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On the largest prime factor of n! + 2n − 1

par Florian LUCA et Igor E. SHPARLINSKI

Résumé. Pour un entier n ≥ 2, notons P (n) le plus grand facteur
premier de n. Nous obtenons des majorations sur le nombre de
solutions de congruences de la forme n! + 2n − 1 ≡ 0 (mod q) et
nous utilisons ces bornes pour montrer que

lim sup
n→∞

P (n! + 2n − 1)/n ≥ (2π2 + 3)/18.

Abstract. For an integer n ≥ 2 we denote by P (n) the largest
prime factor of n. We obtain several upper bounds on the number
of solutions of congruences of the form n! + 2n − 1 ≡ 0 (mod q)
and use these bounds to show that

lim sup
n→∞

P (n! + 2n − 1)/n ≥ (2π2 + 3)/18.

1. Introduction

For any positive integer k > 1 we denote by P (k) the largest prime factor
of k and by ω(k) the number of distinct prime divisors of k. We also set
P (1) = 1 and ω(1) = 0.

It is trivial to see that P (n! + 1) > n. Erdős and Stewart [4] have shown
that

lim sup
n→∞

P (n! + 1)
n

> 2.

This bound is improved in [7] where it is shown that the above upper limit
is at least 5/2, and that it also holds for P (n! + f(n)) with a nonzero
polynomial f(X) ∈ ZZ[X].

Here we use the method of [7], which we supplement with some new
arguments, to show that

lim sup
n→∞

P (n! + 2n − 1)
n

> (2π2 + 3)/18.

We also estimate the total number of distinct primes which divide at least
one value of n! + 2n − 1 with 1 ≤ n ≤ x.

Manuscrit reçu le 7 novembre 2003.
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These results are based on several new elements, such as bounds for the
number of solutions of congruences with n! + 2n − 1, which could be of
independent interest.

Certainly, there is nothing special in the sequence 2n − 1, and exactly
the same results can be obtained for n! + u(n) with any nonzero binary
recurrent sequence u(n).

Finally, we note that our approach can be used to estimate P (n!+u(n))
with an arbitrary linear recurrence sequence u(n) (leading to similar, albeit
weaker, results) and with many other sequences (whose growth and the
number of zeros modulo q are controllable).

Throughout this paper, we use the Vinogradov symbols �, � and �
as well as the Landau symbols O and o with their regular meanings. For
z > 0, log z denotes the natural logarithm of z.

Acknowledgments. During the preparation of this paper, F. L. was sup-
ported in part by grants SEP-CONACYT 37259-E and 37260-E, and I. S.
was supported in part by ARC grant DP0211459.

2. Bounding the number of solutions of some equations and
congruences

The following polynomial

(2.1) Fk,m(X) = (2k − 1)
m∏

i=1

(X + i)− (2m − 1)
k∏

i=1

(X + i) + 2m − 2k

plays an important role in our arguments.

Lemma 2.1. The equation

Fk,m(n) = 0

has no integer solutions (n, k,m) with n ≥ 3 and m > k ≥ 1.

Proof. One simply notices that for any n ≥ 3 and m > k ≥ 1

(2k − 1)
m∏

i=1

(n + i) ≥ 2k−1(n + 1)m−k
k∏

i=1

(n + i)

≥ (n + 1)2m−2
k∏

i=1

(n + i) ≥ 2m
k∏

i=1

(n + i)

> (2m − 1)
k∏

i=1

(n + i).

Hence, Fk,m(n) > 0 for n ≥ 3. ut
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Let `(q) denote the multiplicative order of 2 modulo an odd integer q ≥ 3.
For integers y ≥ 0, x ≥ y + 1, and q ≥ 1, we denote by T (y, x, q) the set

of solutions of the following congruence

T (y, x, q) = {n | n! + 2n − 1 ≡ 0 (mod q), y + 1 ≤ n ≤ x},
and put T (y, x, q) = #T (y, x, q). We also define

T (x, q) = T (0, x, q) and T (x, q) = T (0, x, q).

Lemma 2.2. For any prime p and integers x and y with p > x ≥ y+1 ≥ 1,
we have

T (y, x, p) � max{(x− y)3/4, (x− y)/`(p)}.

Proof. We assume that p ≥ 3, otherwise there is nothing to prove. Let
`(p) > z ≥ 1 be a parameter to be chosen later.

Let y + 1 ≤ n1 < . . . < nt ≤ x be the complete list of t = T (y, x, p)
solutions to the congruence n! + 2n − 1 ≡ 0 (mod p), y + 1 ≤ n ≤ x. Then

T (y, x, p) = U1 ∪ U2,

where

U1 = {ni ∈ T (y, x, p) | |ni − ni+2| ≥ z, i = 1, . . . , t− 2},
and U2 = T (y, x, p)\U1.

It is clear that #U1 � (x − y)/z. Assume now that n ∈ U2\{nt−1, nt}.
Then there exists a nonzero integers k and m with 0 < k < m ≤ z, and
such that

n! + 2n − 1 ≡ (n + k)! + 2n+k − 1 ≡ (n + m)! + 2n+m − 1 ≡ 0 (mod p).

Eliminating 2n from the first and the second congruence, and then from
the first and the third congruence, we obtain

n!

(
k∏

i=1

(n + i)− 2k

)
+ 2k − 1

≡ n!

(
m∏

i=1

(n + i)− 2m

)
+ 2m − 1 ≡ 0 (mod p).

Now eliminating n!, we derive

(2m − 1)

(
k∏

i=1

(n + i)− 2k

)
− (2k − 1)

(
m∏

i=1

(n + i)− 2m

)
≡ 0 (mod p),

or Fk,m(n) ≡ 0 (mod p), where Fk,m(X) is given by (2.1). Because `(p) >
z, we see that for every 0 < k < m ≤ z the polynomial Fk,m(X) has a
nonzero coefficient modulo p and deg Fk,m = m ≤ z, thus for every 0 < k <
m < z there are at most z suitable values of n (since p > x ≥ y + 1 ≥ 1).
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Summing over all admissible values of k and m, we derive #U2 � z3 + 1.
Therefore

T (y, x, p) ≤ #U1 + #U2 � (x− y)/z + z3 + 1.

Taking z = min{(x− y)1/4, `(p)− 1} we obtain the desired inequality. ut

Obviously, for any n ≥ p with n! + 2n − 1 ≡ 0 (mod p), we have 2n ≡ 1
(mod p). Thus

(2.2) T (p, x, p) � x/`(p).

Lemma 2.3. For any integers q ≥ 2 and x ≥ y + 1 ≥ 1, we have

T (y, x, q) ≤
(

2 + O

(
1

log x

))
(x− y) log x

log q
+ O(1).

Proof. Assume that T (y, x, q) ≥ 6, because otherwise there is nothing to
prove. We can also assume that q is odd. Then, by the Dirichlet principle,
there exist integers n ≥ 4 , m > k ≥ 1, satisfying the inequalities

1 ≤ k < m ≤ 2
x− y

T (y, x, q)− 4
, y + 1 ≤ n < n + k < n + m ≤ x,

and such that

n! + 2n − 1 ≡ (n + k)! + 2n+k − 1 ≡ (n + m)! + 2n+m − 1 ≡ 0 (mod q).

Arguing as in the proof of Lemma 2.2, we derive Fm,k(n) ≡ 0 (mod q).
Because Fm,k(n) 6= 0 by Lemma 2.1, we obtain |Fm,k(n)| ≥ q. Obviously,
|Fm,k(n)| = O(2kxm) = O((2x)m). Therefore,

log q ≤ m(log x + O(1)) ≤ 2
(x− y) (log x + O(1))

T (y, x, p)− 4
,

and the result follows. ut

Certainly, Lemma 2.2 is useful only if `(p) is large enough.

Lemma 2.4. For any x the inequality `(p) ≥ x1/2/ log x holds for all except
maybe O(x/(log x)3) primes p ≤ x.

Proof. Put L =
⌊
x1/2/ log x

⌋
. If `(p) ≤ L then p|R, where

R =
L∏

i=1

(2i − 1) ≤ 2L2
.

The bound ω(R) � log R/ log log R � L2/ log L concludes the proof. ut

We remark that stronger results are known, see [3, 6, 9], but they do not
seem to be of help for our arguments.
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3. Main Results

Theorem 3.1. The following bound holds:

lim sup
n→∞

P (n! + 2n − 1)
n

≥ 2π2 + 3
18

= 1.2632893 . . . .

Proof. Assuming that the statement of the above theorem is false, we see
that there exist two constants λ < (2π2 + 3)/18 and µ such that the in-
equality P (n! + 2n − 1) < λn + µ holds for all integer positive n.

We let x be a large positive integer and consider the product

W =
∏

1≤n≤x

(n! + 2n − 1).

Let Q = P (W ) so we have Q ≤ λx + µ . Obviously,

(3.1) log W =
1
2
x2 log x + O(x2).

For a prime p, we denote by sp the largest power of p dividing at least one
of the nonzero integers of the form n! + 2n − 1 for n ≤ x. We also denote
by rp the p-adic order of W . Hence,

(3.2) rp =
∑

1≤s≤sp

T (x, ps),

and therefore, by (3.1) and (3.2), we deduce

(3.3)
∑
p|W
p≤Q

log p
∑

1≤s≤sp

T (x, ps) = log W =
1
2
x2 log x + O(x2).

We let M be the set of all possible pairs (p, s) which occur on the left hand
side of (3.3), that is,

M = {(p, s) | p|W, p ≤ Q, 1 ≤ s ≤ sp},

and so (3.3) can be written as

(3.4)
∑

(p,s)∈M

T (x, ps) log p =
1
2
x2 log x + O(x2).

As usual, we use π(y) to denote the number of primes p ≤ y, and recall
that by the Prime Number Theorem we have π(y) = (1 + o(1))y/ log y.

Now we introduce subsets E1, E2, E3, E4 ∈M, which possibly overlap, and
whose contribution to the sums on the left hand side of (3.4) is o(x2 log x).
After this, we study the contribution of the remaining set L.
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• Let E1 be the set of pairs (p, s) ∈M with p ≤ x/ log x. By Lemma 2.3,
we have∑

(p,s)∈E1

T (x, ps) log p � x log x
∑

(p,s)∈E1

1
s

+
∑

(p,s)∈E1

log p

� x log x
∑

p≤x/ log x

log(sp + 1)

+
∑

p≤x/ log x

sp log p � x2,

because obviously sp � x log x.
• Let E2 be the set of pairs (p, s) ∈ M with s ≥ x/(log x)2. Again by

Lemma 2.3, and by the inequality

sp � x
log x

log p
,

we have∑
(p,s)∈E2

T (x, ps) log p � x log x
∑

(p,s)∈E2

1
s

+
∑

(p,s)∈E2

log p

� x log x
∑
p≤Q

∑
x/(log x)2≤s≤sp

1
s

+
∑
p≤Q

sp log p

� xπ(Q) log x log log x � x2 log log x,

because Q = O(x) by our assumption.
• Let E3 be the set of pairs (p, s) ∈ M with `(p) ≤ x1/2/ log x. Again

by Lemmas 2.3 and 2.4, and by the inequality sp � x log x, we have∑
(p,s)∈E3

T (x, ps) log p � x log x
∑

(p,s)∈E2

1
s

+
∑

(p,s)∈E3

log p

� x log x
∑
p≤Q

`(p)≤x1/2/ log x

∑
1≤s≤sp

1
s

+
∑
p≤Q

`(p)≤x1/2/ log x

sp log p

� x(log x)2
∑
p≤Q

`(p)≤x1/2/ log x

1 � x2/ log x.
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• Let E4 be the set of pairs (p, s) ∈ M\(E1 ∪ E3) with s < x1/4. By
Lemma 2.2 and by (2.2), we have∑

(p,s)∈E3

T (x, ps) log p � x1/4
∑
p≤Q

T (x, p) log p

� x1/4
∑
p≤Q

(
p3/4 + x/`(p)

)
log p

� x1/4Q3/4
∑
p≤Q

log p

� x1/4Q7/4 � x2.

We now put L = M\ (E1 ∪ E2 ∪ E3 ∪ E4).
The above estimates, together with (3.4), show that

(3.5)
∑

(p,s)∈L

T (x, ps) log p =
1
2
x2 log x + O(x2 log log x).

The properties of the pairs (p, s) ∈ L can be summarized as

p >
x

log x
, `(p) ≥ x1/2

log x
,

x

(log x)2
≥ s ≥ x1/4.

In what follows, we repeatedly use the above bounds.
We now remark that because by our assumption P (n!+2n−1) ≤ λn+µ

for n ≤ x, we see that T (x, ps) = T (b(p− µ)/λc , x, ps).
Thus, putting xp = min{x, p}, we obtain

T (x, ps) = T (b(p− µ)/λc , x, ps) = T (b(p− µ)/λc , xp, p
s) + T (xp, x, ps).

Therefore,

(3.6)
∑

(p,s)∈L

T (x, ps) log p = U + V,

where

U =
∑

(p,s)∈L

T (b(p− µ)/λc , xp, p
s) log p,

and

V =
∑

(p,s)∈L

T (xp, x, ps) log p.
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To estimate U , we observe that, by Lemma 2.3,

U ≤ (2 + o(1)) log x
∑
p≤Q

(xp −
p− µ

λ

) ∑
x/ log x>s≥x1/4

1
s

+ O(1)


≤ (3/2 + o(1)) (log x)2

∑
p≤Q

(
xp −

p− µ

λ

)
+ O(x2).

Furthermore,∑
p≤Q

(
xp −

p− µ

λ

)
=
∑
p≤x

(
p− p− µ

λ

)
+

∑
x<p≤Q

(
x− p− µ

λ

)

=
(

λ− 1
2λ

+ o(1)
)

x2

log x
+
(

(λ− 1)2

2λ
+ o(1)

)
x2

log x

=
(

λ− 1
2

+ o(1)
)

x2

log x
.

Hence

(3.7) U ≤
(

3(λ− 1)
4

+ o(1)
)

x2 log x.

We now estimate V . For an integer α ≥ 1 we let Pα be the set of primes
p ≤ Q with

`(p) = . . . = `(pα) 6= `(pα+1).

Thus, `(pα+1) = `(p)p.
Accordingly, let Lα be the subset of pairs (p, s) ∈ L for which p ∈ Pα.
We see that if (p, s) ∈ L and n ≤ x, then p2 > n, and therefore the p-adic

order of n! is

ordpn! =
⌊

n

p

⌋
.

For p ∈ Pα we also have

ordp(2`(p) − 1) = α.

Clearly, if n ≥ p then ordp(n! + 2n − 1) > 0 only for n ≡ 0 (mod `(p)).
Because `(pα+1) = p`(p) � x3/2/(log x)2 > x, we see that, for p ≤ n ≤ x,

ordp(2n − 1) =
{

0, if n 6≡ 0 (mod `(p)),
α, if n ≡ 0 (mod `(p)).

Therefore, for n ≤ αp− 1 and n ≡ 0 (mod `(p)), we have

ordp(n! + 2n − 1) ≤ ordpn! < n/(p− 1) � log x.

Thus, T (xp, αp− 1, ps) = 0 for (p, s) ∈ Lα.
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On the other hand, for n ≥ (α + 1)p, we have ordp(n!) > n/p − 1 ≥ α.
Hence, for n ≡ 0 (mod `(p)), we derive

ordp(n! + 2n − 1) = ordp(2n − 1) = α < n/p � log x.

As we have mentioned ordp(n! + 2n − 1) = 0 for every n ≥ p with n ≡ 0
(mod `(p)). Thus, T ((α + 1)p, x, ps) = 0 for (p, s) ∈ Lα.

For α = 1, 2, . . ., let us define

Yα,p = min{x, αp− 1} and Xα,p = min{x, (α + 1)p}.

We then have

V =
∞∑

α=1

Vα,

where

Vα =
∑

(p,s)∈Lα

T (xp, x, ps) log p.

For every α ≥ 1, and (p, s) ∈ Lα, as we have seen,

T (xp, x, ps) = T (Yα,p, Xα,p, p
s).

We now need the bound,

(3.8) T (Yα,p, Xα,p, p
s) ≤ Xα,p − Yα,p

`(p)
+ 1,

which is a modified version of (2.2). Indeed, if Yα,p = x then Xα,p = x
and we count solutions in an empty interval. If Yα,p = αp − 1 (the other
alternative), we then replace the congruence modulo ps by the congruence
modulo p and remark that because n > Yα,p ≥ p we have n!+2n−1 ≡ 2n−1
(mod p) and (3.8) is now immediate.

We use (3.8) for x1/2/(log x)2 ≥ s ≥ x1/4, and Lemma 2.3 for x/(log x)2 >

s ≥ x1/2/(log x)2. Simple calculations lead to the bound

Vα ≤ (1 + o(1)) (log x)2
∑

p∈Pα

(Xα,p − Yα,p) + O(x2).

We now have∑
p∈Pα

(Xα,p − Yα,p) =
∑
p∈Pα

p≤x/(α+1)

(p + 1) +
∑
p∈Pα

x/(α+1)<p≤(x+1)/α

(x− αp + 1).
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Thus, putting everything together, and taking into account that the sets
Pα, α = 1, 2, . . ., are disjoint, we derive

V ≤ (1 + o(1)) (log x)2

 ∑
p≤x/2

p +
∞∑

α=1

∑
x/(α+1)<p≤(x+1)/α

(x− αp)


= (1 + o(1)) (log x)2

×

(
x2

8 log x
+

x2

log x

∞∑
α=1

(
1

α(α + 1)
− 2α + 1

2α(α + 1)2

))

= (1 + o(1)) (log x)2
(

x2

8 log x
+

x2

2 log x

∞∑
α=1

1
α(α + 1)2

)
= (1 + o(1)) (log x)2

×

(
x2

8 log x
+

x2

2 log x

∞∑
α=1

(
1

α(α + 1)
− 1

(α + 1)2

))

= (1 + o(1)) (log x)2
(

x2

8 log x
+

x2

2 log x

(
2− π2

6

))
.

Hence

(3.9) V ≤
(

27− 2π2

24
+ o(1)

)
x2 log x.

Substituting (3.7) and (3.9) in (3.6), and using (3.5), we derive

3(λ− 1)
4

+
27− 2π2

24
≥ 1

2
,

which contradicts the assumption λ < (2π2 + 3)/18, and thus finishes the
proof. ut

Theorem 3.2. For any sufficiently large x, we have:

ω

 ∏
1≤n≤x

(n! + 2n − 1)

� x

log x
.

Proof. In the notation of the proof of Theorem 3.1, we derive from (3.2)
and Lemma 2.3, that

rp �
∑

1≤s≤sp

x log x

s log p
+ 1 � x log x log(sp + 1)

log p
+ sp.

Obviously sp � x log x/ log p, therefore rp � x(log x)2/ log p. Thus, for
any prime number p,

prp = exp
(
O
(
x(log x)2

))
,
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which together with (3.1) finishes the proof. ut

4. Remarks

We recall the result of Fouvry [5], which asserts that P (p − 1) ≥ p0.668

holds for a set of primes p of positive relative density (see also [1, 2] for this
and several more related results). By Lemma 2.4, this immediately implies
that `(p) ≥ p0.668 for a set of primes p of positive relative density. Using
this fact in our arguments, one can easily derive that actually

lim sup
n→∞

P (n! + 2n − 1)
n

>
2π2 + 3

18
.

However, the results of [5], or other similar results like the ones from [1, 2],
do not give any effective bound on the relative density of the set of primes
with P (p−1) ≥ p0.668, and thus cannot be used to get an explicit numerical
improvement of Theorem 3.1.

We also remark that, as in [7], one can use lower bounds on linear forms
in p-adic logarithms to obtain an “individual” lower bound on P (n!+2n−1).
The ABC-conjecture can also used in the same way as in [8] for P (n! + 1).
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