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On coefficient valuations of Eisenstein

polynomials

par Matthias KÜNZER et Eduard WIRSING

Résumé. Soit p ≥ 3 un nombre premier et soient n > m ≥ 1.
Soit πn la norme de ζpn − 1 sous Cp−1. Ainsi Z(p)[πn]|Z(p) est
une extension purement ramifiée d’anneaux de valuation discrète
de degré pn−1. Le polynôme minimal de πn sur Q(πm) est un
polynôme de Eisenstein; nous donnons des bornes inférieures pour
les πm-valuations de ses coefficients. L’analogue dans le cas d’un
corps de fonctions, comme introduit par Carlitz et Hayes, est
etudié de même.

Abstract. Let p ≥ 3 be a prime, let n > m ≥ 1. Let πn be
the norm of ζpn − 1 under Cp−1, so that Z(p)[πn]|Z(p) is a purely
ramified extension of discrete valuation rings of degree pn−1. The
minimal polynomial of πn over Q(πm) is an Eisenstein polynomial;
we give lower bounds for its coefficient valuations at πm. The
function field analogue, as introduced by Carlitz and Hayes, is
studied as well.
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0. Introduction

0.1. Problem and methods. Consider a primitive pnth root of unity
ζpn over Q, where p is a prime and n ≥ 2. One has Gal(Q(ζpn)|Q) '
Cpn−1 ×Cp−1. To isolate the p-part of this extension, let πn be the norm of
ζpn −1 under Cp−1; that is, the product of the Galois conjugates (ζpn −1)σ,
where σ runs over the subgroup Cp−1. Then

Q(πn)

pn−1

Q

�
����p−1

��
���p−1

Q(ζpn)

pn−1

Q(ζp)

We ask for the minimal polynomial µπn,Q(X) =
∑

j∈[0,pn−1] ajX
j ∈ Z[X]

of πn over Q. By construction, it is an Eisenstein polynomial; that is,
vp(aj) ≥ 1 for j ∈ [0, pn−1 − 1], and vp(a0) = 1, where vp denotes the
valuation at p.

More is true, though. Our basic objective is to give lower bounds bigger
than 1 for these p-values vp(aj), except, of course, for vp(a0). As a byprod-
uct of our method of proof, we shall also obtain congruences between certain
coefficients for varying n.

A consideration of the trace TrQ(πn)|Q(πn) yields additional information
on the second coefficient of µπn,Q(X). By the congruences just mentioned,
this also gives additional information for certain coefficients of the minimal
polynomials µπl,Q(X) with l > n; these coefficients no longer appear as
traces.

Finally, a comparison with the different ideal

DZ(p)[πn]|Z(p)
= Z(p)[πn]µ′πn,Q(πn)

then yields some exact coefficient valuations, not just lower bounds.
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Actually, we consider the analogous question for the coefficients of the
slightly more general relative minimal polynomial µπn,Q(πm)(X), where n >
m ≥ 1, which can be treated using essentially the same arguments. Note
that π1 = p.

Except for the trace considerations, the whole investigation carries over
mutatis mutandis to the case of cyclotomic function field extensions, as
introduced by Carlitz [1] and Hayes [5].

As an application, we mention the Wedderburn embedding of the twisted
group ring (with trivial 2-cocycle)

Z(p)[πn] o Cpn−1 -
�� ω

EndZ(p)
Z(p)[πn] ' Zpn−1×pn−1

(p) ,

to which we may reduce the problem of calculating Z(p)[ζpn ]o(Cpn−1×Cp−1)
by means of Nebe decomposition. The image ω(πn) is the companion matrix
of µπn,Q(X). To describe the image ω(Z(p)[πn] o Cpn−1) of the whole ring,
we may replace this matrix modulo a certain ideal. To do so, we need to
know the valuations of its entries, i.e. of the coefficients of µπn,Q(X), or at
least a lower bound for them. So far, this could be carried through only for
n = 2 [10].

In this article, however, we restrict our attention to the minimal polyno-
mial itself.

0.2. Results.

0.2.1. The number field case. Let p ≥ 3 be a prime, and let ζpn denote a
primitive pnth root of unity over Q in such a way that ζp

pn+1 = ζpn for all
n ≥ 1. Put

Fn = Q(ζpn)
En = FixCp−1Fn ,

so [En : Q] = pn. Letting

πn = NFn|En
(ζpn − 1) =

∏
j∈[1,p−1]

(ζjpn−1

pn − 1) ,

we have En = Q(πn). In particular, Em+i = Em(πm+i) for m, i ≥ 1. We
fix m and write

µπm+i, Em(X) =
∑

j∈[0,pi]

ai,jX
j

= Xpi
+

( ∑
j∈[1,pi−1]

ai,jX
j
)
− πm ∈ Z(p)[πm][X] .
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Theorem (5.3, 5.5, 5.8).
(i) We have pi | jai,j for j ∈ [0, pi].
(i′) If j < pi(p− 2)/(p− 1), then piπm | jai,j.
(ii) We have ai,j ≡pi+1 ai+β,pβj for j ∈ [0, pi] and β ≥ 1.
(ii′) If j < pi(p− 2)/(p− 1), then ai,j ≡pi+1πm

ai+β,pβj for β ≥ 1.
(iii) The element pi−β exactly divides ai,pi−(pi−pβ)/(p−1) for β ∈ [0, i− 1].
(iv) We have µπn,Q(X) ≡p2 Xpn−1

+ pX(p−1)pn−2 − p for n ≥ 2.
Assertion (iv) requires the computation of a trace, which can be refor-

mulated in terms of sums of (p−1)th roots of unity in Qp (5.6). Essentially,
one has to count the number of subsets of µp−1 ⊆ Qp of a given cardinality
whose sum is of a given valuation at p. We have not been able to go much
beyond this reformulation, and this seems to be a problem in its own right
— see e.g. (5.9).

To prove (i, i′, ii, ii′), we proceed by induction. Assertions (i, i′) also
result from the different

DZ(p)[πm+i]|Z(p)[πm] =
(
µ′πm+i,Em

(πm+i)
)

=
(
piπ

pi−1−(pi−1)/(p−1)
m+i

)
.

Moreover, (ii) yields (iii) by an argument using the different (in the
function field case below, we will no longer be able to use the different for
the assertion analogous to (i, i′), and we will have to resort to induction).

Suppose m = 1. Let us call an index j ∈ [1, pi − 1] exact, if either
j < pi(p−2)/(p−1) and piπm exactly divides jai,j , or j ≥ pi(p−2)/(p−1)
and pi exactly divides jai,j . If i = 1 and e.g. p ∈ {3, 19, 29, 41}, then all
indices j ∈ [1, p − 1] are exact. If i ≥ 2, we propose to ask whether the
number of non-exact indices j asymptotically equals pi−1 as p →∞.

0.2.2. The function field case. Let p ≥ 3 be a prime, ρ ≥ 1 and r = pρ.
We write Z = Fr[Y ] and Q = Fr(Y ). We want to study a function field
analogue over Q of the number field extension Q(ζpn)|Q. Since 1 is the only
pnth root of unity in an algebraic closure Q̄, we have to proceed differently,
following Carlitz [1] and Hayes [5]. First of all, the power operation of
pn on Q̄ becomes replaced by a module operation of fn on Q̄, where f ∈ Z
is an irreducible polynomial. The group of pnth roots of unity

µpn = {ξ ∈ Q̄ : ξpn
= 1}

becomes replaced by the annihilator submodule

λfn = {ξ ∈ Q̄ : ξfn
= 0} .

Instead of choosing a primitive pnth root of unity ζpn , i.e. a Z-linear gen-
erator of that abelian group, we choose a Z-linear generator θn of this
Z-submodule. A bit more precisely speaking, the element θn ∈ Q̄ plays the
role of ϑn := ζpn − 1 ∈ Q̄. Now Q(θn)|Q is the function field analogue of
Q(ϑn)|Q. See also [3, sec. 2].
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To state the result, let f(Y ) ∈ Z be a monic irreducible polynomial and
write q = rdeg f . Let ξY := Y ξ + ξr define the Z-linear Carlitz module
structure on an algebraic closure Q̄, and choose a Z-linear generator θn of
annfnQ̄ in such a way that θf

n+1 = θn for all n ≥ 1. We write Fn = Q(θn), so
that Gal(Fn|Q) ' (Z/fn)∗. Letting En = FixCq−1Fn, we get [En : Q] = qn.

Denoting $n = NFn|En
(θn) =

∏
e∈(Z/f)∗ θeqn−1

n , we obtain En = Q($n).
In particular, Em+i = Em($m+i) for m, i ≥ 1. We fix m and write

µ$m+i, Em(X) =
∑

j∈[0,qi]

ai,jX
j

= Xqi
+

( ∑
j∈[1,qi−1]

ai,jX
j
)
−$m ∈ Z(f)[$m][X] .

Let vq(j) := max{α ∈ Z≥0 : qα | j }.

Theorem (6.6, 6.7, 6.9).
(i) We have f i−vq(j) | ai,j for j ∈ [0, qi].
(i′) If j < qi(q − 2)/(q − 1), then f i−vq(j)$m | ai,j.
(ii) We have ai,j ≡f i+1 ai+β,qβj for j ∈ [0, qi] and β ≥ 1.
(ii′) If j < qi(q − 2)/(q − 1), then ai,j ≡f i+1$m

ai+β,qβj for β ≥ 1.
(iii) The element f i−β exactly divides ai,qi−(qi−qβ)/(q−1) for β ∈ [0, i− 1].
(iv) If f = Y , then µ$m+i, Em(X) ≡Y 2 Xqi

+ Y X(q−1)qi−1 −$m .

A comparison of the assertions (iv) in the number field case and in the
function field case indicates possible generalizations — we do not know what
happens for µπm+i,Em(X) for m ≥ 2 in the number field case; moreover, we
do not know what happens for f 6= Y in the function field case.

0.3. Notations and conventions.
(o) Within a chapter, the lemmata, propositions etc. are numbered con-

secutively.
(i) For a, b ∈ Z, we denote by [a, b] := {c ∈ Z : a ≤ c ≤ b} the interval

in Z.
(ii) For m ∈ Z r {0} and a prime p, we denote by m[p] := pvp(m) the

p-part of m, where vp denotes the valuation of an integer at p.
(iii) If R is a discrete valuation ring with maximal ideal generated by r,

we write vr(x) for the valuation of x ∈ R r {0} at r, i.e. x/rvr(x) is a
unit in R. In addition, vr(0) := +∞.

(iv) Given an element x algebraic over a field K, we denote by µx,K(X) ∈
K[X] the minimal polynomial of x over K.

(v) Given a commutative ring A and an element a ∈ A, we sometimes
denote the quotient by A/a := A/aA — mainly if A plays the role of
a base ring. For b, c ∈ A, we write b ≡a c if b− c ∈ aA.
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(vi) For an assertion X, which might be true or not, we let {X} equal 1
if X is true, and equal 0 if X is false.

Throughout, let p ≥ 3 be a prime.

1. A polynomial lemma

We consider the polynomial ring Z[X, Y ].

Lemma 1.1. We have (X + pY )k ≡k[p]·p2Y 2 Xk + kXk−1pY for k ≥ 1.

Proof. Since
(

k
j

)
= k/j ·

(
k−1
j−1

)
, we obtain for j ≥ 2 that

vp(p j
(

k
j

)
) ≥ j + vp(k)− vp(j)

≥ vp(k) + 2 ,

where the second inequality follows from j ≥ 2 if vp(j) = 0, and from
j ≥ pvp(j) ≥ 3vp(j) ≥ vp(j) + 2 if vp(j) ≥ 1. �

Corollary 1.2. We have (X + pY )k ≡k[p]·pY Xk for k ≥ 1.

Corollary 1.3. For l ≥ 1 and x, y ∈ Z such that x ≡pl y, we have
xk ≡k[p]·pl yk for k ≥ 1.

Corollary 1.4. We have (X + Y )pβ+α ≡pα+1 (Xpβ
+ Y pβ

)pα
for all

α, β ≥ 0.

Proof. The assertion follows by (1.2) since f(X, Y ) ≡p g(X, Y ) implies that
f(X, Y )pα ≡pα+1 g(X, Y )pα

, where f(X, Y ), g(X, Y ) ∈ Z[X, Y ]. �

2. Consecutive purely ramified extensions

2.1. Setup. Let T |S and S|R be finite and purely ramified extensions
of discrete valuation rings, of residue characteristic charR/rR = p. The
maximal ideals of R, S and T are generated by r ∈ R, s ∈ S and t ∈ T ,
and the fields of fractions are denoted by K = frac R, L = frac S and
M = frac T , respectively. Denote m = [M : L] and l = [L : K]. We may
and will assume s = (−1)m+1NM |L(t) and r = (−1)l+1NL|K(s).

We have S = R[s] with

µs,K(X) = X l +
( ∑

j∈[1,l−1]

ajX
j
)
− r ∈ R[X] ,

and T = R[t] with

µt,K(X) = X lm +
( ∑

j∈[1,lm−1]

bjX
j
)
− r ∈ R[X] .

Cf. [9, I.§7, prop. 18]. The situation can be summarized in the diagram
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rR ⊆ R

sS ⊆ S = R[s]

tT ⊆ T = S[t] = R[t]

��

��

��

K

l

L

m

M

Note that r | p, and that for z ∈ M , we have vt(z) = m·vs(z) = ml·vr(z).

2.2. Characteristic 0. In this section, we assume charK = 0. In partic-
ular, Z(p) ⊆ R.

Assumption 2.1. Suppose given x, y ∈ T and k ∈ [1, l − 1] such that
(i) p | y and tm ≡y s,
(ii) x | jaj for all j ∈ [1, l − 1], and
(iii) xr | jaj for all j ∈ [1, k − 1].

Put c := gcd(xysk−1, ylsl−1) ∈ T .

Lemma 2.2. Given (2.1), we have c | µs,K(tm) .

Proof. We may decompose

µs,K(tm) = µs,K(tm)− µs,K(s)

= (tml − sl) +
( ∑

j∈[1,k−1]

aj(tmj − sj)
)

+
( ∑

j∈[k,l−1]

aj(tmj − sj)
)

.

Now since tm = s + zy for some z ∈ T by (2.1.i), we have

tmj (1.1)
≡ jy2 sj + jsj−1zy ≡jsj−1y sj

for any j ≥ 1, so that sj−1 | r | p | y gives tmj ≡jsj−1y sj .
In particular, ylsl−1 | tml − sl. Moreover, xysl |

∑
j∈[1,k−1] aj(tmj − sj)

by (2.1.iii). Finally, xysk−1 |
∑

j∈[k,l−1] aj(tmj − sj) by (2.1.ii). �

The following proposition will serve as inductive step in (3.2).

Proposition 2.3. Given (2.1), we have t−jc | bj if j 6≡m 0 and
t−jc | (bj − aj/m) if j ≡m 0, where j ∈ [1, lm− 1].
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Proof. From (2.2) we take∑
j∈[1,lm−1]

(
bj − {j ≡m 0} aj/m

)
tj = −µs,K(tm) ≡c 0 .

Since the summands have pairwise different valuations at t, we obtain(
bj − {j ≡m 0} aj/m

)
tj ≡c 0

for all j ∈ [1, lm− 1]. �

2.3. As an illustration: cyclotomic polynomials. For n ≥ 1, we
choose primitive roots of unity ζpn over Q in such a manner that ζp

pn+1 =
ζpn . We abbreviate ϑn = ζpn − 1.

We shall show by induction on n that writing

µϑn,Q(X) = Φpn(X + 1) =
∑

j∈[0,pn−1(p−1)]

dn,jX
j

with dn,j ∈ Z, we have pn−1 | jdn,j for j ∈ [0, pn−1(p − 1)], and even
pn | jdn,j for j ∈ [0, pn−1(p− 2)].

This being true for n = 1 since Φp(X +1) = ((X +1)p−1)/X, we assume
it to be true for n− 1 and shall show it for n, where n ≥ 2. We apply the
result of the previous section to R = Z(p), r = −p, S = Z(p)[ϑn−1], s = ϑn−1

and T = Z(p)[ϑn], t = ϑn. In particular, we have l = pn−2(p − 1) and
µs,K(X) = Φpn−1(X+1); we have m = p and µt,L(X) = (X+1)p−1−ϑn−1;
finally, we have µt,K(X) = Φpn(X + 1).

We may choose y = pϑn, x = pn−2 and k = pn−2(p − 2) + 1 in (2.1).
Hence c = pn−1ϑpn−2pn−1+1

n . By (2.3), we obtain that pn−1ϑpn−2pn−1+1−j
n

divides dn,j − dn−1,j/p if j ≡p 0 and that it divides dn,j if j 6≡p 0. Since the
coefficients in question are in R, we may draw the following conclusion.

(I)


If j ≡p 0, then pn | dn,j − dn−1,j/p if j ≤ pn−1(p− 2),

and pn−1 | dn,j − dn−1,j/p if j > pn−1(p− 2);

if j 6≡p 0, then pn | dn,j if j ≤ pn−1(p− 2),
and pn−1 | dn,j if j > pn−1(p− 2).

By induction, this establishes the claim.
Using (1.4), assertion (I) also follows from the more precise relation

(II)
Φpn(X+1)−Φpn−1(Xp+1) ≡pn Xpn−1(p−2)

(
(Xp + 1)pn−2 − (X + 1)pn−1

)
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for n ≥ 2, which we shall show now. In fact, by (1.4) we have (X +1)pn ≡pn

(Xp + 1)pn−1
as well as (Xp + 1)pn−2 − (X + 1)pn−1 ≡pn−1 0, and so(

(X + 1)pn − 1
) (

(Xp + 1)pn−2 − 1
)

−
(
(Xp + 1)pn−1 − 1

) (
(X + 1)pn−1 − 1

)
≡pn

(
(Xp + 1)pn−1 − 1

) (
(Xp + 1)pn−2 − 1

)
−

(
(Xp + 1)pn−1 − 1

) (
(X + 1)pn−1 − 1

)
=

(
(Xp + 1)pn−1 − 1

) (
(Xp + 1)pn−2 − (X + 1)pn−1

)
≡pn Xpn

(
(Xp + 1)pn−2 − (X + 1)pn−1

)
= Xpn−1(p−2)

(
(Xp + 1)pn−2 − (X + 1)pn−1

)
·Xpn−1 ·Xpn−1

≡pn Xpn−1(p−2)
(
(Xp + 1)pn−2 − (X + 1)pn−1

)
·
(
(X + 1)pn−1 − 1

) (
(Xp + 1)pn−2 − 1

)
,

and the result follows by division by the monic polynomial(
(X + 1)pn−1 − 1

) (
(Xp + 1)pn−2 − 1

)
.

Finally, we remark that writing

Fn(X) := Φpn(X + 1) + Xpn−2pn−1
(X + 1)pn−1

,

we can equivalently reformulate (II) to

(II′) Fn(X) ≡pn Fn−1(Xp) .

2.4. Characteristic p. In this section, we assume charK = p.

Assumption 2.4. Suppose given x, y ∈ T and k ∈ [1, l − 1] such that

(i) tm ≡ys s,
(ii) x | ajy

j[p] for all j ∈ [1, l − 1], and
(iii) xr | ajy

j[p] for all j ∈ [1, k − 1].

Let c := gcd(xsk, yl[p]sl) ∈ T .

Lemma 2.5. Given (2.4), we have c | µs,K(tm) .
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Proof. We may decompose

µs,K(tm) = µs,K(tm)− µs,K(s)

= (tml − sl) +
( ∑

j∈[1,k−1]

aj(tmj − sj)
)

+
( ∑

j∈[k,l−1]

aj(tmj − sj)
)

.

Now since tm ≡ys s, we have tmj ≡yj[p]sj sj for any j ≥ 1.
In particular, yl[p]sl | tml − sl. Moreover, xsl |

∑
j∈[1,k−1] aj(tmj − sj) by

(2.4.iii). Finally, xsk |
∑

j∈[k,l−1] aj(tmj − sj) by (2.4.ii). �

Proposition 2.6. Given (2.4), we have t−jc | bj if j 6≡m 0 and
t−jc | (bj − aj/m) if j ≡m 0 for j ∈ [1, lm− 1].

This follows using (2.5), cf. (2.3).

3. Towers of purely ramified extensions

Suppose given a chain

R0 ⊆ R1 ⊆ R2 ⊆ · · ·

of finite purely ramified extensions Ri+1|Ri of discrete valuations rings, with
maximal ideal generated by ri ∈ Ri, of residue characteristic charRi/riRi =
p, with field of fractions Ki = frac Ri, and of degree [Ki+1 : Ki] = pκ = q
for i ≥ 0, where κ ≥ 1 is an integer stipulated to be independent of i. We
may and will suppose that NKi+1|Ki

(ri+1) = ri for i ≥ 0. We write

µri,K0(X) = Xqi
+

( ∑
j∈[1,qi−1]

ai,jX
j
)
− r0 ∈ R0[X] .

For j ≥ 1, we denote vq(j) := max{α ∈ Z≥0 : j ≡qα 0}. That is, vq(j) is
the largest integer below vp(j)/κ. We abbreviate g := (q − 2)/(q − 1).

Assumption 3.1. Suppose given f ∈ R0 such that rq−1
i f | rq

i − ri−1 for all
i ≥ 0. If char K0 = 0, then suppose p | f | q. If char K0 = p, then suppose
r0 | f .

Proposition 3.2. Assume (3.1).

(i) We have f i−vq(j) | ai,j for i ≥ 1 and j ∈ [1, qi − 1].
(i′) If j < qig, then f i−vq(j)r0 | ai,j.
(ii) We have ai,j ≡f i+1 ai+β,qβj for i ≥ 1, j ∈ [1, qi − 1] and β ≥ 1.
(ii′) If j < qig, then ai,j ≡f i+1r0

ai+β,qβj for β ≥ 1.
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Proof. Consider the case char K0 = 0. To prove (i, i′), we perform an
induction on i, the assertion being true for i = 1 by (3.1). So suppose
given i ≥ 2 and the assertion to be true for i − 1. To apply (2.3), we let
R = R0, r = r0, S = Ri−1, s = ri−1, T = Ri and t = ri. Furthermore, we
let y = rq−1

i f , x = f i−1 and k = qi−1 − (qi−1 − 1)/(q − 1), so that (2.1) is
satisfied by (3.1) and by the inductive assumption. We have c = f irqk−1

i .
Consider j ∈ [1, qi − 1]. If j 6≡q 0, then (2.3) gives

vri(ai,j/f i) ≥ qk − 1− j ,

whence f i divides ai,j ; f i strictly divides ai,j if j < qig, since
0 < (qk − 1)− qig = 1/(q − 1) < 1.

If j ≡q 0, then (2.3) gives

vri((ai,j − ai−1,j/q)/f i) ≥ qk − 1− j ,

whence f i divides ai,j − ai−1,j/q; strictly, if j < qig. By induction,
f i−1−vq(j/q) divides ai−1,j/q; strictly, if j/q < qi−1g. But ai−1,j/q ≡f i ai,j ,
and therefore f i−vq(j) divides also ai,j ; strictly, if j < qig. This proves
(i, i′).

The case β = 1 of (ii, ii′) has been established in the course of the proof
of (i, i′). The general case follows by induction.

Consider the case char K0 = p. To prove (i, i′), we perform an induction
on i, the assertion being true for i = 1 by (3.1). So suppose given i ≥ 2 and
the assertion to be true for i − 1. To apply (2.6), we let R = R0, r = r0,
S = Ri−1, s = ri−1, T = Ri and t = ri. Furthermore, we let y = r−1

i f ,
x = r−1

i f i and k = qi−1−(qi−1−1)/(q−1), so that (2.4) is satisfied by (3.1)
and by the inductive assumption. In fact, xy−j[p] = r

j[p]−1
i f i−j[p] divides

f i−1−vq(j) both if j 6≡p 0 and if j ≡p 0; in the latter case we make use of
the inequality pα−1(p−1) ≥ α+1 for α ≥ 1, which needs p ≥ 3. We obtain
c = f irqk−1

i .
Using (2.6) instead of (2.3), we may continue as in the former case to

prove (i, i′), and, in the course of this proof, also (ii, ii′). �

4. Galois descent of a divisibility

Let

S -
�� G

S̃

6

� �m
6

� �m

T -
�� G

T̃



812 Matthias Künzer, Eduard Wirsing

be a commutative diagram of finite, purely ramified extensions of discrete
valuation rings. Let s ∈ S, t ∈ T , s̃ ∈ S̃ and t̃ ∈ T̃ generate the respective
maximal ideals. Let L = frac S, M = frac T , L̃ = frac S̃ and M̃ = frac T̃
denote the respective fields of fractions. We assume the extensions M |L
and L̃|L to be linearly disjoint and M̃ to be the composite of M and L̃.
Thus m := [M : L] = [M̃ : L̃] and [L̃ : L] = [M̃ : M ]. We assume L̃|L to be
galois and identify G := Gal(L̃|L) = Gal(M̃ |M) via restriction. We may
and will assume that s = NL̃|L(s̃), and that t = NM̃ |M (t̃).

Lemma 4.1. In T̃ , the element 1− t̃m/s̃ divides 1− tm/s .

Proof. Let d̃ = 1− t̃m/s̃, so that t̃m = s̃(1− d̃). We conclude

tm = NM̃ |M (t̃m)

= NL̃|L(s̃) ·
∏
σ∈G

(1− d̃σ)

≡sd̃ s .

�

5. Cyclotomic number fields

5.1. Coefficient valuation bounds. For n ≥ 1, we let ζpn be a primitive
pnth root of unity over Q. We make choices in such a manner that ζp

pn =
ζpn−1 for n ≥ 2. We denote ϑn = ζpn − 1 and Fn = Q(ζpn). Let En =
FixCp−1Fn, so [En : Q] = pn−1. Let

πn = NFn|En
(ϑn) =

∏
j∈[1, p−1]

(ζjpn−1

pn − 1) .

The minimal polynomial µϑn,Fn−1(X) = (X + 1)p − ϑn−1 − 1 shows that
NFn|Fn−1

(ϑn) = ϑn−1, hence also NEn|En−1
(πn) = πn−1. Note that π1 = p

and E1 = Q.
Let O be the integral closure of Z(p) in En. Since NEn|Q(πn) = π1 = p,

we have Z(p)/pZ(p)
-∼ O/πnO. In particular, the ideal πnO in O is prime.

Now πpn−1

n O = pO, since πpn−1

n /p = πpn−1

n /NEn|Q(πn) ∈ Z(p)[ϑn]∗ ∩ En =
O∗. Thus O is a discrete valuation ring, purely ramified of degree pn−1 over
Z(p), and so O = Z(p)[πn] [9, I.§7, prop. 18]. In particular, En = Q(πn).

Remark 5.1. The subring Z[πn] of Q(πn), however, is not integrally closed
in general. For example, if p = 5 and n = 2, then µπ2,Q(X) = X5−20X4 +
100X3 − 125X2 + 50X − 5 has discriminant 58 · 76, which does not divide
the discriminant of Φ52(X), which is 535.

Lemma 5.2. We have πp
n ≡

πp−1
n p

πn−1 for n ≥ 2.
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Proof. First of all, ϑp
n ≡ϑnp ϑn−1 since (X − 1)p − (Xp − 1) is divisible by

p(X−1) in Z[X]. Letting T̃ = Z(p)[ϑn] and (t̃, s̃, t, s) = (ϑn, ϑn−1, πn, πn−1),
(4.1) shows that 1−ϑp

n/ϑn−1 divides 1−πp
n/πn−1. Therefore, ϑnp ϑ−1

n−1πn−1

divides πn−1 − πp
n. �

Now suppose given m ≥ 1. To apply (3.2), we let f = q = p, Ri =
Z(p)[πm+i] and ri = πm+i for i ≥ 0. We keep the notation

µπm+i, Em(X) = µri, K0(X) = Xpi
+

( ∑
j∈[1,pi−1]

ai,jX
j
)
− πm

∈ R0[X] = Z(p)[πm][X] .

Theorem 5.3.
(i) We have pi | jai,j for i ≥ 1 and j ∈ [1, pi − 1].
(i′) If j < pi(p− 2)/(p− 1), then piπm | jai,j.
(ii) We have ai,j ≡pi+1 ai+β,pβj for i ≥ 1, j ∈ [1, pi − 1] and β ≥ 1.
(ii′) If j < pi(p− 2)/(p− 1), then ai,j ≡pi+1πm

ai+β,pβj.

Assumption (3.1) is fulfilled by virtue of (5.2), whence the assertions
follow by (3.2).

Example 5.4. For p = 5, m = 1 and i = 2, we have

µπ3,Q(X) = X25 − 4 · 52X24 + 182 · 52X23 − 8 · 56X22 + 92823 · 52X21

− 6175454 · 5X20 + 12194014 · 52X19 − 18252879 · 53X18

+ 4197451 · 55X17 − 466901494 · 53X16 + 8064511079 · 52X15

− 4323587013 · 53X14 + 1791452496 · 54X13

− 113846228 · 56X12 + 685227294 · 55X11

− 15357724251 · 53X10 + 2002848591 · 54X9

− 4603857997 · 53X8 + 287207871 · 54X7 − 291561379 · 53X6

+ 185467152 · 52X5 − 2832523 · 53X4 + 121494 · 53X3

− 514 · 54X2 + 4 · 54X − 5 .

Now v5(a3,22) = 6 6= 5 = v5(a4,5·22), so the valuations of the coefficients
considered in (5.3.ii) differ in general. This, however, does not contradict
the assertion a3,22 ≡54 a4, 5·22 from loc. cit.

5.2. A different proof of (5.3. i, i′) and some exact valuations. Let
m ≥ 1 and i ≥ 0. We denote Ri = Z(p)[πm+i], ri = πm+i, Ki = frac Ri,
R̃i = Z(p)[ϑm+i] and r̃i = ϑm+i. Denoting by D the respective different
[9, III.§3], we have DR̃i|R̃0

= (pi) and DR̃i|Ri
= (r̃p−2

i ) [9, III.§3, prop. 13],
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whence
(∗)
DRi|R0

=
(
µ′ri,K0

(ri)
)

= DR̃i|R̃0
DR̃0|R0

D−1
R̃i|Ri

=
(
pir

pi−1−(pi−1)/(p−1)
i

)
,

cf. [9, III.§3, cor. 2]. Therefore, pir
pi−1−(pi−1)/(p−1)
i divides jai,jr

j−1
i for

j ∈ [1, pi − 1], and (5.3. i, i′) follow.
Moreover, since only for j = pi − (pi − 1)/(p− 1) the valuations at ri of

pir
pi−1−(pi−1)/(p−1)
i and jai,jr

j−1
i are congruent modulo pi, we conclude by

(∗) that they are equal, i.e. that pi exactly divides ai,pi−(pi−1)/(p−1).

Corollary 5.5. The element pi−β exactly divides ai,pi−(pi−pβ)/(p−1) for
β ∈ [0, i− 1].

Proof. This follows by (5.3.ii) from what we have just said. �

E.g. in (5.4), 51 exactly divides a2,25−5 = a2,20, and 52 exactly divides
a2,25−5−1 = a2,19.

5.3. Some traces. Let µp−1 denote the group of (p− 1)st roots of unity
in Qp. We choose a primitive (p− 1)st root of unity ζp−1 ∈ µp−1 and may
thus view Q(ζp−1) ⊆ Qp as a subfield. Note that [Q(ζp−1) : Q] = ϕ(p− 1),
where ϕ denotes Euler’s function. The restriction of the valuation vp at
p on Qp to Q(ζp), is a prolongation of the valuation vp on Q to Q(ζp−1)
(there are ϕ(p− 1) such prolongations).

Proposition 5.6. For n ≥ 1, we have

TrEn|Q(πn) = pnsn − pn−1sn−1 ,

where

sn :=
1

p− 1

∑
H ⊆µp−1

(−1)#H
{

vp

( ∑
ξ∈H ξ

)
≥ n

}
for n ≥ 0 .

We have s0 = 0, and sn ∈ Z for n ≥ 0. The sequence (sn)n becomes
stationary at some minimally chosen N0(p). We have

N0(p) ≤ N(p) := max
H ⊆µp−1

{
vp

(∑
ξ∈H ξ

)
:

∑
ξ∈H ξ 6= 0

}
+ 1 .

An upper estimate for N(p), hence for N0(p), is given in (5.13).

Proof. For j ∈ [1, p− 1] the p -adic limits

ξ(j) := lim
n→∞

jpn

exist since jpn−1 ≡pn jpn
by (1.3). They are distinct since ξ(j) ≡p j, and,

thus, form the group µp−1 = {ξ(j) | j ∈ [1, p− 1]}. Using the formula

TrFn|Q(ζm
pn) = pn

{
vp(m) ≥ n

}
− pn−1

{
vp(m) ≥ n− 1

}
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and the fact that jpn−1 ≡pn ξ(j), we obtain

TrFn|Q(πn) = TrFn|Q

( ∏
j∈[1, p−1]

(
1− ζjpn−1

pn

))

=
∑

J ⊆ [1, p−1]

(−1)#J TrFn|Q

(
ζ

P
j∈J jpn−1

pn

)
=

∑
J ⊆ [1, p−1]

(−1)#J

(
pn

{
vp

( ∑
j∈J ξ(j)

)
≥ n

}
− pn−1

{
vp

( ∑
j∈J ξ(j)

)
≥ n− 1

})
= (p− 1)(pnsn − pn−1sn−1) ,

whence

TrEn|Q(πn) = pnsn − pn−1sn−1 .

Now s0 = 0 ∈ Z by the binomial formula. Therefore, by induction, we
conclude from pnsn − pn−1sn−1 ∈ Z that pnsn ∈ Z. Since (p − 1)sn ∈ Z,
too, we obtain sn ∈ Z.

As soon as n ≥ N(p), the conditions vp(
∑

ξ∈H ξ) ≥ n and vp(
∑

ξ∈H ξ) =
+∞ on H ⊆ µp−1 become equivalent, and we obtain

sn =
1

p− 1

∑
H⊆µp−1

(−1)#H
{∑

ξ∈H ξ = 0
}

,

which is independent of n. Thus N0(p) ≤ N(p). �

Lemma 5.7. We have s1 = 1. In particular, TrE2|Q(π2) ≡p2 −p .

Proof. Since TrE1|Q(π1) = TrQ|Q(p) = p, and since s0 = 0, we have s1 = 1
by (5.6). The congruence for TrE2|Q(π2) follows again by (5.6). �

Corollary 5.8. We have

µπn,Q(X) ≡p2 Xpn−1
+ pX(p−1)pn−2 − p

for n ≥ 2.

Proof. By dint of (5.7), this ensues from (5.3. i′, ii). �

Example 5.9. The last n for which we list sn equals N(p), except if there
is a question mark in the next column. The table was calculated using
Pascal (p ≤ 53) and Magma (p ≥ 59). In the last column, we list the upper
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bound for N(p) calculated below (5.13).

sn

n =

0 1 2 3 4 5 6 7

upper

bound
for N(p)

p = 3 0 1
5 0 1 1
7 0 1 1

11 0 1 3 3
13 0 1 3 3
17 0 1 8 16 5
19 0 1 10 12 4
23 0 1 33 89 93 7
29 0 1 377 571 567 8
31 0 1 315 271 259 6
37 0 1 107 940 1296 9
41 0 1 6621 51693 18286 20186 20250 12
43 0 1 1707 4767 6921 6665 9
47 0 1 2250 272242 173355 181481 182361 16
53 0 1 71201 363798 1520045 1350049 1292229 1289925 18
59 0 1 1276 ? 21
61 0 1 2516 ? 12
67 0 1 407186 ? 15
71 0 1 5816605 ? 18
73 0 1 8370710 ? 18
79 0 1 169135 ? 18
83 0 1 632598 ? 30
89 0 1 26445104 ? 30
97 0 1 282789 ? 24

101 0 1 25062002 ? 31
103 0 1 56744199 ? 25
107 0 1 1181268305 ? 40
109 0 1 91281629 ? 28
113 0 1 117774911422 ? 37
127 0 1 6905447 ? 28
131 0 1 2988330952791 ? 37
137 0 1 1409600547 ? 50
139 0 1 3519937121 ? 34
149 0 1 25026940499 ? 56
151 0 1 164670499159 ? 31
157 0 1 51594129045351 ? 38
163 0 1 288966887341 ? 42
167 0 1 1205890070471 ? 64
173 0 1 17802886165762 ? 66
179 0 1 1311887715966 ? 69
181 0 1 128390222739 ? 38
191 0 1 233425263577158 ? 57
193 0 1 306518196952028 ? 51
197 0 1 347929949728221 ? 66
199 0 1 9314622093145 ? 48
211 0 1 12532938009082 ? 39

So for example if p = 31, then TrQ(π3)|Q(π3) = 271·313−315·312, whereas
TrQ(π7)|Q(π7) = 259 · 317 − 259 · 316. Moreover, N0(31) = N(31) = 4 ≤ 6.

Remark 5.10. Vanishing (resp. vanishing modulo a prime) of sums of
roots of unity has been studied extensively. See e.g. [2], [6], where also
further references may be found.

Remark 5.11. Neither do we know whether sn ≥ 0 nor whether
TrEn|Q(πn) ≥ 0 always hold. Moreover, we do not know a prime p for
which N0(p) < N(p).
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Remark 5.12. We calculated some further traces appearing in (5.3), using
Maple and Magma.

For p = 3, n ∈ [2, 10], we have TrEn|En−1
(πn) = 3 · 2.

For p = 5, n ∈ [2, 6], we have TrEn|En−1
(πn) = 5 · 4.

For p = 7, n ∈ [2, 5], we have TrEn|En−1
(πn) = 7 · 6.

For p = 11, we have TrE2|E1
(π2) = 11 · 32, whereas

TrE3|E2
(π3)

= 22 · (15 + ζ2 + 2ζ3 − ζ5 + ζ6 − 2ζ8 − ζ9 + 2ζ14 − ζ16 + ζ18 − ζ20

− 2ζ24 + 2ζ25 − 2ζ26 − ζ27 − ζ31 + 2ζ36 − ζ38 + ζ41 − ζ42 − 2ζ43 + 2ζ47

− 3ζ49 − ζ53 + ζ54 + 2ζ58 − ζ60 − ζ64 + ζ67 + 2ζ69 − ζ71 − 2ζ72 − ζ75

− 2ζ78 + 3ζ80 − ζ82 − ζ86 + 2ζ91 − ζ93 − 2ζ95 − 3ζ97 + 2ζ102 + ζ103

− ζ104 − ζ108)

= 22 · 2014455354550939310427−1 · (34333871352527722810654

+ 1360272405267541318242502π − 31857841148164445311437042π2

+ 135733708409855976059658636π3 − 83763613130017142371566453π4

+ 20444806599344408104299252π5 − 2296364631211442632168932π6

+ 117743741083866218812293π7 − 2797258465425206085093π8

+ 27868038642441136108π9 − 79170513243924842π10) ,

where ζ := ζ112 and π := π2.

5.4. An upper bound for N(p). We view Q(ζp−1) as a subfield of Qp,
and now, in addition, as a subfield of C. Since complex conjugation com-
mutes with the operation of Gal(Q(ζp−1)|Q), we have |NQ(ζp−1)|Q(x)| =
|x|ϕ(p−1) for x ∈ Q(ζp−1).

We abbreviate Σ(H) :=
∑

ξ∈H ξ for H ⊆ µp−1. Since |Σ(H)| ≤ p − 1,
we have |NQ(ζp−1)|Q(Σ(H))| ≤ (p− 1)ϕ(p−1). Hence, if Σ(H) 6= 0, then

vp(Σ(H)) ≤ vp(NQ(ζp−1)|Q(Σ(H))) < ϕ(p− 1) ,

and therefore N(p) ≤ ϕ(p − 1). We shall ameliorate this bound by a
logarithmic term.

Proposition 5.13. We have

N(p) ≤ ϕ(p− 1)
(

1− log π

log p

)
+ 1

for p ≥ 5.
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Proof. It suffices to show that |Σ(H)| ≤ p/π for H ⊆ µp−1. We will actually
show that

max
H⊆µp−1

|Σ(H)| =
1

sin π
p−1

,

from which this inequality follows using sin x ≥ x− x3/6 and p ≥ 5.
Choose H ⊆ µp−1 such that |Σ(H)| is maximal. Since p − 1 is even,

the (p− 1)st roots of unity fall into pairs (η,−η). The summands of Σ(H)
contain exactly one element of each such pair, since |Σ(H) + η|2 + |Σ(H)−
η|2 = 2|Σ(H)|2 + 2 shows that at least one of the inequalities |Σ(H) + η| ≤
|Σ(H)| and |Σ(H)− η| ≤ |Σ(H)| fails.

By maximality, replacing a summand η by −η in Σ(H) does not increase
the value of |Σ(H)|, whence

|Σ(H)|2 ≥ |Σ(H)− 2η|2 = |Σ(H)|2 − 4 Re(η · Σ(H)) + 4 ,

and thus
Re(η · Σ(H)) ≥ 1 > 0 .

Therefore, the (p − 1)/2 summands of Σ(H) lie in one half-plane, whence
the value of |Σ(H)|. �

6. Cyclotomic function fields, after Carlitz and Hayes

6.1. Notation and basic facts.
We shall give a brief review while fixing notation.

Let ρ ≥ 1 and r := pρ. Write Z := Fr[Y ] and Q := Fr(Y ), where Y is
an independent variable. We fix an algebraic closure Q̄ of Q. The Carlitz
module structure on Q̄ is defined by the Fr-algebra homomorphism given
on the generator Y as

Z - EndQQ̄
Y -

(
ξ - ξY := Y ξ + ξr

)
.

We write the module product of ξ ∈ Q̄ with e ∈ Z as ξe. For each e ∈ Z,
there exists a unique polynomial Pe(X) ∈ Z[X] that satisfies Pe(ξ) = ξe

for all ξ ∈ Q̄. In fact, P1(X) = X, PY (X) = Y X + Xr, and PY i+1 =
Y PY i(X) + PY i(Xr) for i ≥ 1. For a general e ∈ Z, the polynomial Pe(Y )
is given by the according linear combination of these.

Note that Pe(0) = 0, and that P ′
e(X) = e, whence Pe(X) is separable,

i.e. it decomposes as a product of distinct linear factors in Q̄[X]. Let

λe = anneQ̄ = {ξ ∈ Q̄ : ξe = 0} ⊆ Q̄
be the annihilator submodule. Separability of Pe(X) shows that #λe =
deg Pe(X) = rdeg e. Given aQ-linear automorphism σ of Q̄, we have (ξe)σ =
Pe(ξ)σ = Pe(ξσ) = (ξσ)e. In particular, λe is stable under σ. Therefore,
Q(λe) is a Galois extension of Q.
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Since #annẽλe = #λẽ = rdeg ẽ for ẽ | e, we have λe ' Z/e as Z-modules.
It is not possible, however, to distinguish a particular isomorphism.

We shall restrict ourselves to prime powers now. We fix a monic irre-
ducible polynomial f = f(Y ) ∈ Z and write q := rdeg f . For n ≥ 1, we let
θn be a Z-linear generator of λfn . We make our choices in such a manner
that θf

n+1 = θn for n ≥ 1. Note that Z[λfn ] = Z[θn] since the elements of
λfn are polynomial expressions in θn.

Suppose given two roots ξ, ξ̃ ∈ Q̄ of

Ψfn(X) := Pfn(X)/Pfn−1(X) ∈ Z[X] ,

i.e. ξ, ξ̃ ∈ λfn r λfn−1 . Since ξ is a Z-linear generator of λfn , there is
an e ∈ Z such that ξ̃ = ξe. Since ξe/ξ = Pe(X)/X|X=ξ ∈ Z[θn], ξ̃ is a
multiple of ξ in Z[θn]. Reversing the argument, we see that ξ̃ is in fact a
unit multiple of ξ in Z[θn].

Lemma 6.1. The polynomial Ψfn(X) is irreducible.

Proof. We have Ψfn(0) =
Pfn(X)/X

Pfn−1(X)/X

∣∣∣∣
X=0

= f . We decompose Ψfn(X) =∏
i∈[1,k] Fi(X) in its distinct monic irreducible factors Fi(X) ∈ Z[X]. One

of the constant terms, say Fj(0), is thus a unit multiple of f in Z, while
the other constant terms are units. Thus, being conjugate under the Galois
action, all roots of Fj(X) in Q[θn] are non-units in Z[θn], and the remaining
roots of Ψfn(X) are units. But all roots of Ψfn(X) are unit multiples of
each other. We conclude that Ψfn(X) = Fj(X) is irreducible. �

By (6.1), Ψfn(X) is the minimal polynomial of θn over Q. In particular,
[Q(θn) : Q] = qn−1(q − 1), and so

Z[θn]θ(q−1)qn−1

n = Z[θn]NQ(θn)|Q(θn) = Z[θn]f .

In particular, Z(f)[θn] is a discrete valuation ring with maximal ideal gen-
erated by θn, purely ramified of index qn−1(q − 1) over Z(f), cf. [9, I.§7,
prop. 18]. There is a group isomorphism

(Z/fn)∗ -∼ Gal(Q(θn)|Q)
e - (θn

- θe
n) ,

well defined since θe
n is a root of Ψfn(X), too; injective since θn generates

λfn over Z; and surjective by cardinality.
Note that the Galois operation on Q(θn) corresponding to e ∈ (Z/fn)∗

coincides with the module operation of e on the element θn, but not every-
where. For instance, if f 6= Y , then the Galois operation corresponding to
Y sends 1 to 1, whereas the module operation of Y sends 1 to Y + 1.
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The discriminant of Z[θn] over Z is given by

∆Z[θn]|Z = NQ(θn)|Q(Ψ′
fn(θn))

= NQ(θn)|Q
(
P ′

fn(θn)/Pfn−1(θn)
)

= NQ(θn)|Q (fn/θ1)

= f qn−1(nq−n−1) .

Lemma 6.2. The ring Z[θn] is the integral closure of Z in Q(θn).

Proof. Let e ∈ Z be a monic irreducible polynomial different from f . Write
O0 := Z(e)[θn] and let O be the integral closure of O0 in Q(θn). Let

O+
0 := {ξ ∈ Q(θn) : TrQ(θn)|Q(ξO0) ⊆ Z(e)}

O+ := {ξ ∈ Q(θn) : TrQ(θn)|Q(ξO) ⊆ Z(e)} .

Then O0 ⊆ O ⊆ O+ ⊆ O+
0 . But O0 = O+

0 , since the Z(e)-linear determi-
nant of this embedding is given by the discriminant ∆Z[θn]|Z , which is a
unit in O0. �

We resume.

Proposition 6.3 ([1],[5], cf. [3, p. 115]). The extension Q(θn)|Q is ga-
lois of degree [Q(θn) : Q] = (q − 1)qn−1, with Galois group isomorphic to
(Z/fn)∗. The integral closure of Z in Q(θn) is given by Z[θn]. We have
Z[θn]θ[Q(θn):Q]

n = Z[θn]f . In particular, θn is a prime element of Z[θn], and
the extension Z(f)[θn]|Z(f) of discrete valuation rings is purely ramified.

6.2. Coefficient valuation bounds. Denote Fn = Q(θn). Let En =
FixCq−1Fn, so [En : Q] = qn−1. Let

$n = NFn|En
(θn) =

∏
e∈(Z/f)∗

θeqn−1

n .

The minimal polynomial µθn,Fn−1(X) = Pf (X) − θn−1 together with the
fact that X divides Pf (X) shows that NFn|Fn−1

(θn) = θn−1, whence
NEn|En−1

($n) = $n−1. Note that $1 =
∏

e∈(Z/f)∗ θe
1 = Ψf (0) = f .

The extension Z(f)[$n] is a discrete valuation ring with maximal ideal
generated by $n, purely ramified of index qn−1 over Z(f). In particular,
En = Q($n).
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Example 6.4. Let r = 3 and f(Y ) = Y 2 + 1, so q = 9. A Magma
calculation shows that

$2 = θ60
2 − Y θ58

2 + Y 2θ56
2 + (−Y 9−Y 3−Y )θ42

2 + (Y 10+Y 4+Y 2+1)θ40
2

+ (−Y 11−Y 5−Y 3+Y )θ38
2 + (−Y 6−Y 4−Y 2)θ36

2

+ (Y 7+Y 5+Y 3+Y )θ34
2 + (−Y 8−Y 6+Y 4−Y 2−1)θ32

2

+ (−Y 5+Y 3−Y )θ30
2 + (Y 18−Y 12−Y 10+Y 6−Y 4+Y 2)θ24

2

+ (−Y 19+Y 13+Y 11+Y 9−Y 7+Y 5+Y )θ22
2

+ (Y 20−Y 14−Y 12+Y 10+Y 8−Y 6−Y 4+Y 2+1)θ20
2

+ (−Y 15−Y 13−Y 11−Y 9+Y 7+Y 5−Y 3)θ18
2

+ (Y 16+Y 14+Y 12−Y 10−Y 8−Y 2)θ16
2

+ (−Y 17−Y 15+Y 13+Y 11+Y 7+Y 5−Y 3+Y )θ14
2

+ (−Y 14−Y 12+Y 10−Y 8−Y 6−Y 4+Y 2+1)θ12
2

+ (−Y 13+Y 11−Y 7+Y 3)θ10
2 + (Y 14−Y 12−Y 10+Y 6+Y 4)θ8

2

+ (−Y 11−Y 7+Y 5+Y 3+Y )θ6
2 + (Y 8+Y 6+Y 2+1)θ4

2 .

With regard to section 6.4, we remark that $2 6= ± θq−1
2 .

Lemma 6.5. We have $q
n ≡

$q−1
n f

$n−1 for n ≥ 2.

Proof. We claim that θq
n ≡θnf θn−1. In fact, the non-leading coefficients of

the Eisenstein polynomial Ψf (X) are divisible by f , so that the congruence
follows by θn−1−θq

n = Pf (θn)−θq
n = θn(Ψf (θn)−θq−1

n ). Letting T̃ = Z(f)[θn]
and (t̃, s̃, t, s) = (θn, θn−1, $n, $n−1), (4.1) shows that 1− θq

n/θn−1 divides
1−$q

n/$n−1. Therefore, θnfθ−1
n−1$n−1 | $n−1 −$q

n. �

Now suppose given m ≥ 1. To apply (3.2), we let Ri = Z(f)[$m+i] and
ri = $m+i for i ≥ 0. We continue to denote

(#)
µ$m+i, Em(X) = µri, K0(X) = Xqi

+
( ∑

j∈[1,qi−1] ai,jX
j
)
−$m

∈ R0[X] = Z(f)[$m][X] ,

and vq(j) = max{α ∈ Z≥0 : j ≡qα 0 }.

Theorem 6.6.
(i) We have f i−vq(j) | ai,j for i ≥ 1 and j ∈ [1, qi − 1].
(i′) If j < qi(q − 2)/(q − 1), then f i−vq(j)$m | ai,j.
(ii) We have ai,j ≡f i+1 ai+β,qβj for i ≥ 1, j ∈ [1, qi − 1] and β ≥ 1.
(ii′) If j < qi(q − 2)/(q − 1), then ai,j ≡f i+1$m

ai+β,qβj for β ≥ 1.
Assumption (3.1) is fulfilled by virtue of (6.5), whence the assertions

follow by (3.2).
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6.3. Some exact valuations. Let m ≥ 1 and i ≥ 0. We denote Ri =
Z(f)[$m+i], ri = $m+i, Ki = frac Ri, R̃i = Z(f)[θm+i] and r̃i = θm+i. We
obtain DR̃i|R̃0

= (f i) and DR̃i|Ri
= (r̃q−2

i ) [9, III.§3, prop. 13], whence

(∗∗) DRi|R0
=

(
µ′ri,K0

(ri)
)

=
(
f ir

qi−1−(qi−1)/(q−1)
i

)
.

Therefore, f ir
qi−1−(qi−1)/(q−1)
i divides jai,jr

j−1
i for j ∈ [1, qi − 1], which is

an empty assertion if j ≡p 0. Thus (6.6. i, i′) do not follow entirely.
However, since only for j = qi − (qi − 1)/(q − 1) the valuations at ri of

f ir
qi−1−(qi−1)/(q−1)
i and jai,jr

j−1
i are congruent modulo qi, we conclude by

(∗∗) that they are equal, i.e. that f i exactly divides ai,qi−(qi−1)/(q−1).

Corollary 6.7. The element f i−β exactly divides ai,qi−(qi−qβ)/(q−1).

Proof. This follows by (6.6.ii) from what we have just said. �

6.4. A simple case. Suppose that f(Y ) = Y and m ≥ 1. Note that

$m+1 =
∏

e∈F∗q

θe
m+1 =

∏
e∈F∗q

eθm+1 = −θq−1
m+1 .

Lemma 6.8. We have

µ$m+1, Em(X) = −$m +
∑

j∈[1,q]

Y q−jXj .

Proof. Using the minimal polynomial µθm+1,Fm(X) = PY (X) − θm =
Xq + Y X − θm, we get

−$m +
∑

j∈[1,q]

Y q−j$j
m+1

= θq−1
m + (Y q+1 − θq2−1

m+1 )/(Y + θq−1
m+1)− Y q

= (Y θq−1
m θm+1 + θq−1

m θq
m+1 − θq2

m+1 − Y qθq
m+1)/(θm+1(Y + θq−1

m+1))
= 0 .

�

Corollary 6.9. Let m, i ≥ 1. We have

µ$m+i, Em(X) ≡Y 2 Xqi
+ Y X(q−1)qi−1 −$m .

Proof. This follows from (6.8) using (6.6.ii). �

Remark 6.10. The assertion of (6.8) also holds if p = 2.

Conjecture 6.11. Let m, i ≥ 1. We use the notation of (#) above, now
in the case f(Y ) = Y . For j ∈ [1, qi], we write qi− j =

∑
k∈[0,i−1] dkq

k with
dk ∈ [0, q − 1]. Consider the following conditions.
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(i) There exists k ∈ [0, i− 2] such that dk+1 < dk.
(ii) There exists k ∈ [0, i− 2] such that vp(dk+1) > vp(dk).

If (i) or (ii) holds, then ai,j = 0. If neither (i) nor (ii) holds, then

v$m(ai,j) = qm−1 ·
∑

k∈[0,i−1]

dk .

Remark 6.12. We shall compare (6.7) with (6.11). If j = qi −
(qi − qβ)/(q − 1) for some β ∈ [0, i − 1], then qi − j = qi−1 + · · · + qβ .
Hence

∑
k∈[0,i−1] dk = i − β, and so according to (6.11), v$m(ai,j) should

equal qm−1(i− β), which is in fact confirmed by (6.7).
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