1. Thus p - bn and

(3.3) p|(ad− bc) = det(M).

By (3.2) this gives p - an+1 + dn+1, hence p - dn+1. By (3.3) we have
p|det(Mn) = andn − bncn. Thus p|b(andn − bncn) and because p|dnbn+1 =
bandn + dbndn we obtain p|dbndn + bbncn = bndn+1. This contradiction
implies that gcd(an+1, bn+1) = 1. �

Consider the sequence of words wn in (3.1) from Example 2. We see that
the numbers 0, . . . , 4 in w1 are ordered in the same way as the numbers
0, 5, 7, 12, 17 in w2 directly below them. This observation illustrates the
following proposition.

Proposition 3.2. Let σ be a primitive substitution with incidence matrix

Mσ =
(
a b
c d

)
and a fixed point starting with 0, let gcd(a, b) = gcd(a +

d, ad−bc) = 1 and let wn be the corresponding central functions for n ∈ Z>0.
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If wn has numbers at positions k and l then wn+1 has numbers at positions
det(Mσ) ·k and det(Mσ) · l. If the number at position k of wn is larger than
the number at position l of wn then the number at position det(Mσ) · k of
wn+1 is larger than the number at position det(Mσ) · l of wn+1.

Proof. First note that since

|un+1|0 = a|un|0 + c|un|1
|un+1|1 = b|un|0 + d|un|1

we have a|un+1|1− b|un+1|0 = (ad− bc)|un|1 = det(Mσ)|un|1, and similarly
c|un+1|1 − d|un+1|0 = −det(Mσ)|un|0. We prove the proposition by induc-
tion. Since the first letter of un is a 0, the first jump in wn starting at posi-
tion 0 is to the right and places the number 1 at position |un|1. When going
from un to un+1 this 0 is replaced by a 0’s and b 1’s. Therefore the number
a + b in wn+1 is placed at position a|un+1|1 − b|un+1|0 = det(Mσ)|un|1.
We see that the statements of the proposition hold for the positions of the
numbers 0 and 1 in wn. Assume that in wn the number m is placed at
position k and in wn+1 the number m′ is placed at position det(Mσ)k. The
next jump is either to the right or to the left, depending on the value of
the (m + 1)-th letter in un. If the next jump in wn is to the right, then
the number m+ 1 is placed at position k+ |un|1 in wn, and it follows that
the number m′ + a + b is placed at position det(Mσ)(k + |un|1) in wn+1.
If the next jump in wn is to the left, then the number m + 1 is placed at
position k−|un|0 in wn, and it follows that the number m′+ c+d is placed
at position det(Mσ)(k − |un|0) in wn+1. The assertions of the proposition
follow now easily. �

Example 3. Let the substitution σ be given by σ(0) = 011, σ(1) = 0 so

that it has incidence matrix Mσ =
(

1 2
1 0

)
and det(Mσ) = −2. We get

the following table for un = σn(0):

u0 = 0
u1 = 011
u2 = 01100
u3 = 01100011011
. . .

This gives the following sequence of wn’s, where t indicates a gap.

n wn

0 0
1 0 2 1
2 3 t 4 2 0 t 1
3 3 t t t 0 2 4 t 8 10 1 t 5 7 9 t t t 6

. . . . . .
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Comparing w2 with w3 illustrates Proposition 3.2.

4. Sturmian matrices and Sturmian substitutions

In this section we define Sturmian matrix, Sturmian substitution, re-
duced matrix, dual matrix and we list some properties of these objects.

A word u is called balanced if ||v|0 − |w|0| < 2 for all subwords v, w of
equal length. A finite word u is called strongly balanced if u2 is balanced.
Here u2 is the concatenation of u with u. It is easy to see that a finite
word u is strongly balanced if and only if un is balanced for some n ≥ 2.
A one-sided infinite word is Sturmian if it is balanced and not ultimately
periodic. We call a 2×2-matrix Sturmian if it has determinant equal to ±1
and has entries in Z≥0. We call a substitution σ over two letters Sturmian
if σ(u) is a Sturmian word for every Sturmian word u. [5] Th 2.3.7 says
that a substitution σ is Sturmian if and only if there exists a Sturmian
word v such that σ(v) is Sturmian. It follows that a primitive substitution
σ is Sturmian if and only if its fixed point is Sturmian.

Lemma 4.1. A Sturmian substitution maps every finite balanced word to
a finite balanced word.

Proof. See [10] Cor.9. �

The set of Sturmian substitutions is generated by the following three
substitutions, cf. [5] Th 2.3.7.

E :
{

0 → 1
1 → 0 φ :

{
0 → 01
1 → 0 φ̃ :

{
0 → 10
1 → 0 .

Their incidence matrices are ME =
(

0 1
1 0

)
and Mφ = Mφ̃ =

(
1 1
1 0

)
,

respectively. From this it follows that each Sturmian substitution has a
Sturmian matrix as incidence matrix. On the other hand we have the
following result.

Theorem 4.1. If M is a Sturmian matrix then there exists a Sturmian
substitution that has M as its incidence matrix.

Proof. Let M be a Sturmian matrix. It can be written as a product of
factors ME and Mφ, cf. [8] Sec.6.5.5. By replacing each matrix with the
corresponding substitution the composition of these substitutions is a Stur-
mian substitution that has M as incidence matrix. �

Lemma 4.2. Let M =
(
a b
c d

)
be a Sturmian matrix.

(i) If a+ b = c+ d, then M is the identity matrix or ME.
(ii) If a > c and b < d, then M is equal to the identity matrix.
(iii) If a < c and b > d, then M = ME.
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Proof. (i) Assume a + b = c + d. Then M =
(

a b
a− δ b+ δ

)
for some

δ ∈ Z. Since det(M) = (a + b)δ = ±1 we have a + b = 1 and δ = ±1. It

follows that M is of the form
(

1 0
0 1

)
or

(
0 1
1 0

)
.

(ii) Assume a > c and b < d. Using that ad − bc = ±1 we get bc ≤
(d− 1)(a− 1) ≤ bc− (a+ d) + 2. It follows that a+ d ≤ 2, hence a = d = 1
and b = c = 0.
(iii) The proof is similar to the proof of (ii). �

Corollary 4.1. Let M =
(
a b
c d

)
be a Sturmian matrix. If M is an

upper matrix then a ≥ c and b ≥ d with at least one of the two inequalities
strict. If M is a lower matrix then a ≤ c and b ≤ d with at least one of the
two inequalities strict.

Proof. This follows immediately from Lemma 4.2. �

Definition. Let M =
(
a b
c d

)
be a Sturmian matrix. If a + b > c + d,

then we call M an upper matrix, if a+ b < c+ d a lower matrix.

Corollary 4.2. Let M =
(
a b
c d

)
be a Sturmian matrix with ab 6= 0.

Then there exists a non-negative integer k such that
(

a b
c− ka d− kb

)
is

an upper matrix.

Proof. Let k = min(bc/ac , bd/bc) and let N =
(

a b
c− ka d− kb

)
. Then

detN = detM hence N is Sturmian. Since c − ka < a or d − kb < b it
follows from Lemma 4.2 that N is an upper matrix. �

Definition. We call the upper matrix that is constructed from M as de-
scribed in Corollary 4.2 the reduced matrix of M .

It follows directly from Corollary 4.1 that this definition of reduced ma-
trix is unique.

Lemma 4.3. Let M =
(
a b
c d

)
be an upper matrix. Then there exists a

unique upper matrix N =
(
α β
γ δ

)
such that det(N) = det(M), α+ β =

a+ b and α = c+ d. Moreover γ + δ = a and trace(M) = trace(N).

Proof. Let M =
(
a b
c d

)
be an upper matrix. We assume det(M) = 1,

the case for det(M) = −1 is similar. We define N :=
(
α β
γ δ

)
=



Substitutions, cutting segments, projections 533(
c+ d a+ b− (c+ d)
c a− c

)
. We have to show that N has nonnegative en-

tries. This is clear for α, β, γ. Assume a < c. Then b = (ad − 1)/c < d.
This implies c+ d ≤ a+ b− 1 < c+ d. It follows that δ ≥ 0. Next we show
that N is unique. Because α + β = a + b and α = c + d, the variables α
and β are uniquely defined. It is well known from number theory that the
equation αx− βy = 1 in unknowns x, y has a unique solution in nonnega-
tive integers x, y with x+ y < α+ β. Therefore γ and δ are also uniquely
defined. For α + β > γ + δ, observe that if b = 0 then a = d = 1, hence
a+ b = 1 ≤ c+ d. The other properties are obvious. �

Definition. For an upper matrix M we call the matrix N as defined in
the previous lemma the dual matrix of M . If N = M we say that M is
self-dual.

It follows directly from the proof of Lemma 4.3 that if N is the dual
matrix of M , then M is the dual matrix of N , and that an upper Sturmian

matrix M =
(
a b
c d

)
is self-dual if and only if a = c+ d.

Lemma 4.4. Let M =
(
a b
c d

)
be a Sturmian matrix with a, b > 1.

Then bc/ac = bd/bc.

Proof. From ad − bc = ±1 it follows that d
b −

c
a = ± 1

ab . From c+ 1
b

a = d
b

and b > 1 we get
⌊

c
a

⌋
=

⌊
d
b

⌋
. From d+ 1

a
b = c

a and a > 1 we also get⌊
c
a

⌋
=

⌊
d
b

⌋
. �

The statement of Lemma 4.4 is not valid if a = 1 and ad− bc = −1 and
if b = 1, ad− bc = 1.

Lemma 4.5. Let M =
(
a b
c d

)
be a Sturmian matrix with ab 6= 0 and

let k = min(bc/ac , bd/bc). Put

Mn =
(
an bn
cn dn

)
and Nn =

(
an bn

cn − kan dn − kbn

)
for n > 0. Then Nn is the reduced matrix of Mn.

Proof. The case where n = 1 has been proven in Corollary 4.2. Assume Nn

is an upper matrix for n > 1. Then it follows from Corollary 4.1 that cn ≤
(k+1)an, dn ≤ (k+1)bn with at least one of the inequalities strict. From
this we derive acn + cdn ≤ (k+1)(aan + cbn) and bcn +ddn ≤ (k+1)(ban +

dbn). Since Mn+1 =
(
an bn
cn dn

) (
a b
c d

)
=

(
aan + cbn ban + dbn
acn + cdn bcn + ddn

)
it follows that Nn+1 is an upper matrix. �
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5. Unimodular substitutions

We call a substitution σ over 2 letters unimodular if its incidence matrix
is Sturmian. We assume that all substitutions that we consider are uni-
modular, primitive and have a fixed point starting with 0. Note that for
a unimodular substitution gcd(a, b) = gcd(a + d, ad − bc) = 1, so that it
follows from Proposition 3.1 that the construction of wn is well-defined for
all n > 0.

Lemma 5.1. Let u = 0u1u2 . . . be the fixed point of a primitive unimodular
substitution. Then u is not eventually periodic.

Proof. Let ψ be the primitive unimodular substitution with fixed point u.
Then ψ has a Sturmian incidence matrix M . It follows from Theorem 4.1
that there exists a Sturmian substitution σ with incidence matrix M . Let
un = ψn(0) and u′n = σn(0). Because the numbers of 0’s and 1’s in un and
u′n are completely determined byM , we have |un|0 = |u′n|0 and |un|1 = |u′n|1
for every n ∈ Z≥0. Therefore limn→∞ |un|0/|un|1 = limn→∞ |u′n|0/|u′n|1 and
this limit is irrational since it is the fixed point of a Sturmian substitution
([5] Sec.2.1.1). It follows that u is not eventually periodic. �

For a finite word u we denote by fa
u = |u|a

|u| the frequency of the letter a
in u.

Lemma 5.2. Let u be a finite word that is not balanced. Then u has a
subword v with 2|v| ≤ |u| such that |v|0 >

⌈
|v|f0

u

⌉
or |v|1 >

⌈
|v|f1

u

⌉
.

Proof. Since u is not balanced, it has subwords v, w of equal length such
that |v|0 − |w|0 ≥ 2. Without loss of generality we may assume that v
and w are disjoint, so that |v| = |w| ≤ |u|/2. Assume |v|0 ≤

⌈
|v|f0

u

⌉
. Then

|w|1 = |w|−|w|0 ≥ |w|+2−|v|0 ≥ |w|+2−
⌈
|v|f0

u

⌉
= |w|+2−

⌈
|w|(1− f1

u)
⌉
≥

1 +
⌈
|w|f1

u

⌉
. �

Lemma 5.3. Let u be a finite word with gcd(|u|0, |u|1) = 1. Then u is
strongly balanced if and only if for every subword v of u we have |v|0 =⌊
|v|f0

u

⌋
or |v|0 =

⌈
|v|f0

u

⌉
.

Proof. Assume u is not strongly balanced. Put u = u0 . . . um. Since u2 is
not balanced, there exists a subword v of u2 with |v| ≤ |u| and |v|0 >

⌈
|v|f0

u

⌉
or |v|1 >

⌈
|v|f1

u

⌉
, according to the previous lemma. It is obvious that

|v| 6= |u|. If v is a subword of u we are done. Otherwise v is of the form
up . . . umu0 . . . uq with q < p − 1. Without loss of generality we assume
|v|1 >

⌈
|v|f1

u

⌉
, hence −|v|0 >

⌈
−|v|f0

u

⌉
. Define v′ = uq+1 . . . up−1. This is

a subword of u with |v|+ |v′| = |u|. We get

|v′|0 = |u|0 − |v|0 >
⌈
|u|0 − |v|f0

u

⌉
=

⌈
|v′|f0

u

⌉
.
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Assume there is a subword v of u = u0 . . . um with |v| < |u| and |v|0 <⌊
|v|f0

u

⌋
or |v|0 >

⌈
|v|f0

u

⌉
. We assume the second case, the proof for the fist

case is similar. Put n = |v|, hence n < |u| = m + 1. Consider the m + 1
subwords of u2 of length n that start with the letters u0, u1, . . . , um. Each
letter of u occurs in exactly n of these subwords, hence on average each
of these subwords contains nf0

u zeros. Because gcd(|u|0, |u|) = 1 we know
nf0

u /∈ Z. Assume all these subwords contain
⌈
nf0

u

⌉
or more zeros. Then

|u|0 ≥ (m+1)
⌈
nf0

u

⌉
/n > (m+1)f0

u = |u|0. This contradiction implies that
there exists a subword v′ of u2 of length n with fewer than

⌈
nf0

u

⌉
zeros,

and it follows that u2 is not balanced. �

Proposition 5.1. Let u be a finite word with gcd(|u|0, |u|1) = 1 and let w
be the corresponding central function. Then w forms a central block if and
only if u is strongly balanced.

Proof. Assume that u is not strongly balanced. Then using the previous
lemma we may assume without loss of generality that there exists a subword
v of u with |v|0 >

⌈
|v|f0

u

⌉
, since if |v|0 <

⌈
|v|f0

u

⌉
then |v|1 >

⌈
|v|f1

u

⌉
.

Because of the way w is defined, there are two letters in w at positions that
are |u|1|v|0 − |u|0|v|1 apart. We get

|u|1|v|0 − |u|0|v|1 ≥ |u|1
(
df0

u |v|e+ 1
)
− |u|0

(
|v| − df0

u |v|e − 1
)

≥ |u|f0
u |v|+ |u| − |u|0|v| = |u|.

Hence w contains a gap.
Assume w contains a gap. Then w has two numbers at positions that are

|w| or more apart. Call the smallest of these two numbers a and the largest
b. Let v be the subword of u that starts at the (a + 1)-th letter and ends
with the b-th letter. There are two possibilities, |u|0|v|1 − |u|1|v|0 ≥ |u| or
|u|1|v|0 − |u|0|v|1 ≥ |u|, depending on whether the position of a in w is left
or right of the position of b. We will assume the second inequality holds;
the proof for the first case is similar. We get, successively,

|u|1|v|0 ≥ |u|+ |u|0(|v| − |v|0),

|v|0 ≥ 1 + f0
u |v| >

⌈
f0

u |v|
⌉
.

It follows from the previous lemma that un is not strongly balanced. �

Remark. If we replace the condition in Proposition 5.1 that u is strongly
balanced by the condition that u is balanced the statement does not hold.
Take for example u = 0010100 so that gcd(|u|0, |u|1) = 1, u is balanced
(but u2 is not balanced). Then w = 5 t 6 3 0 4 1 t 2 contains gaps.

Theorem 5.1. Let σ be a primitive unimodular substitution with fixed point
starting with 0. Then σ is Sturmian if and only if wn forms a central block
for every n > 0.
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Proof. Because σn is a Sturmian substitution it follows from Corollary 4.1
that u2

n = σn(00) is balanced. Applying Proposition 5.1 gives that wn has
no gap for any n > 0.

Assume wn has no gap for any n > 0. Proposition 5.1 implies that un is
balanced for every n, and therefore the fixed point of σ is balanced. Because
it is not eventually periodic according to Lemma 5.1, it is a Sturmian word.
Hence σ is a Sturmian substitution. �

Example 2 (continued). For n > 0 we define vn as follows. Let gn be
the number at position −1 of wn. Then vn is obtained by replacing every
number in wn that is smaller than gn by 0, and every other number by 1.
We get the following table of central words over a two-letter alphabet.

n vn

0 0
1 1 0 1 0 1
2 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1

. . . . . .

This example illustrates the following definition. Let σ be a primitive
unimodular substitution with fixed point starting with 0. For n > 0 put
gn = −detn(Mσ)|un|−1

1 (mod |un|), where the inverse is taken with respect
to |un|. Let w′n = wn for each n if det(Mσ) = 1, otherwise let w′n = wn and
reflect each w′n in the origin for n odd. Note that it follows from Lemma
2.3 that gn is the number at position −1 of w′n if there is one.

Definition. Let σ be a primitive Sturmian substitution with fixed point
starting with 0 and gn, w′n as defined above. Then for n > 0 we get the
central word vn by replacing every number in w′n that is smaller than gn

by 0, and every other number by 1.

We already noted in Section 2 that wn has in each coset modulo |wn|
exactly one position on which it is defined. This means we can extend
w′n to a bi-infinite central block ŵ′n with period |wn|. It follows from the
definition of vn that ŵ′n(i) < ŵ′n(i+1) ⇐⇒ ŵ′n(i) < ŵ′n(−1) ⇐⇒ vn(i) = 0.
The next corollary follows directly from Proposition 3.2.

Corollary 5.1. Let σ be a primitive Sturmian substitution with fixed point
starting with 0 and assume that vp has a letter at position −1. Then for
n ≥ p if vn has a letter at position k then vn+1 has the same letter at
position k.

We see that in this case v := limn→∞ vn is an infinite central word. The
only primitive Sturmian substitutions with fixed point starting with 0 for
which there does not exist an integer p such that vp has a letter at position
−1 are the Christoffel substitutions defined in Section 6.
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Example 4. Let the primitive Sturmian substitution ψ be given by ψ(0) =
01, ψ(1) = 011. Then the statement of Corollary 5.1 does not hold since
v1(1) = 1 and v2(1) = 0, as we see in the table below. Note that there is
no letter at position −1.

n un wn = w′n vn

0 0
1 0 1 0 1 0 1
2 0 1 0 1 1 0 2 4 1 3 0 0 1 0 1

Theorem 5.2. Let σ be a primitive Sturmian substitution with fixed point
starting with 0. If vn has a letter at position i then it equals 0 if {−ign/|vn|}
∈ [0, gn/|vn|) and 1 otherwise. Moreover, vn is strongly balanced for every
n > 0.

Proof. The first statement follows directly from the definition of vn and
from Lemma 2.3 which says wn(i) = i|un|−1

1 (mod |un|). It follows from [5]
Sec.2.1.2. that words defined in this way are strongly balanced (so-called
rotation words). �

Remark. The central words vn need not be balanced if we would not
require that gn is the number at position 1 or −1 in wn. We illustrate this
using the substitution φ from Example 2 and choosing in w2 the number
at position −2 as g2. Then

v2 = 0010000100100001001.

Clearly v2 is not balanced, since it contains subwords of length 4 that
contain two 0’s and subwords of length 4 that contain four 0’s.

Theorem 5.3. Let σ be a primitive Sturmian substitution with fixed point
starting with 0 and Mσ as its incidence matrix. Then |vn|0 and |vn|1 are
given by the top left and top right entry, respectively, of the dual matrix of
the reduced matrix of Mn

σ for n > 0.

Proof. We know that Mn
σ =

(
|un|0 |un|1
cn dn

)
with cn, dn ∈ Z≥0 for n > 0.

We call its reduced matrix
(
|un|0 |un|1
c′n d′n

)
. It follows from the definition

of wn that w′n(−1) = xn + yn where (xn, yn) is the unique solution of the
equation |un|0x−|un|1y = det(Mn

σ ) with 0 ≤ xn ≤ |un|1 and 0 ≤ yn ≤ |un|0.
Therefore we must have that (c′n, d

′
n) = (yn, xn). From the definition of vn

we get immediately that |vn|0 = gn = w′n(−1) = xn + yn. This means that
the dual matrix of the reduced matrix of Mn

σ has |vn|0 as top left entry,
and because the sum of the elements of the top row is the same for the dual
matrix, it has |vn|1 as top right entry. �
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Corollary 5.2. Let σ be a primitive Sturmian substitution with fixed point
starting with 0, Mσ its incidence matrix and let vn be the central word
corresponding to un for some n > 0. Shift vn a number of positions to the
right so that the left most letter is at position 0. In the same way as before
we can project the cutting segment constructed from the shifted word vn to
form the central block tn. By looking at the incidence matrix of Mσ we get t′n
from tn in the same way as we construct w′n from wn. Finally we construct
a new central word zn from t′n. Then |zn|0 = |un|0 and |zn|1 = |un|1.

Proof. Let Nn be the dual matrix of the reduced matrix of Mn
σ . We know

from the previous theorem that Nn is of the form
(
|vn|0 |vn|1
cn dn

)
for

some cn, dn ∈ Z≥0 and it is an upper matrix. This means that the solution
(xn, yn) of the equation |vn|0x− |vn|1y = det(Mn

σ ) is given by the bottom
entries of Nn. Therefore |zn|0 and |zn|1 are given by the top left and top
right entry of the dual matrix of Nn, respectively, which is the reduced
matrix of Mn

σ , since the dual matrix of the dual matrix is the original
matrix. Of course the reduced matrix of Mn

σ has the same top row as Mn
σ

itself. �

Let σ be a primitive Sturmian substitution with fixed point starting with

0 and Mσ =
(
a b
c d

)
its incidence matrix. For n > 0 we define (xn, yn)

as the unique solution of the equation |un|0x−|un|1y = det(Mn
σ ) satisfying

0 ≤ xn ≤ |un|1 and 0 ≤ yn ≤ |un|0. Since Mn
σ =

(
|un|0 |un|1
cn dn

)
, it

follows that |un|0dn − |un|1cn = det(Mn
σ ). Hence xn = dn − k|un|1, yn =

cn − k|un|0 for some suitable k ∈ Z≥0. From Lemma 4.5 we know that the
value of k is independent of n. Since according to Lemma 3.2 both (cn), (dn)
and (|un|0), (|un|1) satisfy the recurrence relation pn = (a+ d)pn−1− (ad−
bc)pn−2 it follows that (xn) and (yn) satisfy the same recurrence relation.
By going backwards we define x0 and y0. Since |u0|0x0 − |u0|1y0 = 1 and
|u0|0 = 1, |u0|1 = 0, we see that x0 = 1, but y0 is not determined by this
equation.

We mentioned in the proof of Theorem 5.3 that |vn|0 = xn + yn. Hence
we see that (|vn|0) and (|vn|1) satisfy the same recurrence relation. By
going backwards we can now define |v0|0 and |v0|1, and we see that also
|v0|0 = x0 + y0. Note that v0 has no meaning in terms of projecting a
cutting sequence, and is only formally defined. We will see that |v0|0 and
|v0|1 can take negative values, but their sum is |u0| = 1. Theorem 5.3 can
be used to find |vn|0 and |vn|1 for n > 0. In order to calculate |v0|0 and
|v0|1 we prove the following lemma.
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Lemma 5.4. Let σ be a primitive Sturmian substitution with fixed point

starting with 0 and Mσ =
(
a b
c d

)
its incidence matrix. Let k be the non-

negative integer such that
(

a b
c− ka d− kb

)
is an upper matrix. Then

|v0|1 = k and |v0|0 = 1− |v0|1 = 1− k.

Proof. The reduced matrix of Mσ equals
(
a b
c′ d′

)
where c′ = c−ka, d′ =

d− kb and ad′ − bc′ = detMσ. Recall detMσ = ±1. In the table below we
know |u0|0 = 1, |u0|1 = 0, |u1|0 = a, |u1|1 = b. Using the recurrence relation
on (|un|0), (|un|1) we compute |u2|0 = a(a + d) ∓ 1, |u2|1 = b(a + d). We
know that x0 = 1, x1 = d′ and y1 = c′. Next we get x2 = (a+d)d′∓1 from
the recurrence relation on (xn). Recall that a + d 6= 0 and b 6= 0. We use
the equation |u2|0x2 − |u2|1y2 = 1 to find y2 as follows.

b(a+ d)y2 = a(a+ d)2d′ ∓ a(a+ d)∓ (a+ d)d′;

by2 = a(a+ d)d′ ∓ (a+ d′) = (bc′ ± 1)(a+ d)∓ (a+ d′) = bc′(a+ d)± kb;

y2 = c′(a+ d)± k.

Finally we find y0 = −k from the recurrence relation on (yn) and then
|v0|0 = x0 + y0 = 1− k, |v0|1 = 1− |v0|0 = k. See the table below.

n |un|0 |un|1 xn yn |vn|0 |vn|1
0 1 0 1 −k 1− k k
1 a b d′ c′

2 a(a+ d)∓ 1 b(a+ d) (a+ d)d′ ∓ 1 c′(a+ d)± k

�

Consider a primitive Sturmian substitution σ with fixed point starting
with 0, with incidence matrix Mσ and un, vn defined as before. As men-
tioned before we have for (|vn|0) and (|vn|1) the same recurrence relation
as for (|un|). The following theorem shows that there is a Sturmian matrix
that we call Mτ such that (|vn|0, |vn|1) ·Mτ = (|vn+1|0, |vn+1|1) for every
n ∈ Z≥0. Thus Mτ has the same trace and determinant as Mσ.

Theorem 5.4. Let σ be a primitive Sturmian substitution with fixed point

starting with 0, with incidence matrix Mσ =
(
a b
c d

)
and let (vn)∞n=0

be the corresponding central words. Let k be the non-negative integer such

that
(

a b
c− ka d− kb

)
is an upper matrix. Then (|vn|0, |vn|1) · Mτ =
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(|vn+1|0, |vn+1|1) for every n ∈ Z≥0 where Mτ = M ′
σ+k

(
a′ − c′ b′ − d′

a′ − c′ b′ − d′

)
and M ′

σ =
(
a′ b′

c′ d′

)
is the dual matrix of the reduced matrix of Mσ.

Proof. Let σ be a Sturmian substitution. We write its incidence matrix

as Mσ =
(

a b
c+ ak d+ bk

)
so that

(
a b
c d

)
is the reduced matrix of

Mσ. Then Mτ =
(
c+ d(k + 1) a+ b− (c+ d) + k(b− d)
c+ kd a− c+ k(b− d)

)
. Using the

previous lemma we see that |v0|1 is k and we can make the following table.

n |un|0 |un|1 xn yn |vn|0 |vn|1
0 1 0 1 −k 1− k k
1 a b d c c+ d a+ b− (c+ d)

We see that

(|v0|0, |v0|1) ·Mτ = (1− k, k) ·
(
c+ d(k + 1) a+ b− (c+ d) + k(b− d)
c+ kd a− c+ k(b− d)

)
= (c+ d, a+ b− (c+ d)) = (|v1|0, |v1|1).

Straightforward calculations show that trace(Mτ ) = a+d+bk = trace(Mσ)
and det(Mτ ) = ad−bc = det(Mσ). Since (|vn|0) and (|vn|1) satisfy the same
recurrence relation pn = trace(Mτ )pn−1 − det(Mτ )pn−2 as (|un|0), (|un|1)
and since trace(M)M − det(M)Id = M2 for any matrix M , it follows that
(|vn|0, |vn|1) ·Mτ = (|vn+1|0, |vn+1|1) for every n ∈ Z≥0. �

6. Christoffel substitutions

In this section we consider a special class of unimodular substitutions
that we will call Christoffel substitutions.

Let u be a finite word. We call u a Lyndon word if u = vw implies
u < wv in the lexicographical order. Let 0 < p < q and gcd(p, q) = 1.
The finite word u = u0u1 . . . uq−1 is called a lower Christoffel word or just
Christoffel word if

ui =
⌊
(i+ 1)

p

q

⌋
−

⌊
i
p

q

⌋
,

cf. [5] Sect.2.1.2. Note that p equals the number of 1’s in u. It follows
from the definition that for each a, b ∈ Z>0 with gcd(a, b) = 1 there exists
a unique Christoffel word containing a zeros and b ones. We also see that
every Christoffel word starts with 0 and ends with 1.

Lemma 6.1. A finite non-constant word is a Christoffel word if and only
if it is a balanced Lyndon word.

Proof. See [1] Sec.4. �
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This means Christoffel words are the finite balanced words in which the
0’s are placed ”as far as possible” to the left.

Definition. Let M =
(
a b
c d

)
be a Sturmian matrix with determinant

1 and abcd 6= 0. We call the unique substitution σ that has M as incidence
matrix and for which σ(0) and σ(1) are Christoffel words the Christoffel
substitution corresponding to M .

Lemma 6.2. Let σ be a substitution with σ(0), σ(1) Lyndon words, and
σ(0) < σ(1) in the lexicographical order, and let u be a Lyndon word. Then
σ(u) is a Lyndon word.

Proof. See [11]. �

Let M be a matrix with determinant 1. M can be written in a unique

way as the product of some occurrences of the matricesX0 =
(

1 0
1 1

)
and

X1 =
(

1 1
0 1

)
. We associate to each occurrence of X0 the substitution

ψ0 :
{

0 → 0
1 → 01 and to each occurrence of X1 the substitution ψ1 :{

0 → 01
1 → 1 . Let σ be the inverse product of the associated substitutions.

It is clear that ψ0 and ψ1 are Sturmian substitutions, therefore σ is a
Sturmian substitution. Hence σ(0) and σ(1) are balanced. Also it follows
from Lemma 6.2 that they are Lyndon words. Now we conclude from
Lemma 6.1 that σ is a Christoffel substitution.

Since for each matrix with determinant 1 and positive integer entries
there exists a unique Christoffel substitution, we get the following result.

Lemma 6.3. Christoffel substitutions are Sturmian substitutions.

Lemma 6.4. Let Mσ be a Sturmian matrix with positive entries and de-
terminant equal to 1 and let σ be the Christoffel substitution belonging to
Mσ. If Mσ is an upper matrix there exist possibly empty words u and v
such that σ(0) = u0v and σ(1) = u1. If Mσ is a lower matrix there exist
possibly empty words u and v such that σ(0) = u0v and σ(1) = (u0v)ku1
for some positive integer k.

Proof. If Mσ can be written as the product of two matrices X0, X1, we

have either Mσ =
(

2 1
1 1

)
, σ :

{
0 → 001
1 → 01 or Mσ =

(
1 1
1 2

)
, σ :{

0 → 01
1 → 011 and we see that the statement holds. Assume the statement

of the lemma is true for incidence matrices that can be written as the
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product of n matrices X0, X1. Let Mτ be a Sturmian matrix with positive
entries and determinant equal to 1 that can be written as the product of
n+ 1 matrices X0, X1, and let τ be the Christoffel substitution belonging
to Mτ . Then τ = σ′ψ0 or τ = σ′ψ1, where σ′ is of the form stated in the
lemma. It is easy to check that τ is also of this form. �

Corollary 6.1. Let σ be a Christoffel substitution. Then σn(0) is a Christ-
offel word for every n > 0.

Proof. Because according to Lemma 6.3 a Christoffel substitution is a Stur-
mian substitution, σn(0) is balanced. It follows from Lemma 6.4 that
σ(0) < σ(1) in the lexicographical order, and applying Lemma 6.2 gives
that σn(0) is a Lyndon word. According to Lemma 6.1, σn(0) is a Christof-
fel word. �

Proposition 6.1. Let u be a Christoffel word, let w′ = w be the central
block that we get after projecting the cutting segment of u, and let v be the
corresponding central word, as defined in Section 5. Then v is a Christoffel
word.

Proof. According to [1] Sec.4 the cutting segment of a Christoffel word
lies below the line connecting the origin and the endpoint of the cutting
segment. It follows that when the integer points on the cutting segment
are projected parallel to this line, they all lie below the origin, except the
origin which is projected to itself. Since Christoffel words are Sturmian
words according to Lemma 6.3, there is no gap by Theorem 5.1. Hence the
projected points form the word w = w(0) . . . w(|u| − 1) with w(i) = i|u|−1

1

(mod |u|). Put g = |u|−1
1 (mod |u|). Then

v(i) = 0 ⇐⇒ w(i) < w(i+ 1) ⇐⇒ ig (mod |u|) < (i+ 1)g (mod |u|)

⇐⇒
⌊
i
g

|u|

⌋
=

⌊
(i+ 1)

g

|u|

⌋
and we see that v is a Christoffel word containing |u|−1

1 (mod |u|) ones. �

Theorem 6.1. Let σ be a Christoffel substitution. Let (vn) be the words
that we get by projecting the cutting segments of un = σn(0) for n > 0.
Then there exists a Christoffel substitution τ such that τ(vn) = vn+1 for
n > 0 and τ has Mτ as defined in Theorem 5.4 as incidence matrix.

Proof. It follows from the previous proposition that the words (vn) are
Christoffel words. According to Theorem 5.4 the relation between the num-
ber of 0’s and 1’s in vn and vn+1 is given by Mτ . Define τ as the Christoffel
substitution that has Mτ as incidence matrix. Because τ is Sturmian, τ(vn)
is a balanced word. Because vn is a Lyndon word, and τ is a Christoffel
substitution with τ(0) < τ(1) in the lexicographical order, τ(vn) is also a
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Lyndon word. Thus τ(vn) is a Christoffel word. Because there is only one
Christoffel word of length |vn+1| that contains |vn+1|0 zeros, it follows that
τ(vn) = vn+1. �

Definition. Let σ be a Christoffel substitution with incidence matrix Mσ

that is an upper matrix. Then we call τ as defined in Theorem 6.1 the dual
substitution of σ.

Corollary 6.2. Let τ be the dual substitution of σ. Then σ is the dual
substitution of τ .

Proof. Let σ be a Christoffel substitution and let its incidence matrix be
an upper matrix. It follows from Lemma 5.4 that |v0|0 = 1 and |v0|1 = 0.
Hence according to Theorem 6.1 we have vn = τn(0). It follows from
Theorem 5.4 that Mτ is an upper matrix. Define zn as the central word
that corresponds to vn, as in Corollary 5.2 (note that the left most letter
of vn is already at position 0, so that vn doesn’t have to be shifted to the
right). Then it follows from this corollary and the fact that τ is a Christoffel
substitution that zn = un for n ∈ Z≥0. �

Example 5. The duality relation exists between the following pairs σ, τ
of Christoffel substitutions.

• σ :
{

0 → 00101
1 → 01 and τ :

{
0 → 01011
1 → 011

• σ :
{

0 → 0010101
1 → 01 and τ :

{
0 → 0110111
1 → 0111

• σ :
{

0 → 0101011
1 → 01011 and τ :

{
0 → 0001001
1 → 001

The following Christoffel substitutions are self-dual (i.e. σ = τ).

• σ :
{

0 → 001
1 → 01

• σ :
{

0 → 0001
1 → 001

The next lemma and theorem are thanks to a suggestion by Julien Cas-
saigne.

Lemma 6.5. Let z = z0z1 . . . zn be a finite word with zi ∈ {0, 1}. Put(
a b
c d

)
= Xz0Xz1 . . . Xzn. Then XznXzn−1 . . . Xz0 =

(
d b
c a

)
.

Proof. It is easy to check that this holds for n = 0, 1. Assume it holds for

n. Let z = z0 . . . zn+1 be given. Then Xz0 . . . Xzn+1 =
(
a b
c d

)
Xzn+1 .

In case zn+1 = 0 we get
(
a+ b b
c+ d d

)
and in case zn+1 = 1 we get
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a a+ b
c c+ d

)
. In the same way we findXzn+1 . . . Xz0 equals

(
d b

c+ d a+ b

)
in case zn+1 = 0, and

(
c+ d a+ b
c a

)
in case zn+1 = 1. We see that the

lemma also holds for n+ 1. �

Let σ be a Christoffel substitution with incidence matrix Mσ that is
an upper matrix. Hence there exists a finite word z = z0z1 . . . zn so

that σ = ψz0 . . . ψznψ1. If we write Mσ =
(
a+ c b+ d
c d

)
, we see

that Xzn . . . Xz0 =
(
a b
c d

)
. Hence using the previous lemma we get

Xz0 . . . Xzn =
(
d b
c a

)
. We define the Christoffel substitution φ = ψzn . . .

ψz0ψ1 and see that it has incidence matrix Mφ =
(

1 1
0 1

) (
d b
c a

)
=(

c+ d a+ b
c a

)
. We find that Mφ is the dual matrix of Mσ and hence φ

is the dual substitution of σ. This gives the following theorem.

Theorem 6.2. Let σ be a Christoffel substitution with as incidence an
upper matrix, so that we can write σ = ψz0 . . . ψznψ1, with zi ∈ {0, 1}.
Then the dual substitution of σ equals ψzn . . . ψz0ψ1.

Example 5 (continued). If we write the substitutions σ and τ from Ex-
ample 5 as products of ψ0 and ψ1 we get the following pairs of substitutions.

• σ = ψ0ψ1ψ1 and τ = ψ1ψ0ψ1

• σ = ψ0ψ1ψ1ψ1 and τ = ψ1ψ1ψ0ψ1

• σ = ψ1ψ0ψ0ψ1 and τ = ψ0ψ0ψ1ψ1

• σ = τ = ψ0ψ1

• σ = τ = ψ0ψ0ψ1
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