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On coefficient valuations of Eisenstein
polynomials

par MATTHIAS KUNZER et EDUARD WIRSING

RESUME. Soit p > 3 un nombre premier et soient n > m > 1.
Soit 7, la norme de (pn — 1 sous Cp_1. Ainsi Z,)[mn]|Z,) est
une extension purement ramifiée d’anneaux de valuation discréte
de degré p"~!. Le polynome minimal de 7, sur Q(m,,) est un
polynéme de Eisenstein; nous donnons des bornes inférieures pour
les m,,-valuations de ses coefficients. L’analogue dans le cas d’un
corps de fonctions, comme introduit par Carlitz et Hayes, est
etudié de méme.

ABSTRACT. Let p > 3 be a prime, let n > m > 1. Let m, be
the norm of (,» — 1 under C,_1, so that Z,)[m,]|Z,) is a purely
ramified extension of discrete valuation rings of degree p"~!. The
minimal polynomial of 7,, over Q(m,,) is an Eisenstein polynomial;
we give lower bounds for its coefficient valuations at m,,. The
function field analogue, as introduced by Carlitz and Hayes, is
studied as well.
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0. Introduction

0.1. Problem and methods. Consider a primitive p™th root of unity
(pn over Q, where p is a prime and n > 2. One has Gal(Q({)|Q) ~
Cpn—1 X Cp—1. To isolate the p-part of this extension, let m, be the norm of
(pn — 1 under Cp,_1; that is, the product of the Galois conjugates (¢pn —1)7,
where o runs over the subgroup Cp_;. Then
p—1 Q(CP")
/ -

Q(my) P
p! Q(¢p)

p—1
Q —

We ask for the minimal polynomial fir, q(X) = >_jc(0m-1) a; X7 € Z[X]
of m, over Q. By construction, it is an Eisenstein polynomial; that is,
vp(a;) > 1 for j € [0,p" ! — 1], and wvy(ap) = 1, where v, denotes the
valuation at p.

More is true, though. Our basic objective is to give lower bounds bigger
than 1 for these p-values v,(a;), except, of course, for v,(ap). As a byprod-
uct of our method of proof, we shall also obtain congruences between certain
coefficients for varying n.

A consideration of the trace Trq(x,) () yields additional information
on the second coefficient of jir, q(X). By the congruences just mentioned,
this also gives additional information for certain coefficients of the minimal
polynomials jir, q(X) with | > n; these coefficients no longer appear as
traces.

Finally, a comparison with the different ideal

Dz mnllzy = L[] 1, q(Tn)

then yields some exact coefficient valuations, not just lower bounds.
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Actually, we consider the analogous question for the coefficients of the
slightly more general relative minimal polynomial tir, q(x,.)(X), where n >
m > 1, which can be treated using essentially the same arguments. Note
that 7 = p.

Except for the trace considerations, the whole investigation carries over
mutatis mutandis to the case of cyclotomic function field extensions, as
introduced by CARLITZ [1] and HAYES [5].

As an application, we mention the Wedderburn embedding of the twisted
group ring (with trivial 2-cocycle)

n—1 Xpnfl

Z(p) [ﬂn] ! Cpnfl (G Endz(p)Z(p) [Wn] ~ Zl()p) ,

to which we may reduce the problem of calculating Z ) [(pn ] (Cpn—1 x Cp_1)
by means of Nebe decomposition. The image w(m,) is the companion matrix
of fir, q(X). To describe the image w(Z)[mn] L Cpn-1) of the whole ring,
we may replace this matrix modulo a certain ideal. To do so, we need to
know the valuations of its entries, i.e. of the coefficients of pr, q(X), or at
least a lower bound for them. So far, this could be carried through only for
n =2 [10].

In this article, however, we restrict our attention to the minimal polyno-
mial itself.

0.2. Results.

0.2.1. The number field case. Let p > 3 be a prime, and let (,» denote a
primitive p"th root of unity over Q in such a way that an 11 = Cpn for all
n > 1. Put

Fn = Q(Cp”)
E, = Fixe, ,F,,
so [E, : Q] = p™. Letting

™ = Np, g, (G, —1) = H (C;J;.:nil -1),

we have E, = Q(7m,). In particular, E,,1; = Epn(mmyi) for myi > 1. We
fix m and write

/"L7Tm+i7Em (X) = Z al:jX]
j€l0,p’]

=X+ (Y X))~ € ZglmallX].
JE[Lpt—1]
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Theorem (5.3, 5.5, 5.8).
(i) We have p' | ja; j for j € [0,p].
(i") If j <p'(p—2)/(p— 1), then p'mp, | jai ;.
(ii) We have a;j =pi1 a;4 5,85 for j € 10,p'] and B > 1.
(i) Ifj <p'(p—2)/(p — 1), then a;j =pit1r,, @;yp5,8; for f>1.
(iii) The element p"=" exactly divides Qi i —(pi—pB) J(p—1) Jor B € [0,7 —1].
(iv) We have i, q(X) =2 XP" 4 pX @D form > 2.
Assertion (iv) requires the computation of a trace, which can be refor-
mulated in terms of sums of (p—1)th roots of unity in Q,, (5.6). Essentially,
one has to count the number of subsets of p,,_; C Q,, of a given cardinality
whose sum is of a given valuation at p. We have not been able to go much
beyond this reformulation, and this seems to be a problem in its own right
— see e.g. (5.9).
To prove (i, 1, ii, ii’), we proceed by induction. Assertions (i, i') also
result from the different

gz(p)[ﬂ-m+i}|z(p)[7rm} = (M;eri’Em(’]Tm_;'_i)) = <p7471'£llzlf(p *1)/(10*1))‘

Moreover, (ii) yields (iii) by an argument using the different (in the
function field case below, we will no longer be able to use the different for
the assertion analogous to (i, i), and we will have to resort to induction).

Suppose m = 1. Let us call an index j € [1,p’ — 1] ezact, if either
j <p'(p—2)/(p—1) and p'r,, exactly divides ja; ;, or j > p'(p—2)/(p—1)
and p’ exactly divides ja; ;. If i = 1 and e.g. p € {3,19,29,41}, then all
indices j € [1,p — 1] are exact. If i > 2, we propose to ask whether the

number of non-exact indices j asymptotically equals p*~! as p — oo.

0.2.2. The function field case. Let p > 3 be a prime, p > 1 and r = p’.
We write Z = F,[Y] and Q = F.(Y). We want to study a function field
analogue over Q of the number field extension Q((,~)|Q. Since 1 is the only
p"th root of unity in an algebraic closure Q, we have to proceed differently,
following CARLITZ [1] and HAYES [5]. First of all, the power operation of
p™ on Q becomes replaced by a module operation of f* on Q, where f € Z
is an irreducible polynomial. The group of p"th roots of unity

My = {teqQ: & =1}
becomes replaced by the annihilator submodule

A = {€€Q:¢" =0}.
Instead of choosing a primitive p"th root of unity (,», i.e. a Z-linear gen-
erator of that abelian group, we choose a Z-linear generator 6, of this
Z-submodule. A bit more precisely speaking, the element 6,, € Q plays the

role of ¥, := (n — 1 € Q. Now Q(6,,)|Q is the function field analogue of
Q(9,)|Q. See also [3, sec. 2].



On coefficient valuations of Eisenstein polynomials 805

To state the result, let f(Y) € Z be a monic irreducible polynomial and
write ¢ = rd°8f Let ¢¥ := Y¢ + £ define the Z-linear Carlitz module
structure on an algebraic closure Q, and choose a Z-linear generator 6,, of
annan in such a way that «9£Jrl = 6, foralln > 1. We write F,, = Q(6,,), so
that Gal(F,|Q) ~ (Z/f")*. Letting &, = Fixc,_,Fn, we get [£, : Q] = ¢".

n—1
Denoting @, = Ng, g, (0n) = Hee(z/f)* 0c* | we obtain &, = Q(w,).
In particular, &y,4i = Em(@Wm4i) for m,i > 1. We fix m and write

P en(X) = Y a; ;X7
7€[0,¢"]

= X"+ (Y ayX) - € ZplwmlX].
J€[lg*~1]

Let vy(j) :=max{a € Z>o : ¢“|j }.
Theorem (6.6, 6.7, 6.9).
(i) We have f7="0) | a;; for j €[0,q].

i) If j < ¢'(¢ — 2) /(g — 1), then fi=" W, | a; ;.

(i')
(ii) We haqe iy =pit1 @iyg46; for j €10,4°] and B > 1.
(i) If j < q"(q — 2)/((] — 1), then aij =yit1g,, ;pp5,485 for B> 1.
(iii) The element f=5 exactly divides @ gi—(gi—q)/(q—1) .folr B el0,i—1].
(V) If f =Y, then fim,, ., e,.(X) =y2 XT +Y XD

A comparison of the assertions (iv) in the number field case and in the
function field case indicates possible generalizations — we do not know what
happens for fir,, .. B, (X) for m > 2 in the number field case; moreover, we
do not know what happens for f # Y in the function field case.

0.3. Notations and conventions.

(o) Within a chapter, the lemmata, propositions etc. are numbered con-
secutively.

(i) For a,b € Z, we denote by [a,b] :=={c € Z : a < ¢ < b} the interval
in Z.

(ii) For m € Z ~ {0} and a prime p, we denote by m[p] := p’("™ the
p-part of m, where v, denotes the valuation of an integer at p.

(iii) If R is a discrete valuation ring with maximal ideal generated by r,
we write v,.(z) for the valuation of 2 € R~ {0} at 7, i.e. /r""(®) is a
unit in R. In addition, v,(0) := +oo.

(iv) Given an element x algebraic over a field K, we denote by jip i (X) €
K[X] the minimal polynomial of z over K.

(v) Given a commutative ring A and an element a € A, we sometimes
denote the quotient by A/a := A/aA — mainly if A plays the role of
a base ring. For b,c € A, we write b =, cif b — ¢ € aA.
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(vi) For an assertion X, which might be true or not, we let {X} equal 1
if X is true, and equal 0 if X is false.

’Throughout, let p > 3 be a prime. ‘

1. A polynomial lemma
We consider the polynomial ring Z[X,Y].
Lemma 1.1. We have (X +pY)* =k[p)-p2Y2 Xk kXF1pY fork > 1.

Proof. Since (?) =k/j- (I;j), we obtain for j > 2 that

w7 (5)) 2 J+ vp(k) = vp()

Z vp(k) +2 )
where the second inequality follows from j > 2 if v,(j) = 0, and from
§ > prl) > 390 > 0, (5) + 2 if vy(j) > 1. O

Corollary 1.2. We have (X + pY)* =k[p]pY Xk fork>1.

Corollary 1.3. For Il > 1 and z,y € Z such that x =y y, we have
xF =kip]-p! y* fork > 1.

Corollary 1.4. We have (X + Y)P"™ =it (XP" + YY" for all
a,B > 0.

Proof. The assertion follows by (1.2) since f(X,Y) =, ¢(X,Y’) implies that
F(X,Y)P" =jai1 g(X,Y)P", where f(X,Y), g(X,Y) € Z[X,Y]. O

2. Consecutive purely ramified extensions

2.1. Setup. Let T|S and S|R be finite and purely ramified extensions
of discrete valuation rings, of residue characteristic char R/rR = p. The
maximal ideals of R, S and T are generated by r € R, s € Sand t € T,
and the fields of fractions are denoted by K = frac R, L = fracS and
M = fracT, respectively. Denote m = [M : L] and [ = [L : K]. We may
and will assume s = (—1)" "Ny (t) and r = (=1)"INp ¢ (s).

We have S = R[s| with

(X)) = X'+ (> @x9) -1 € RIX],
JE[LI-1]
and T = R[t] with
p(X) = X4 (3 bX7) -1 € RIX].
j€l,lm—1]

Cf. [9, 1.§7, prop. 18]. The situation can be summarized in the diagram
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rRCR
Note that r | p, and that for z € M, we have v(z) = m-vs(z) = ml-v.(2).

2.2. Characteristic 0. In this section, we assume char K = 0. In partic-
ular, Z(p) - R.

Assumption 2.1. Suppose given x,y € T and k € [1,l — 1] such that

(i) ply and t™ =, s,
(i) z | ja; for all j € [1,1 — 1], and
(iii) ar | ja; for all j € [1,k —1].

k=1 ylst=Y e T,

Put ¢ := ged(zys
Lemma 2.2. Given (2.1), we have ¢ | ps i (t™) .
Proof. We may decompose

ps i (™) = US,K(tm) - NS,K(S)

= (™~ ( > et - ))

JEL k1]
(Y amios).
jelki—1]
Now since t™ = s + zy for some z € T by (2.1.i), we have

- (1.1)

tm =" 45y =jsi-1y s
for any j > 1, so that /=1 | r | p |y gives t"™ =, -1, s7.
In particular, yls'=! | t™ — s!. Moreover, zys' | 2 e[l 1] a;j(t™ — s7)
by (2.1.ii). Finally, zys*~! | 2 jelki—1] aj(t™ — s7) by (2.1.ii). O
The following proposition will serve as inductive step in (3.2).

Proposition 2.3. Given (2.1), we have t~c | b; if j #m 0 and
t=Ic | (bj—ajjm) if j =m 0, where j € [1,lm — 1].
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Proof. From (2.2) we take

Z (bj — {j =mn 0} aj/m) = —/LS7K(tm) =. 0.
j€[1,Im—1]

Since the summands have pairwise different valuations at ¢, we obtain
(bj - {j =m 0} aj/m) tj = 0

for all j € [1,lm — 1]. O

2.3. As an illustration: cyclotomic polynomials. For n > 1, we
choose primitive roots of unity (,» over Q in such a manner that Cf: i1 =

(pn. We abbreviate ¥,, = (pn — 1.
We shall show by induction on n that writing

1o,,(X) = Pp(X +1) = > dp,j X7
J€0,pn~1(p—1)]

with d,; € Z, we have p"~! | jd,; for 7 € [0,p" *(p — 1)], and even
p" | jdn g for j € [0,p"(p — 2)].

This being true for n = 1 since ®,(X+1) = (X +1)?—1)/X, we assume
it to be true for n — 1 and shall show it for n, where n > 2. We apply the
result of the previous section to R = Z, 7 = —p, S = Zp) [Un-1], s = U1
and T' = Zgy[Un], t = Up. In particular, we have | = p"2(p — 1) and
ps, i (X) = @pn-1(X +1); we have m = p and g 1.(X) = (X +1)P—1—9p,_1;
finally, we have pi; i (X) = ®pn (X + 1).

We may choose y = pd,, x = p" 2 and k = p"?(p — 2) + 1 in (2.1).
Hence ¢ = pn_l,&g}:72p”_1+l‘ By (2.3), we obtain that p"_lz(}ﬁnf%n_l“*j
divides dy j — dp,—1 j/p if j =p 0 and that it divides dp ; if j #p 0. Since the
coefficients in question are in R, we may draw the following conclusion.

If j =50, thenp"|d,;— dp—1jjp if J< p"l(p—2),
and pn—l | dn,j - dnfl,j/p if J > pn—l(p_ 2)a
if j #,0, thenp"|d,; if j <p"t(p—2),
and p" 1 | dnj if 7> p"l(p—2).

(D

By induction, this establishes the claim.
Using (1.4), assertion (I) also follows from the more precise relation

(IT)
By (X +1) =Pyt (XP+1) =pn X" (P72 ((Xp 1P (X + 1)P“‘1)
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for n > 2, which we shall show now. In fact, by (1.4) we have (X +1)P" =n

(XP+1)P"" as well as (XP +1)7" " — (X +1)P"" =1 0, and so

(X + 17" —1) ((XP TN 1)

. ((XP F1p o 1) ((X T 1)
= ((XP F1pP - 1) ((XP F1pP 1)

. ((XP F1p o 1) ((X T 1)
= (1 =) (P = ()
= XV ((Xp 1P (X 1)p”*)

n—1 n—1

— xP" (-2 ((Xp F1PTT (X 1)p"‘1> CXPUT L XP
= xP" ' (p-2) ((Xp P (X + 1)1)”’1)

' ((X F1pP - 1) ((Xp L1 1) ,
and the result follows by division by the monic polynomial

((X F1p o 1) ((XP F1Pt 1) .
Finally, we remark that writing

Fo(X) 1= ®pe(X +1) + XV 2" (X 4 17"

we can equivalently reformulate (IT) to

(IT') Fu(X) =y Fo1(XP).

2.4. Characteristic p. In this section, we assume char K = p.

Assumption 2.4. Suppose given x,y € T and k € [1,] — 1] such that
(i) t™ =ys s,
(ii) z | a;y’P) for all j € [1,1 — 1], and
(i) o7 | ajylP! for all j € [1,k — 1].
Let ¢ := ged(zs®, y!lPlst) € T,

Lemma 2.5. Given (2.4), we have ¢ | ps i (t™) .
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Proof. We may decompose
ps, i (1) = us,K(tm) — s,k (8)

=@ =h (X aem—o)

je[l k1]

(X aemi-s).
JElk,l-1]
Now since t™ =, s, we have tmd = ilel si s? for any j > 1.
In particular, y'Plst | 7 — st Moreoyer, ?:sl | 2 jen k-1 @i (™ —s7) by
(2.4.iii). Finally, zs* | > et @ (™ = s7) by (2.4.ii). O

Proposition 2.6. Given (2.4), we have tJc | b; if j #m 0 and
t=Ic | (bj = aj/m) if j =m 0 for j € [1,im —1].
This follows using (2.5), cf. (2.3).

3. Towers of purely ramified extensions

Suppose given a chain
Ry € Ry € Ry C ---

of finite purely ramified extensions R;11|R; of discrete valuations rings, with
maximal ideal generated by r; € R;, of residue characteristic char R; /r;R; =
p, with field of fractions K; = frac R;, and of degree [K;11 : K;] = p* = ¢
for ¢ > 0, where k > 1 is an integer stipulated to be independent of i. We
may and will suppose that Ng, |k, (ri+1) = r; for i > 0. We write

oo (X) = X7+ (3 a4 X0) —ro € Rolx].
jE[l,qi—l]
For j > 1, we denote v,4(j) := max{a € Z>g : j =4 0}. That is, v,(j) is
the largest integer below v,(j)/k. We abbreviate ¢g := (¢ — 2)/(¢ — 1).

Assumption 3.1. Suppose given f € Ry such that rfflf | rd —r;_q for all
i > 0. If char Ky = 0, then suppose p | f | g. If char Ky = p, then suppose

ro | f.
Proposition 3.2. Assume (3.1).
(i) We have f7="U) | a;; fori>1 andj € [1,¢" — 1].
(i/) If 5 < qig; then fi_vq(j)’l"o | Qg j- -
(ii) We have a;ij =piv1 a;yp5405 fori=1, j € [1,¢" — 1] and B > 1.
(i) If j < q'g, then a;j =fiv1,y a;1 5405 for B> 1.
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Proof. Consider the case char Ko = 0. To prove (i, i), we perform an

induction on i, the assertion being true for ¢ = 1 by (3.1). So suppose

given ¢ > 2 and the assertion to be true for ¢ — 1. To apply (2.3), we let

R=Ry,r=1r9, S=R;_1,s=r1;_1, T = R; and t = ;. Furthermore, we

let y=r?""f,z=fland k=qg ' — (¢ —1)/(g — 1), so that (2.1) is

satisfied by (3.1) and by the inductive assumption. We have ¢ = fir;.]k_l.
Consider j € [1,q¢* — 1]. If j #, 0, then (2.3) gives

or (i /) > gk—1—73,

whence f* divides a; j; ft strictly divides a;; if j < q'g, since
0<(gk—1)—q¢'g=1/(g—1) < 1.
If j =, 0, then (2.3) gives

o, ((aij — ai—1jsg)/f) = ak—1—7,

whence f? divides a;; — ai—1,j/q; strictly, if j < ¢'g. By induction,
fim1=v4(i/9) divides aj_1,/q; strictly, if j/q < ¢ ~'g. But Qi—1j/q =i Gig
and therefore fi=a() divides also a; j; strictly, if j < q'g. This proves
(i, i").

The case § =1 of (ii, ii’) has been established in the course of the proof
of (i, i"). The general case follows by induction.

Consider the case char Ky = p. To prove (i, i'), we perform an induction
on i, the assertion being true for i = 1 by (3.1). So suppose given i > 2 and
the assertion to be true for ¢ — 1. To apply (2.6), we let R = Ry, r = ro,
S=R;i1,s=r_1, T =R; and t = r;. Furthermore, we let y = rl-_lf,
r=r; fland k= ¢ '~ (¢ 1 —1)/(¢—1), so that (2.4) is satisfied by (3.1)
and by the inductive assumption. In fact, zy Il = ] [pl=1 fi=ilPl divides
fi=1=4() both if j #p 0 and if j =, 0; in the latter case we make use of
the inequality p® 1(p—1) > a+1 for @ > 1, which needs p > 3. We obtain
c= firgk_l.

Using (2.6) instead of (2.3), we may continue as in the former case to
prove (i, i'), and, in the course of this proof, also (ii, ii’). O

4. Galois descent of a divisibility
Let
T — o
Jm
S

G
¢,

CQ:C—3> ~:
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be a commutative diagram of finite, purely ramified extensions of discrete
valuation rings. Let s€ S, te€T,5€ SandieT generate the respective
maximal ideals. Let L = fracS, M = fracT, L = fracS and M = fracT
denote the respective fields of fractions. We assume the extensions M|L
and I~/|L to be linearly disjoint and M to be the composite of M and L.
Thus m := [M : L] = [M : L] and [L : L] = [M : M]. We assume L|L to be
galois and identify G := Gal(L|L) = Gal(M|M) via restriction. We may
and will assume that s = Ni|L(‘§)’ and that t = NM‘M(E).

Lemma 4.1. In T, the element 1 —1"/5 divides 1 —t"/s .
Proof. Let d =1 — "™/, so that " = §(1 — d). We conclude
" = N]\;”M(fm)

= Np, (8- [ =d)
oceG

= S .

5. Cyclotomic number fields

5.1. Coefficient valuation bounds. For n > 1, we let (;» be a primitive
p™th root of unity over Q. We make choices in such a manner that Cg =
(pn—1 for n > 2. We denote ¥, = (n — 1 and F,, = Q(Gn). Let E, =
Fixc, , Fy, s0 [Ey : Q] = p"~t. Let
on—1
T = Np, g, (Un) = H (C;: -1).
je, p—1]

The minimal polynomial py, r, ,(X) = (X + 1)P — 9,1 — 1 shows that
Nz, 7, (9n) = Un—1, hence also Ng, g, (7m:) = mp—1. Note that m = p
and E1 = Q

Let O be the integral closure of Z,y in E,. Since Ng, |q(m) = m1 = p,
we have Z,) /pZ ) —+ O /7, 0. In partlcular the ideal 7,0 in O is prime.
Now ﬂf;%l@ = pO, since 78 1/p = b /NEn|Q(7rn) € Zyy[0]* NE, =
O*. Thus O is a discrete valuation ring, purely ramified of degree p"~! over
Zy, and so O = Zy[m,] [9, 187, prop. 18]. In particular, E, = Q(7,).

Remark 5.1. The subring Z[r,] of Q(7,,), however, is not integrally closed
in general. For example, if p =5 and n = 2, then pr, o(X) = X° —20X*+
100X3 — 125X2 + 50X — 5 has discriminant 5% - 7%, which does not divide
the discriminant of ®52(X), which is 5.

Lemma 5.2. We have 7k =1, Tno1 forn > 2.
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Proof. First of all, ¥}, =y, ¥,—1 since (X — 1)P — (XP — 1) is divisible by
p(X—1) in Z[X]. Letting T' = Z,[9,] and (£, 5,¢,5) = (Vn, Un—1, Ty, Tn—1),

(4.1) shows that 1—9%, /9,1 divides 1 —7h /m,_1. Therefore, ¥,,p ﬁ;ﬁlwn,l

divides m,,_1 — 7h. O

Now suppose given m > 1. To apply (3.2), we let f = ¢ = p, R; =
Zp)|[mmi] and 7; = 7y for i > 0. We keep the notation

Mwm+i,Em(X> = /U'TiyKo(X) - Xpi + ( Z ai,jX]) — Tm
je[lvpifl]
Theorem 5.3. '
(i) We have p* | ja;j fori>1 and j e [1,p' —1].

(i) Ifj <p'(p—2)/(p—1), then p'mp | jaij.
(ii) We have a;; =piv1 a;4p,8; fori>1,j€[1,p' —1] and B > 1.

(ii') If j < p'(p—2)/(p — 1), then a;j =pivir,, Giyp6;-

Assumption (3.1) is fulfilled by virtue of (5.2), whence the assertions
follow by (3.2).

Example 5.4. For p =5, m =1 and i = 2, we have
(X)) = X% —4.52X% 1182 52X —8.55X%2 1 92823 . 52 x?!

— 6175454 - 5X29 + 12194014 - 52X ¥ — 18252879 - 53X 18
+ 4197451 - 55X 17 — 466901494 - 53X 16 + 8064511079 - 52X 15
— 4323587013 - 53X M + 1791452496 - 51 X 13
— 113846228 - 55X 12 4+ 685227294 - 5° X 1!
— 15357724251 - 53X 10 4+ 2002848591 - 51 X
— 4603857997 - 52 X8 4+ 287207871 - 54X 7 — 291561379 - 53X
+ 185467152 - 52 X° — 2832523 - 53 X4 + 121494 - 53 X3
— 514-5*X%24+4.5*X —5.

Now ws(ag22) = 6 # 5 = vs(asas.02), so the valuations of the coefficients

considered in (5.3.ii) differ in general. This, however, does not contradict
the assertion as 22 =54 a4, 5.22 from loc. cit.

5.2. A different proof of (5.3.1,1') and some exact valuations. Let
m > 1 and i > 0. We denote R; = Z, [Tmtils 78 = Tmti, Ki = frac R;,
R; = Z()[9m+i] and 7 = Uy Denoting by © the respective different
[9, TT1.§3], we have D 5 = (p') and D\ = (F7?) [9, TILE3, prop. 13),

7
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whence
(*)

- i pi—1—(p'—1)/(p—1
Drgrs = (i) = D@D, = (P17 V)

cf. [9, II1.§3, cor. 2]. Therefore, pirflflf(ptl)/(pfl) divides jai7jrf_1 for
j €[1,p' — 1], and (5.3.1,1") follow.

Moreover, since only for j = p' — (p' — 1)/(p — 1) the valuations at r; of
pirfl_l_(pz_l)/(p_l) and jai,jrg_l are congruent modulo p’, we conclude by
(¥) that they are equal, i.e. that p’ exactly divides Qi pi—(pi—1)/(p—1)-

Corollary 5.5. The element p'—P ezxactly divides Qi pi—(pi—pB) ) (p—1) JOT

B e0,i—1].

Proof. This follows by (5.3.ii) from what we have just said. O
E.g. in (5.4), 5! exactly divides as25—5 = G220, and 52 exactly divides

a225-5—1 = G2,19-

5.3. Some traces. Let u, ; denote the group of (p — 1)st roots of unity

in Q,,. We choose a primitive (p — 1)st root of unity (-1 € p,,_; and may

thus view Q((p-1) € Q,, as a subfield. Note that [Q((p-1) : Q] = p(p—1),

where ¢ denotes Euler’s function. The restriction of the valuation v, at

p on Q, to Q((p), is a prolongation of the valuation v, on Q to Q(¢p-1)
(there are ¢(p — 1) such prolongations).

Proposition 5.6. Forn > 1, we have

—1
TrEn|Q(7Tn) = pnsn _pn Sn—1

where

Sn = Z (—1)#H{Up(Z§eHE)2”} for n>0.
p HCp,

We have sy = 0, and s, € Z for n > 0. The sequence (sp)n becomes
stationary at some minimally chosen No(p). We have

No(p) < N(p) := oA {%(deHﬁ): Deen§F 0} +1.

An upper estimate for N(p), hence for Ny(p), is given in (5.13).
Proof. For j € [1,p — 1] the p-adic limits
§G) = lim j”

n—oo

exist since ]’1”"71 =, jP" by (1.3). They are distinct since £(j) =, 7, and,
thus, form the group p,_; = {£(j) | j € [1,p — 1]}. Using the formula

Trr,o(Gn) = p*{vp(m) = n} —p" H{uvy(m) >n—1}
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and the fact that jpnf1 =, £(j), we obtain

Tr, (M) = TanIQ( I1 (1_C£an)>

JE[l, p—1]
= Z (—1)#‘] Tan|Q (sznjgj >
JC1,p—1]
= Z (_1)#J <pn {Up(zj'ejf(j)) > n}
JC1,p—1]

- pn_l{vp(ZjEJ £(j)) = n— 1})
= (p—1)@"sn —p" sn-1)

whence
TrEn|Q(7rn) = p"s, —p”_lsn_l )
Now sy = 0 € Z by the binomial formula. Therefore, by induction, we
conclude from p"s, — p" s, 1 € Z that p"s, € Z. Since (p — 1)s, € Z,
too, we obtain s, € Z.
As soon as n > N(p), the conditions vy (3 ¢y §) = n and vp(3 ey §) =
+oo0 on H C p,,_; become equivalent, and we obtain

T Y. D Eeng =0},
Hgl‘l'p—l
which is independent of n. Thus Ny(p) < N(p). O

Lemma 5.7. We have s1 = 1. In particular, Trg,q(m2) =p2 —p .

Proof. Since Trg,|q(m1) = Trq|q(p) = p, and since so = 0, we have s; =1
by (5.6). The congruence for Trp,|q(m2) follows again by (5.6). O

Corollary 5.8. We have
fr@(X) Zp XP 4 px @
forn > 2.
Proof. By dint of (5.7), this ensues from (5.3.1,ii). O

Example 5.9. The last n for which we list s,, equals N(p), except if there
is a question mark in the next column. The table was calculated using
Pascal (p < 53) and Magma (p > 59). In the last column, we list the upper
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bound for N(p) calculated below (5.13).

upper
n= bound
Sn 0 1 2 3 4 5 6 7 || for N(p)
p =3 01

5 01 1
7 01 1
11 01 3 3
13 01 3 3
17 01 8 16 5
19 01 10 12 4
23 01 33 89 93 7
29 01 377 571 567 8
31 01 315 271 259 6
37 01 107 940 1296 9
41 01 6621 51693 18286 20186 20250 12
43 01 1707 4767 6921 6665 9
47 01 2250 | 272242 173355 181481 182361 16
53 011 71201 | 363798 | 1520045 | 1350049 | 1292229 | 1289925 18
59 01 1276 ? 21
61 01 2516 ? 12
67 01 407186 ? 15
71 01 5816605 ? 18
73 01 8370710 ? 18
79 01 169135 ? 18
83 01 632598 ? 30
89 01 26445104 ? 30
97 01 282789 ? 24
101 01 25062002 ? 31
103 01 56744199 ? 25
107 01 1181268305 ? 40
109 01 91281629 ? 28
113 01 117774911422 ? 37
127 011 6905447 ? 28
131 01 2988330952791 ? 37
137 01 1409600547 ? 50
139 01 3519937121 ? 34
149 01 25026940499 ? 56
151 01 164670499159 ? 31
157 01 51594129045351 ? 38
163 01 288966887341 ? 42
167 011 1205890070471 ? 64
173 01 17802886165762 ? 66
179 01 1311887715966 ? 69
181 01 128390222739 ? 38
191 0| 1 | 233425263577158 ? 57
193 0| 1] 306518196952028 ? 51
197 0 | 1 | 347929949728221 ? 66
199 01 9314622093145 ? 48
211 01 12532938009082 ? 39

So for example if p = 31, then Trq(r,)|q(T3) = 271-313—315-312, whereas

Tro(r|q(m7) = 259 - 317 — 259 - 316, Moreover, No(31) = N(31) =4 < 6.

Remark 5.10. Vanishing (resp. vanishing modulo a prime) of sums of
roots of unity has been studied extensively. See e.g. [2], [6], where also
further references may be found.

Remark 5.11. Neither do we know whether s,

> 0 nor whether

Trg,q(m) > 0 always hold. Moreover, we do not know a prime p for
which Ny(p) < N(p).
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Remark 5.12. We calculated some further traces appearing in (5.3), using
Maple and Magma.
For p = 3, n € [2,10], we have Trg, |, ,(m) = 3 - 2.
For p =5, n € [2,6], we have Trg, g, (7n) =5 - 4.
For p =17, n € [2,5], we have Trg, g, ,(m) =7 6.
For p = 11, we have Trg, g, (72) = 11 - 32, whereas
TrE3|E2 (m3)
— 22'(15+C2+2<3_C5+C6_2C8_C9+2<14_C16+418_CQO
o 24—24 + 2<—25 . 2<—26 . C27 . <—31 + 24—36 - <38 + C41 o C42 o 2c43 + 2<—47
3¢9 _ (B3 (DA 4 9B _ (60 _ (64 | (6T 4 969 _ (TL _9pT2 _ (75
(T8 4380 _ (82 _ (86 4 991 _ (93 _ 995 _ 3097 4 9102 | (103
_ (104 _ (108
= 22.2014455354550939310427 1 - (34333871352527722810654
+ 13602724052675413182425027m — 3185784114816444531143704272
+ 1357337084098559760596586367> — 837636131300171423715664537*
+ 204448065993444081042992527° — 22963646312114426321689327°
+ 1177437410838662188122937" — 27972584654252060850937°
+ 278680386424411361087° — 79170513243924842710) |

where ¢ := (;12 and 7 := mo.

5.4. An upper bound for N(p). We view Q((,-1) as a subfield of Q,,
and now, in addition, as a subfield of C. Since complex conjugation com-
mutes with the operation of Gal(Q((y-1)[Q), we have [Nq«, ,)q(z)| =
291 for 2 € Q(Cp1).

We abbreviate X(H) := > oy & for H C p,,_y. Since [X(H)| < p — 1,
we have [Nq,_)q(Z(H))| < (p— 1)#(=1) . Hence, if ¥(H) # 0, then

up(5(H)) < vp(Ng, 1e(E(H))) < ¢p—1),

and therefore N(p) < ¢(p — 1). We shall ameliorate this bound by a
logarithmic term.

Proposition 5.13. We have

N(p) < o(p—1) <1 - ii;) +1

forp >5.
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Proof. It suffices to show that [X(H)| < p/m for H C p,, ;. We will actually

show that .
guax B(H)] =
Crp_y sin 75

from which this inequality follows using sinz > 2 — 23/6 and p > 5.

Choose H C p, ; such that [X(H)| is maximal. Since p — 1 is even,
the (p — 1)st roots of unity fall into pairs (1, —n). The summands of ¥(H)
contain exactly one element of each such pair, since |S(H) +n|? + |S(H) —
n|? = 2|2 (H)|? + 2 shows that at least one of the inequalities |X(H) + 7| <
|X(H)| and |X(H) — n| < |X(H)| fails.

By maximality, replacing a summand 7 by —» in 3(H) does not increase
the value of |X(H)|, whence

IS(H)[? > [S(H) - 29> = [S(H)] - 4Re(n- S(H)) + 4,
and thus

Re(n-S(H) > 1 > 0.

Therefore, the (p — 1)/2 summands of ¥(H) lie in one half-plane, whence
the value of |X(H)|. O

6. Cyclotomic function fields, after Carlitz and Hayes

6.1. Notation and basic facts.
We shall give a brief review while fixing notation.

Let p > 1 and r := p. Write Z := F,[Y] and Q := F,(Y), where Y is
an independent variable. We fix an algebraic closure Q of Q. The Carlitz
module structure on Q is defined by the F,-algebra homomorphism given
on the generator Y as

Z —= EndgQ
Y (gHgY = Y§+§T).

We write the module product of £ € Q with e € Z as £¢. For each e € Z,
there exists a unique polynomial P.(X) € Z[X] that satisfies P.(§) = &°
for all ¢ € Q. In fact, Pi(X) = X, Py(X) = YX + X", and Pyis1 =
Y Pyi(X)+ Pyi(X") for i > 1. For a general e € Z, the polynomial P.(Y)
is given by the according linear combination of these.

Note that P.(0) = 0, and that P/(X) = e, whence P.(X) is separable,

i.e. it decomposes as a product of distinct linear factors in Q[X]. Let

Ae = ann,Q = {€€Q : (=0} C Q
be the annihilator submodule. Separability of P.(X) shows that #A. =
deg P.(X) = rd¢€¢. Given a Q-linear automorphism o of Q, we have (£¢)7 =

P.(§)? = P.(&%) = (£7)°. In particular, A, is stable under o. Therefore,
Q(Ae) is a Galois extension of Q.
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Since #annz\, = #Az = 798¢ for ¢ | e, we have A, ~ Z /e as Z-modules.
It is not possible, however, to distinguish a particular isomorphism.

We shall restrict ourselves to prime powers now. We fix a monic irre-
ducible polynomial f = f(Y) € Z and write ¢ := r4°&f, For n > 1, we let
6, be a Z-linear generator of Ag». We make our choices in such a manner
that ¢9£+1 = 0, for n > 1. Note that Z[As] = Z]0,] since the elements of
Ajn are polynomial expressions in 0,,.

Suppose given two roots £ ,5 € Q of

Upn(X) = Bo(X)/Bpna(X) € Z[X],

e &€ € Afn N Agn—1. Since € is a Z-linear generator of A, there is
an e € Z such that £ = €. Since £¢/¢ = P.(X)/X|x— ¢ € Z[0n], £is a

multiple of £ in Z[6,]. Reversing the argument, we see that f is in fact a
unit multiple of £ in Z16,,].

Lemma 6.1. The polynomial W (X) is irreducible.
b (X)/X

P (X)X |,
[Licpi g F5(X) in its distinct monic irreducible factors F;(X) € Z[X]. One

of the constant terms, say F;(0), is thus a unit multiple of f in Z, while

the other constant terms are units. Thus, being conjugate under the Galois

action, all roots of Fj;(X) in Q[#,] are non-units in Z[#,], and the remaining
roots of W (X) are units. But all roots of W (X) are unit multiples of

Proof. We have Wz (0) = = f. We decompose ¥ (X) =

each other. We conclude that ¥ (X) = F;(X) is irreducible. O
By (6.1), \Ilfn( ) is the minimal polynomial of #,, over Q. In particular,
[Q(0r) : Q] = ¢" (¢ — 1), and so
n—1
2[00 = Z[0:Ng,)j0(0n) = Z[0.]f -

In particular, Z(s)[f,] is a discrete valuation ring with maximal ideal gen-
erated by 0, purely ramified of index ¢"~!(g — 1) over Z(py, cf. [9, 1.87,

prop. 18]. There is a group isomorphism

(Z/1m)r = Gal(Q(0.)|Q)
e = (0,05,

well defined since 6, is a root of Wrn(X), too; injective since 6, generates
Agnoover Z; and surjective by cardinality.

Note that the Galois operation on Q(6,,) corresponding to e € (Z/f")*
coincides with the module operation of e on the element 6,,, but not every-
where. For instance, if f # Y, then the Galois operation corresponding to
Y sends 1 to 1, whereas the module operation of Y sends 1 to Y + 1.
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The discriminant of Z[6,]| over Z is given by

Azig)z = No@,)o(Pfn(0n))
= No@,)i0 (Prn(6n)/Prm-1(6))

= No@,)e (f"/0h)
_ o o) |

Lemma 6.2. The ring Z[0,] is the integral closure of Z in Q(6,).

Proof. Let e € Z be a monic irreducible polynomial different from f. Write
Oo := Z()[0n] and let O be the integral closure of Op in Q(0y,). Let

Op = {£€ Q) : Trgp,)e(€0o) C 2}
O == {£€ Q) : Trop,)e(€0) C 2} -

Then Og C O C Ot C (’)3. But Qg = (’)ar, since the Z(e)—linear determi-
nant of this embedding is given by the discriminant Az, jz, which is a
unit in O. Il

We resume.

Proposition 6.3 ([1],[5], cf. [3, p. 115]). The extension Q(0,)|Q is ga-
lois of degree [Q(6,) : Q] = (q — 1)¢"~ !, with Galois group isomorphic to
(Z/f™)*. The integral closure of Z in Q(6,,) is given by Z[0,]. We have
Z[Gn}HLQ(G”):Q] = Z[0,]f. In particular, 0, is a prime element of Z[0,,], and
the extension Z(p)[0n]|Z () of discrete valuation rings is purely ramified.

6.2. Coefficient valuation bounds. Denote F, = Q(6,). Let &, =
Fixc, ,Fn, 50 [En: Q) = ¢" !, Let

qn—l
@0 = N, 0) = [ 0
ec(Z/f)*

The minimal polynomial pg, 7, ,(X) = Pf(X) — 0,—1 together with the
fact that X divides Pp(X) shows that N 7 _ (0n) = 0n-1, whence
N5n|gn_l(wn) = w,,_1. Note that ] = Hee(Z/f)* 6y = Uy (0) = f.

The extension Z(f)[w,] is a discrete valuation ring with maximal ideal

generated by w,, purely ramified of index ¢"~!

En = Q(wy).

over Z(y). In particular,
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Example 6.4. Let r = 3 and f(Y) = Y2+ 1,50 ¢ = 9. A Magma
calculation shows that

wy = 050 —Y0° + Y2030 + (VP -Y3-V)03* + (YO Y 4V +1)63"
(=Y =Y Y2405 + (- Y —y?)65°

YT4+Y +Y34Y)03! + (—Y -y Y —y2—1)63°
YVP4Y?—y)e0 4+ (Y -y -y 104y oyt v?)es!
Y4y Py 4y? -y T+ v®+v)63
YQO—YM—Y12+Y10+Y8—YG—Y4+Y2+1)9§0
7Y157Y137Y117Y9+Y7+Y57Y3)9%8
(Y16+Y14_|_Y12_YIO_YS_YQ)O%G

+ (—Y17—Y15—|—Y13+Y11+Y7+Y5—Y3+Y)9%4

+ (—Y14—Y12—|—Y10—Y8—YG—Y4+Y2—|—1)0%2

+ (—Y13—|—Y11—Y7—|—Y3)«9%0 + (Y14—Y12—Y10+Y6+Y4)0§
+ (Y YTHY 1Y 4Y)05 + (VE4Y O+ Y2 +1)0; .

(
(
(
(
(

+ o+ + + + o+

With regard to section 6.4, we remark that wy # + 67"

Lemma 6.5. We have @l =01 Wn-1 forn > 2.

Proof. We claim that 67 =, r 0,—1. In fact, the non-leading coefficients of
the Eisenstein polynomial W;(X) are divisible by f, so that the congruence
follows by 0,—1—0 = Pf(0,)—0% = 0,(T(0,) 0% "). Letting T = Z( (0]
and (£,5,t,8) = (0, 01,0, @n_1), (4.1) shows that 1 — 63 /0,1 divides

1 — @, /wwn—1. Therefore, anﬁgilwn,l | wn_1 — . O

Now suppose given m > 1. To apply (3.2), we let R; = Z(y)[@wm+i] and
T; = Wy for i > 0. We continue to denote

lu’wm+i7£m(X) = MH,KO(X) = X7 + (Zjé[l,qi—l] aiJXj) — @m
€ Ro[X] = Z(p)[wm][X],
and vg(j) = max{a € Z>g : j =4 0 }.
Theorem 6.6. ' '
(i) We have fi="0) | a;; fori>1 and j € [1,¢" — 1].
(i') If j < d'(a—2)/(q = 1), then f=* Dy, | ay;.
(il) We have aij =pier a4 g 45, fori>1,j€(1,¢—1] and 3 > 1.
(i) If j < q'(q—2)/(q = 1), then a;j =fi+1e,, ;g4 for B>1.
Assumption (3.1) is fulfilled by virtue of (6.5), whence the assertions
follow by (3.2).

(#)
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6.3. Some exact valuations. Let m > 1 and i > 0. We denote R; =
Zplowmails 1i = @mri, K = frac Ry, Ry = Z(p)[0myi] and 73 = Oy We

obtain D p 5 = (f*) and Dpir = = (FI~ %) 19, 1IL§3, prop. 13], whence
(x5) ’DR-\RO = (Hr, 5, (1)) = (firqu(qq)/(qfl)) :

Therefore, f'r; ¢'=1-(a" =1/ givides ja”r Yfor j e [1,¢° — 1], which is
an empty assertlon if j =, 0. Thus (6.6.1,1i") do not follow ent1rely.
However, since only for j = ¢* — (¢ — 1) /(g — 1) the valuations at r; of

fir?l_l_(qz_l)/(q_l) and jai,jrffl are congruent modulo ¢’, we conclude by

(xx) that they are equal, i.e. that f! exactly divides Qi gi—(gi—1)/(q—1)-
Corollary 6.7. The element {7 exactly divides Qi qi—(qi—q)/(q—1)"
Proof. This follows by (6.6.ii) from what we have just said. O
6.4. A simple case. Suppose that f(Y) =Y and m > 1. Note that

q—1
Tmir =[] 01 = ] Omin = —057 .
eGF* eEFq*
Lemma 6.8. We have
:umerlvgm(X) = _wm+ Z Yq_]Xj .
J€[L,q]

Proof. Using the minimal polynomial pg,, ., 7, (X) = Py(X) — 0, =
X14+YX —0,,, we get

— W + Z Yiiw)
J€(1,q]
— 9% (Y — 0 T (Y 407 - Y
= (YOL O + 047105 ) — 0% — Y0 )/ (O (Y + 651))
= 0.

Corollary 6.9. Let m,i > 1. We have

P inm(X) =y2 X 4V X@ DI
Proof. This follows from (6.8) using (6.6.ii). O
Remark 6.10. The assertion of (6.8) also holds if p = 2.

Conjecture 6.11. Let m,i > 1. We use the notation of (#) above, now
in the case f(Y) =Y. For j € [1,¢'], we write ¢' —j = > ) cp0,1] drq" with
di € [0,q — 1]. Consider the following conditions.
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(i) There exists k € [0,7 — 2] such that di+1 < di.
(ii) There exists k € [0,7 — 2] such that v,(dky1) > vp(di).
If (i) or (ii) holds, then a; ; = 0. If neither (i) nor (ii) holds, then

Vo (i) = "7 YD di

ke[0,i—1]

Remark 6.12. We shall compare (6.7) with (6.11). If j = ¢ —
(¢" —¢”)/(q — 1) for some B € [0,5 — 1], then ¢’ —j = ¢~ ' 4+ - + ¢°.
Hence > ) c10;_1)dk = @ — f3, and so according to (6.11), v, (a;,;) should
equal ¢~ 1(i — ), which is in fact confirmed by (6.7).
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