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Division-ample sets and the Diophantine

problem for rings of integers

par Gunther CORNELISSEN, Thanases PHEIDAS

et Karim ZAHIDI

Résumé. Nous demontrons que le dixième problème de Hilbert
pour un anneau d’entiers dans un corps de nombres K admet une
réponse négative si K satisfait à deux conditions arithmétiques
(existence d’un ensemble dit division-ample et d’une courbe ellip-
tique de rang un sur K). Nous lions les ensembles division-ample
à l’arithmétique des variétés abéliennes.

Abstract. We prove that Hilbert’s Tenth Problem for a ring of
integers in a number field K has a negative answer if K satis-
fies two arithmetical conditions (existence of a so-called division-
ample set of integers and of an elliptic curve of rank one over K).
We relate division-ample sets to arithmetic of abelian varieties.

1. Introduction

Let K be a number field and let OK be its ring of integers. Hilbert’s
Tenth Problem or the diophantine problem for OK is the following: is
there an algorithm (on a Turing machine) that decides whether an arbitary
diophantine equation with coefficients in OK has a solution in OK .

The answer to this problem is known to be negative for K = Q ([5]) and
for the following fields K by reduction to the field K = Q: K of complex
degree ≤ 2 over a totally real field (Denef and Lipshitz [6], [7], [8]), K with
exactly one pair of complex embeddings (Pheidas [9] and Shlapentokh [14])
and subfields of all those (including cyclotomic fields, and hence all abelian
number fields; Shapiro and Shlapentokh [12]). This reduction consists in
finding a diophantine model (cf. [3]) for integer arithmetic over OK . The
problem is open for general number fields (for a survey see [10] and [13]),
but has been solved conditionally, e.g. by Poonen [11] (who shows that the
set of rational integers is diophantine over OK if there exists an elliptic
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curve over Q that has rank one over both Q and K). In this paper, we
give a more general condition as follows:

Theorem 1.1. The diophantine problem for the ring of integers OK of a
number field K has a negative answer if the following exist:

(1) an elliptic curve defined over K of rank one over K;
(2) a division-ample set A ⊆ OK .

Definition. A set A ⊆ OK is called division-ample if the following three
conditions are satisfied:

• (diophantineness) A is a diophantine subset of OK ;
• (divisibility-density) Any x ∈ OK divides an element of A;
• (norm-boundedness) There exists an integer ` > 0, such that for any

a ∈ A, there is an integer ã ∈ Z with ã dividing a and |N(a)| ≤ |ã|`.

Proposition 1.1. A division ample set exists if either
(1) there exists an abelian variety G over Q such that

rkG(Q) = rkG(K) > 0; or

(2) there exists a commutative (not necessarily complete) group variety G
over Z such that G(OK) is finitely generated and such that rkG(Z) =
rkG(OK) > 0.

From (1) in this proposition, it follows that our theorem includes that of
Poonen, but it isolates the notion of “division-ampleness” and shows it can
be satisfied in a broader context. It would for example be interesting to
construct, for a given number field K, a curve over Q such that its Jacobian
satisfies this condition.

As we will prove below, part (2) of this proposition is satisfied for the
relative norm one torus G = ker(NKL

K ) for a number field L linearly disjoint
from K, if K is quadratic imaginary (choosing L totally real).

It would be interesting to know other division-ample sets, in particular,
such that are not subsets of the integers.

The proof of theorem 1.1 will use divisibility on elliptic curves and a
Lemma from algebraic number theory of Denef and Lipshitz. Some of
our arguments are similar to ones in [11], but we have avoided continuous
reference both for reasons of completeness and because our results have
been obtained independently.

2. Lemmas on number fields

In this Section we collect a few facts about general number fields which
will play a rôle in subsequent proofs. Fix K to be a number field, let
O = OK be its ring of integers, and let h denote the class number of O.
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Let N = NK
Q be the norm from K to Q, and let n = [K : Q] denote the

degree of K. Let | denote “divides” in O.
First of all, we will say a subset S ⊆ Kn is “diophantine over O” if its

set of representatives S̃ ⊆ (O × (O − {0}))n given by

S̃ := {(ai, bi)n
i=1 ∈ (O × (O − {0}))n | (ai/bi)n

i=1 ∈ S}

is diophantine over O. Recall that “x 6= 0” is diophantine over O ([8] Prop.
1(b)), hence S is diophantine over O if and only if it is diophantine over K.

Recall that there is no unique factorisation in general number fields, but
we can use the following valuation-theoretic remedy:

Definition. Let x ∈ K. If xh = a
b for a, b ∈ O with (a, b) = 1 (the ideal

generated by a and b), we say that a = wn(x) is a weak numerator and
b = wd(x) is a weak denominator for x.

Lemma 2.1. (1) For any x ∈ K a weak numerator and a weak denom-
inator exists and is unique up to units.

(2) for any valuation v,
• v(x) > 0 ⇐⇒ v(wn(x)) > 0, and then v(wn(x)) = hv(x);
• v(x) < 0 ⇐⇒ v(wd(x)) > 0, and then v(wd(x)) = −hv(x).

(3) For a ∈ O, x ∈ K, “a = wn(x)” and “a = wd(x)” are diophantine
over O.

Proof. Since O is a Dedekind ring, (x) has a unique factorisation in frac-
tional ideals

(x) = p1 · · · pr · q−1
1 · · · q−1

s .

We let a be a generator for the principal ideal (p1 · · · pr)h and b a generator
for (q1 · · · qs)h; these are obviously a weak numerator/denominator for x.
Uniqueness, (2) and (3) are obvious. �

Lemma 2.2 (Denef-Lipshitz [8]). (1) If u ∈ Z − {0} and ξ ∈ O satisfy
the divisibility condition

2n!+1
n!−1∏
i=0

(ξ + i)n! | u

then for any embedding σ : K ↪→ C

(∗)u |σ(ξ)| ≤ 1
2

n!
√
|N(u)|.

(2) If ũ ∈ Z − {0}, q ∈ Z and ξ ∈ O satisfy (∗)eu for any embedding
σ : K ↪→ C and ξ ≡ q mod ũ, then ξ ∈ Z.

Proof. Easy to extract from the proof of Lemma 1 in [8]. �
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3. Lemmas on elliptic curves

Let E denote an elliptic curve of rank one over K, written in Weierstrass
form as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

let T be the order of the torsion group of E(K), and let P be a generator
for the free part of E(K). Define xn, yn ∈ K by nP = (xn, yn).

Lemma 3.1. For any integer r the set rE(K) is diophantine over K and,
if r is divisible by T , then rE(K) = 〈rP 〉 ∼= (Z,+).

Proof. A point (x, y) ∈ K × K belongs to rE(K) − {0} if and only if
∃ (x0, y0) ∈ E(K) : (x, y) = r(x0, y0). As the addition formulæ on E are
algebraic with coefficients from K, this is a diophantine relation. The last
statement is obvious. �

Lemma 3.2 ([2] for K = Q, [11]). There exists an integer r > 0 such that
for any non-zero integers m,n ∈ Z,

m|n ⇐⇒ wd(xrm)|wd(xrn).

Proof. We reduce the claim to a statement about valuations using Lemma
2.1(ii). The theory of the formal group associated to E implies that if
n = mt and v is a finite valuation of K such that v(xrm) < 0, then v(xrmt) ≤
v(xrm)− 2v(t) ≤ v(xrm) ([15] VII.2.2).

For the converse, we start by choosing r0 in such a way that r0P is
non-singular modulo all valuations v on K. By the theorem of Kodaira-
Néron ([15], VII.6.1), such r0 exists and it actually suffices to take r0 =
4

∏
v v(∆E), where ∆E is the minimal discriminant of E, and the product

runs over all finite valuations on K for which v(∆E) 6= 0. Note that then,
v(xr0n) < 0 ⇐⇒ r0nP = 0 in the group Ev of non-singular points of E
modulo v.

We claim that for an arbitrary finite valuation v on K, if v(xr0n) < 0
and v(xr0m) < 0, then v(x(r0m,r0n)) < 0, where (·, ·) denotes the gcd in Z.
Indeed, the hypothesis means r0mP = r0nP = 0 in Ev. Since there exist
integers a, b ∈ Z with (r0m, r0n) = ar0m + br0n, we find (r0m, r0n)P = 0
in Ev, and hence the claim.

The main theorem of [1] states that for any sufficiently large M(≥ M0),
there exists a finite valuation v such that v(xM ) < 0 but v(xi) ≥ 0 for
all i < M . We choose r = r0M0. Pick such a valuation v for M = rm.
The hypothesis implies that v(xrn) < 0 and hence v(xr(m,n)) < 0. But
r(m,n) ≤ rm and v(xi) ≥ 0 for any i < rm. Hence r(m,n) = rm so m
divides n. �
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Lemma 3.3. Any ξ ∈ O − {0} divides the weak denominator of some xn.

Proof. The set E(O/ξ) is finite but contains {nP mod ξ}n∈Z. Hence there
are a 6= b ∈ Z with aP = bP mod ξ, so NP = 0 mod ξ for N = a− b 6= 0.
Therefore, ξ divides wd(xN ). �

Lemma 3.4. Let m,n, q be integers with n = mq. Then

wd(xm)|wn(
xnym

ynxm
− q).

Proof. The formal power series expansion for addition on E around 0 ([15],
IV.2.3) implies that xn

yn
= q xm

ym
+ O((xm

ym
)2), whence the result. �

4. Proof of the main theorem

Let ξ ∈ O. Given an elliptic curve E of rank one over K as in the main
theorem, we use the notation from Section 3 for this E — in particular,
choose a suitable r such that Lemma 3.2 applies; we also choose ` which
comes with the definition of A. We claim that the following formulæ give
a diophantine definition of Z in O:

ξ ∈ Z ⇐⇒ ∃m,n ∈ rTZ, ∃ u ∈ A−{0}



(1) m|n

(2) 2n!+1
n!−1∏
i=0

(ξ`n! + i)n!|u

(3) uh|wd(xm)

(4) wd(xm)|wn(xnym

xmyn
− ξ)

4.1. Any ξ ∈ Z satisfies the relations. If ξ ∈ Z, then a u satisfying
(2) exists because A is division-dense. By Lemma 3.3, there exists an m
satisfying (3) for this u. Define n = mξ for this m. Then (1) is automatic
and (4) is the contents of Lemma 3.4.

4.2. A ξ satisfying the relations is rational. Let q ∈ Z satisfy n = qm
(which exists by (1)). Then Lemma 3.4 implies that

wd(xm)|wn(
xnym

xmyn
− q),

which can be combined with (4) using the non-archimedean triangle in-
equality to give

wd(xm)|wn(ξ − q) = (ξ − q)h.

By (3), then also u|ξ − q.
By norm-boundedness of A we can find ũ ∈ Z such that ũ|u and |N(u)| ≤

ũ`. We still have
(∗) ξ ≡ q mod ũ; ũ, q ∈ Z.
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Condition (2) implies that Lemma 2.2(1) can be applied with ξ`n! in place
of ξ, so for any complex embedding σ of K we find

(∗∗) |σ(ξ)| ≤ 1
2
|N(u)|

1
`n! ≤ 1

2
N(ũ)

1
n! .

Because of (∗) and (∗∗), we can apply Lemma 2.2(2) to conclude ξ ∈ Z.

4.3. The relations (1)-(4) are diophantine over O. By 2.1 and 3.1,
for a ∈ O, the relations ∃n ∈ rTZ : a = wn(xn) and ∃n ∈ rTZ : a = wd(xn)
are diophantine. By the diophantineness of A, the membership u ∈ A is
diophantine, and u 6= 0 is diophantine ([8], Prop. 1(b)). Condition (1)
is diophantine because of Lemma 3.2. Conditions (2)-(4) are obviously
diophantine using 2.1. �

5. Proof of the proposition and discussion of division-ample sets

5.1. Rank-preservation over Q. Suppose there exists an abelian variety
G of dimension d over Q such that rkG(Q) = rkG(K) > 0 (note that G(K)
is finitely generated by the Mordell-Weil theorem). Let T denote the (finite)
order of the torsion of G(K) and consider the free group TG(K) ∼= Zr.
The assumption implies that G(Q) is of finite index [G(K) : G(Q)] in
G(K). The choice of an ample line bundle on G gives rise to a projective
embedding of G in some projective space with coordinates 〈xi〉Ni=1, where
G is cut out by finitely many polynomial equations and the addition on G
is algebraic in those coordinates. Suppose {ti} are algebraic function of the
coordinates, and local uniformizers at the unit 0 = (1 : 0 : · · · : 0) of G

(i.e., ÔG,0 = Q[[t1, . . . , td]]). Define

AG := {wd(t2(P )) : P ∈ T [G(K) : G(Q)] ·G(K) and t1(P ) = 1}.
We claim that AG is division-ample. Indeed, the three conditions are sat-
isfied:

(a) AG is obviously diophantine over O (the diophantine definition comes
from the chosen embedding of G).

(b) The analogue of Lemma 3.3 remains valid, so AG is divisibility-dense.
Indeed, it suffices to prove that a given non-zero integer ξ divides t2(NP )
for some N (where t1(NP ) = 1). Since G(Z/ξ) is finite, there is a non-zero
N for wich NP = 0 mod ξ, and then t2(NP ) = 0 mod ξ.

(c) Since by assumption, all elements of AG are in Z, we can set ã = a,
` = n for any a ∈ AG to get the required norm-boundedness.

Remark. From available computer algebra, the construction of elliptic
curves which fit the above can be automated. One can compute ranks
of elliptic curves over Q quite fast using mwrank by J. Cremona [4], and
over number fields using the gp-package of D. Simon [16]. Michael Stoll
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has written a MAGMA-package that computes the rank of Jacobians of
genus two curves over Q ([17]). Unfortunately, the current state of affairs
in computational arithmetical geometry doesn’t include an algorithm for
the rank of abelian varieties of dimension ≥ 2 over arbitrary number fields
(although the necessary descent theory exists). We will therefore restrict
to examples involving elliptic curves.

Example. In the style of Poonen’s result, the elliptic curve y2 = x3 + 8x
has rank one over Q and over Q(

√
2), Q( 3

√
2) and Q( 4

√
2). However, this

curve acquires rank two over Q( 5
√

2).
The curve y2 = x3 + 14x has rank two over Q and over Q( 5

√
2), and the

curve y2 = x3 + 5
√

2x2 + 8x has rank one over Q( 5
√

2).
We conclude that the diophantine theory of the ring of integers of Q( n

√
2)

is undecidable for n ≤ 5 (n ≤ 3 also covered by known results).

Remark. We ask: given K, can one construct in some clever way a curve
C over Q such that its Jacobian satisfies the above conditions?

5.2. Rank-preservation over Z. A similar construction (of which we
leave out the details) can be performed if there exists a commutative (not
necessarily complete) group variety G over Z such that G(O) is finitely
generated and such that rk G(Z) = rkG(O) > 0. We will work out an easy
example. Maybe a variation of this example can help one eliminate the
second condition in the main theorem.

Example. Let L be another number field, linearly disjoint from K. Let
〈ai〉 denote a Z-basis for L/Q (this is also a basis for OKL over OK). Let
TL denote the norm one torus NL

Q(
∑

aixi) = 1. Then TL(Z) ∼= O∗
L and

TL(OK) = ker(NKL
K : O∗

KL → O∗
K),

hence (by surjectivity of the relative norm) rkTL(OK) = rkO∗
KL − rkO∗

K .
In particular, TL(OK) = TL(Z) iff

rKL + sKL = rK + sK + rL + sL − 1

where rM , sM denote the number of real, respectively half the number of
complex embeddings of a number field M . If L and K are linearly disjoint,
rKL = rKrL, and the condition simplifies to

(rK + sK − 1)(rL − 1) + (rK + 2sK − 1)sL = 0.

The only non-trivial solution is rK = 0, sK = 1 (i.e., K complex quadratic)
choosing rL > 1, sL = 0.

Remark. In all these examples, division-ample sets are actually subsets of
the integers. Can one find a division-ample set which does not consists of
just ordinary integers?
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Remark (December 2005). Mazur and Rubin have shown that there exist
infinitely many number fields over which the rank of every elliptic curve
defined over Q is even, assuming the Parity Conjecture. More specifically,
they show that if E/Q is an elliptic curve and K/Q a Galois extension such
that Gal(K/Q) has a non-cyclic 2-Sylow and such that the discriminant of
E is coprime to that of K, then the root number of E/K is +1 (compare:
Rubin, talk at AIM-workshop (2005); Rubin and Mazur in: Kazuya Kato’s
Birthday volume of Doc. Math. (2003), pp. 585–607).

On the other hand, Poonen and Shlapentokh have remarked that the
argument in [11] continues to hold under the weaker assumption that there
exists an elliptic curve over Q retaining its positive rank over the number
field K (not necessarily of rank one), see: Poonen, talk at AIM-workshop
(2005); Shlapentokh, Elliptic Curves Retaining Their Rank in Finite Ex-
tensions and Hilbert’s Tenth Problem, preprint (2004).
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