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Catalan without logarithmic forms

(after Bugeaud, Hanrot and Mihăilescu)

par Yuri F. BILU

Résumé. C’est un rapport sur le travail récent de Bugeaud, Han-
rot et Mihăilescu, montrant qu’on peut démontrer l’hypothèse de
Catalan sans utiliser les formes logarithmiques, ni le calcul avec
un ordinateur.

Abstract. This is an exposition of the recent work of Bugeaud,
Hanrot and Mihăilescu showing that Catalan’s conjecture can be
proved without using logarithmic forms and electronic computa-
tions.

To Rob Tijdeman

1. Introduction

Recently, Preda Mihăilescu [15, 1] resolved the long-standing Catalan’s
problem.

Theorem 1.1. (Mihăilescu) The equation xp − yq = 1 has no solutions
in non-zero integers x, y and odd prime numbers p, q.

The original question of Catalan [4] was whether the equation xu − yv = 1
has no solutions in integers x, y, u, v > 1 other than the obvious 32 − 23 = 1.
Lebesgue [9] and Ko Chao [7] settled the case when one of the exponents
u, v is 2, which reduced the problem to Theorem 1.1.

Mihăilescu’s proof of Theorem 1.1 splits into two cases, treated in totally
different ways:

the first case: p 6≡ 1 mod q and q 6≡ 1 mod p;
the second case: either p ≡ 1 mod q or q ≡ 1 mod p.

The argument in the first case is algebraic and relies on the theory of
cyclotomic fields. However, the second case requires difficult analytic tools
(Tijdeman’s argument [18], logarithmic forms [10]) and electronic compu-
tations [11, 12, 13]. See [1, Section 4] for the details.

In 1999 Bugeaud and Hanrot [2] proved that for any solution (x, y, p, q)
of Catalan’s equation1 with q > p, the exponent q divides the relative class

1that is, x, y are non-zero integers and p, q are odd prime numbers such that xp − yq = 1
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number of the cyclotomic field Q(e2πi/p). Though this result wasn’t used
in Mihăilescu’s proof of Catalan’s conjecture, it strongly inspired his work.

Recently Mihăilescu [16] discovered that the argument of Bugeaud and
Hanrot [2], properly modified, implies a new proof for the second case. This
new proof does not use anything but the very basic facts about cyclotomic
fields, including the Stickelberger theorem. Neither does this proof depend
on any electronic computations. Thus, now we have similar algebraic proofs
for both cases of Catalan’s problem.

In the present paper we give a detailed exposition of this new proof for
the second case, that is, of the following theorem.

Theorem 1.2. Let (x, y, p, q) be a solution1 of Catalan’s equation. Then
q 6≡ 1 mod p (and p 6≡ 1 mod q by symmetry, because (−y,−x, q, p) is a so-
lution as well).

What Mihăilescu actually proves is the following theorem.

Theorem 1.3. Let (x, y, p, q) be a solution of Catalan’s equation. Then
q < 3(p− 1)2.

Due to a clever observation of Mignotte, Theorem 1.2 is an almost im-
mediate consequence of Theorem 1.3 and Mihăilescu’s “double Wieferich”
criterion (Proposition 8.3). See Section 8 for the details.

The present note also includes the original result of Bugeaud and Han-
rot, see Theorem 6.1. Though it is formally obsolete now (in particular,
Theorem 1.2 can, in principle, be proved without any reference to Theo-
rem 6.1, see Remark 8), we establish all techniques needed for this beautiful
result, and it would be unreasonable to miss it. As a benefit, we can quickly
dispose of the small exponents (see Corollary 6.2).

Plan of the paper In Sections 2 and 3 we recall basic notation and facts
concerning cyclotomic fields and heights. Section 4 is crucial: we introduce
the notion of Mihăilescu ideal and prove that it has few elements of small
size and zero weight. This section is formally independent of Catalan’s
equation. In the remaining part of the paper we apply this to solutions
of Catalan’s equation. In Section 6 we prove the theorem of Bugeaud and
Hanrot. In Section 8 we prove Theorems 1.3 and 1.2.

Acknowledgements I am pleased to thank Radan Kučera for useful
explanations about the Stickelberger ideal. I also thank Yann Bugeaud,
Gabi Hecke and Tauno Metsänkylä, who detected numerous inaccuracies
in the original text.

2. The cyclotomic field

Unless the contrary is stated explicitly, everywhere in this paper p and q
are distinct odd prime numbers, ζ is a primitive p-th root of unity, K = Q(ζ)
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is the corresponding cyclotomic field, and G = Gal(K/Q) is the Galois
group of K. We fix, once and for all, a complex embedding K ↪→ C.

For an integer k 6≡ 0 mod p we denote by σk the automorphism of K
defined by ζ 7→ ζk, so that

G = {σ1, . . . , σp−1}.

We also denote by ι the complex conjugation, so that ι = σp−1.
We define two real-valued functions on the group ring Q[G], the weight w

and the size ‖ · ‖, as follows. If

(1) Θ =
∑

σ

mσσ ∈ Q[G],

then
w(Θ) =

∑
σ

mσ, ‖Θ‖ =
∑

σ

|mσ|.

The weight function is additive and multiplicative; the size function satisfies
the inequalities

‖Θ1Θ2‖ ≤ ‖Θ1‖ · ‖Θ2‖, ‖Θ1 + Θ2‖ ≤ ‖Θ1‖+ ‖Θ2‖.

We say that Θ is non-negative (notation: Θ ≥ 0) if mσ ≥ 0 for all σ ∈ G.
In this case ‖Θ‖ = w(Θ).

For a given Θ as in (1) put

Θ+ =
∑

σ

max {mσ, 0}σ, Θ− = −
∑

σ

min {mσ, 0}σ.

Then Θ+,Θ− are non-negative, Θ = Θ+ −Θ− and ‖Θ‖ = ‖Θ+‖+ ‖Θ−‖.
Let I be an ideal of the ring R = Z[G]. We define the augmented part

of I and the the minus-part of I by

Iaug = {Θ ∈ I : w(Θ) = 0}, I− = (1− ι)I.

Notice that I− ⊆ Iaug. Also, given a positive real number r, we define the
r-ball of I by

I(r) := {Θ ∈ I : ‖Θ‖ ≤ r}.
More specific notation will be introduced at the appropriate points of the
paper.

3. Heights

In this subsection we recall basic facts about heights. Let α be an alge-
braic number. Fix a number field K (which is not necessarily the K from
Section 2) containing α, and denote by MK the set of all (non-equivalent)



72 Yuri F. Bilu

valuations of K normalized to extend the standard infinite or p-adic va-
luations of Q. The (absolute logarithmic) height h(α) is defined by

(2) h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max {|α|v, 1} .

One immediately verifies that the right-hand side is independent of the
choice of K, and so we have a well-defined function h : Q̄ → R≥0. The
definition implies that for any α, α1, . . . , αn ∈ Q̄ and m ∈ Z we have

h(α1 + · · ·+ αn) ≤ h(α1) + · · ·+ h(αn) + log n,(3)

h(α1 · · ·αn) ≤ h(α1) + · · ·+ h(αn),(4)

h(αm) = |m|h(α).(5)

If α ∈ Z then h(α) = log |α|. If α is a root of unity then h(α) = 0.
Let K be a number field. The product formula∏

v∈MK

|α|[Kv : Qv ]
v = 1 (α ∈ K∗)

implies that for any V ⊂ MK and α ∈ K∗ one has the following “Liouville
inequality”: ∏

v∈V

|α|[Kv : Qv ]
v ≥ e−[K : Q]h(α).

In particular, if K is a subfield of C, then any α ∈ K∗ satisfies

(6) |α|f ≥ e−[K : Q]h(α),

where f = 1 if K ⊂ R, and f = 2 otherwise.
Another consequence of the product formula is the identity

(7) h(α/β) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max {|α|v, |β|v}

for any α ∈ K and β ∈ K∗.

4. The Mihăilescu ideal

As the work of Mihăilescu suggests, the basic property of a solution
(x, y, p, q) of Catalan’s equation is that (x− ζ)Θ is a q-th power in K for
“many” elements Θ of the group ring R = Z[G]. (We use the notation from
Section 2.) We find it useful to axiomatize this property.

In this section p and q are fixed distinct odd prime numbers, and x is a
fixed integer. We do not assume that they come from a solution of Catalan’s
equation.

Definition. The Mihăilescu ideal IM as the set of all Θ ∈ R such that
(x− ζ)Θ ∈ (K∗)q.
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It turns out that, when |x| is sufficiently large, the augmented part Iaug
M

contains few elements of small size. More precisely, we have the following.

Theorem 4.1. (Mihăilescu) Let ε be a real number satisfying 0 < ε ≤ 1,
and assume that

(8) |x| ≥ max

{(
36 · 2p−1

(p− 1)2

)1/ε

,
4
π

q

p− 1
+ 1

}
.

Put
r = (2− ε)

q

p− 1
.

Then
∣∣Iaug

M (r)
∣∣ ≤ q.

Theorem 4.1 implies that |Iaug
M (2)| ≤ q when p ≤ (1− ε/2)q + 1 and

when (8) is satisfied. This can be refined with (8) replaced by a slightly
stronger assumption.

Theorem 4.2. (Bugeaud and Hanrot) Assume that p ≤ (2− ε)q + 1
where 0 < ε ≤ 1. Assume further that

(9) |x| ≥ max

{(
36 · 2p−1

(p− 1)2

)1/ε

, 8
(
0.8q(p′)1/(p−1)

)q
}

,

where p′ = 1 if x ≡ 1 mod p and p′ = p otherwise. Then Iaug
M (2) = {0}.

It is useful to formulate separately the particular case of this theorem,
corresponding to ε = 1 and x ≡ 1 mod p.

Corollary 4.3. Assume that p < q, that x ≡ 1 mod p and that

|x| ≥ 8 (0.8q)q .

Then Iaug
M (2) = {0}.

To deduce the corollary from Theorem 4.2, observe that 0.8q > 2 and
16 > 36/(p− 1)2. Hence

8 (0.8q)q > 16 · 2q−1 >
36 · 2p−1

(p− 1)2

whenever q > p.

The proof of Theorems 4.1 and 4.2 occupies the rest of this section.

4.1. The algebraic number (x− ζ)Θ. In this section, we investigate the
number (x− ζ)Θ. First of all, we have to estimate its height.

Proposition 4.4. For any x ∈ Z and Θ ∈ R we have

h
(
(x− ζ)Θ

)
≤ ‖Θ‖+ |w(Θ)|

2
log(|x|+ 1).
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Proof. Write Θ = Θ+ −Θ− as in Section 2. Using (7) with α = (x− ζ)Θ
+

and β = (x− ζ)Θ
−
, we obtain

h
(
(x− ζ)Θ

)
=

1
[K : Q]

∑
v∈MK

[Kv : Qv] log Xv,

where
Xv = max

{∣∣∣(x− ζ)Θ
+
∣∣∣
v
,
∣∣∣(x− ζ)Θ

−
∣∣∣
v

}
.

We have trivially
Xv ≤ (|x|+ 1)max{‖Θ+‖,‖Θ−‖}

if v is archimedean, and Xv ≤ 1 if v is non-archimedean. This implies

h
(
(x− ζ)Θ

)
≤

(
max

{∥∥Θ+
∥∥ ,

∥∥Θ−∥∥})
log(|x|+ 1).

Since
max

{∥∥Θ+
∥∥ ,

∥∥Θ−∥∥}
=
‖Θ‖+ |w(Θ)|

2
,

the proposition follows. �
Next, we observe that (x− ζ)Θ is “very close” to 1 if w(Θ) = 0. Below

log stands for the principal branch of the complex logarithm, that is

−π < Im log z ≤ π.

Proposition 4.5. If |x| > 1 and w(Θ) = 0 then
∣∣log(x− ζ)Θ

∣∣ ≤ ‖Θ‖
|x|−1 .

Proof. For any complex z satisfying |z| < 1 we have

| log(1 + z)| ≤ |z|
1− |z|

.

In particular, ∣∣∣∣log
(

1− ζσ

x

)∣∣∣∣ ≤ 1
|x| − 1

.

Since (x− ζ)Θ = (1− ζ/x)Θ when w(Θ) = 0, the result follows. �
Finally, we show that (x− ζ)Θ is distinct from 1 under certain mild

assumptions.

Proposition 4.6. Let x be an integer satisfying |x| ≥ 2, and, in addition,
x 6= −2 for p = 3. Then, for Θ ∈ R, we have (x− ζ)Θ 6= 1 unless Θ = 0.

Proof. Let p be the prime ideal of K lying over p. Then pp−1 = (p) and
p = (ζσ − ζτ ) for any distinct σ, τ ∈ G. In particular, for distinct σ and τ
we have

(10) (x− ζσ, x− ζτ )| p.

If x− ζ has no prime divisors other than p, then (x− ζ) = pk, and (10)
implies that k ≤ 1. Taking the norms, we obtain Φp(x) ∈ {±1,±p}, where

Φp(x) = xp−1 + xp−2 + · · ·+ 1
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is the cyclotomic polynomial.
On the other hand, in the case p ≥ 5 and |x| ≥ 2 we have

|Φp(x)| ≥ 2p−2 > p.

Similarly, we have |Φ3(x)| > 3 if |x| ≥ 3 or x = 2. This shows that x− ζ
has a prime divisor q distinct from p.

Put ` = ordq(x− ζ). Then (10) implies that

ordqσ(x− ζτ ) =
{

`, if σ = τ ,
0, if σ 6= τ .

Hence, writing Θ as in (1), we obtain

ordqσ

(
(x− ζ)Θ

)
= `mσ (σ ∈ G).

Now, if (x− ζ)Θ = 1 and ` 6= 0, then mσ = 0 for all σ. Hence Θ = 0. �

4.2. The q-th root of (x − ζ)Θ. By definition, for every Θ ∈ IM there
exists a unique α = α(Θ) ∈ K∗ such that α(Θ)q = (x− ζ)Θ. (Uniqueness
follows from the fact that K does not contain q-th roots of unity other
than 1.) Moreover, uniqueness implies that α(Θ1 + Θ2) = α(Θ1)α(Θ2) for
Θ1,Θ2 ∈ IM ; that is, the map α : IM → K∗ is a group homomor-
phism.

Proposition 4.7. Assume that |x| ≥ 2 and x 6= −2 if p = 3. Then for a
non-zero Θ ∈ IM we have α(Θ) 6= 1. Also,

h(α(Θ)) ≤ ‖Θ‖+ w(Θ)
2q

log(|x|+ 1).

Proof. The first statement follows from Proposition 4.6. For the second,
notice that qh(α(Θ)) = h

(
(x− ζ)Θ

)
by (5), and apply Proposition 4.4. �

It is crucial that, for Θ ∈ Iaug
M , the number α(Θ) is close (in the complex

metric) to a q-th root of unity. More precisely, we have the following.

Proposition 4.8. Assume that |x| ≥ 2 and that

(11) r <
π

2
(|x| − 1).

Then for any Θ ∈ Iaug
M (2r) there exists a unique q-th root of unity ξ = ξ(Θ)

such that ∣∣log
(
α(Θ)ξ(Θ)−1

)∣∣ ≤ ‖Θ‖
q(|x| − 1)

.

Moreover, ξ(−Θ) = ξ(Θ)−1. Further, for any Θ1,Θ2 ∈ Iaug
M (r) we have

ξ(Θ1 + Θ2) = ξ(Θ1)ξ(Θ2); that is, the map ξ : Iaug
M (r) → µq is a “local

homomorphism”.

(Here µq stands for the group of q-th roots of unity.)
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Proof. Existence of ξ(Θ) follows from Proposition 4.5. Further, since

‖Θ‖ ≤ 2r < π(|x| − 1),

we have

(12)
∣∣log

(
α(Θ)ξ(Θ)−1

)∣∣ ≤ ‖Θ‖
q(|x| − 1)

<
π

q
.

On the other hand,
∣∣log ξ1ξ

−1
2

∣∣ ≥ 2π/q for any two distinct q-th roots of
unity ξ1 and ξ2. This implies the uniqueness of ξ(Θ). The “local homo-
morphism” property follows from the uniqueness. �

4.3. Proof of Theorem 4.1. We may assume that q > p, since otherwise
the statement of the theorem is trivial. In particular, q ≥ 5. Also, observe
that in the set-up of Theorem 4.1 we have (11). Indeed, since

|x| ≥ 4
π

q

p− 1
+ 1,

we have
r < 2

p

q − 1
≤ π

2
(|x| − 1).

Hence for every Θ ∈ IM (2r) we have the well-defined ξ(Θ) as in Proposi-
tion 4.8.

Proposition 4.9. Let Θ ∈ Iaug
M (2r) satisfy ξ(Θ) = 1. Then Θ = 0.

Proof. Fix a non-zero Θ ∈ Iaug
M (2r) with ξ(Θ) = 1 and put α = α(Θ).

Using (3) together with the estimates from Subsection 4.2, we obtain

h(α− 1) ≤ ‖Θ‖
2q

log(|x|+ 1) + log 2

Also, (12) implies that

| log α| ≤ ‖Θ‖
q(|x| − 1)

<
π

q
≤ π

5
,

because q ≥ 5. The latter inequality implies that2

|α− 1| ≤ 1.4| log α| ≤ 1.4
‖Θ‖

q(|x| − 1)
.

The Liouville inequality (6) for the algebraic number α− 1 (which is dis-
tinct from 0 by Proposition 4.7) reads |α− 1|2 ≥ e−(p−1)h(α−1). Combining

2One has |ez − 1| ≤ 1.4|z| for z ∈ C with |z| ≤ π/5. Indeed, if |z| ≤ r then

|ez − 1| =
˛̨̨̨
z +

z2

2!
+

z3

3!
+ . . .

˛̨̨̨
≤ r +

r2

2!
+

r3

3!
+ . . . = er − 1.

The Schwarz lemma implies that

|ez − 1| ≤
er − 1

r
|z|.

Taking r = π/5, we obtain |ez − 1| ≤ 1.4|z|.
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this with the previously established estimates for |α− 1| and h(α− 1), we
obtain

2
(

log(|x| − 1)− log
1.4‖Θ‖

q

)
≤ (p− 1)

(
‖Θ‖
2q

log(|x|+ 1) + log 2
)

,

which can be rewritten as

(13)

(
2− p− 1

2q
‖Θ‖

)
log |x| ≤2 log

1.4‖Θ‖
q

+ 2 log
|x|

|x| − 1

+
p− 1
2q

‖Θ‖ log
|x|+ 1
|x|

+ (p− 1) log 2.

By the assumption,

p− 1
2q

‖Θ‖ ≤ p− 1
2q

2r = 2− ε < 2.

Replacing p−1
2q ‖Θ‖ by 2− ε in the left-hand side of (13), and by 2 in the

right-hand side, we obtain

ε log |x| ≤ 2 log
5.6

p− 1
+ 2 log

|x|+ 1
|x| − 1

+ (p− 1) log 2.

Now notice that |x| ≥ 36 by (8). It follows that

ε log |x| ≤ 2 log
5.6

p− 1
+ 2 log

37
35

+ (p− 1) log 2 < log 36
2p−1

(p− 1)2
,

which contradicts (8). �

Proof of Theorem 4.1. Let Θ1,Θ2 ∈ Iaug
M (r) satisfy ξ(Θ1) = ξ(Θ2). Then

ξ(Θ1 −Θ2) = 1 by Proposition 4.8, and Proposition 4.9 implies that
Θ1 −Θ2 = 0. We have shown that the map ξ : Iaug

M (r) → µq is injective,
which proves the theorem. �

4.4. Proof of Theorem 4.2. Assume that Iaug
M 3 Θ with ‖Θ‖ = 2. Put

α = α(Θ). Proposition 4.9 implies that ξ(σΘ) 6= 1 for any σ ∈ G. Equiv-
alently, | arg(ασ)| ≥ π/q for any σ, which implies that |ασ − 1| > sin(π/q)
for any σ. In other words,

|α− 1|v > sin(π/q) > 2.5/q

for any archimedean valuation v.
Write now Θ = σ1 − σ2, where σ1 and σ2 are distinct elements of G, and

put ζi = ζσi . Assume that |α− 1|v < 1 for a non-archimedean v. Then
|αq − 1|v ≤ |α− 1|v < 1. However,

αq − 1 = (x− ζ)Θ − 1 =
ζ2 − ζ1

x− ζ2
.



78 Yuri F. Bilu

Notice that ζ2 − ζ1 divides x− ζ2 if and only if x ≡ 1 mod p. We conclude
that |α− 1|v ≥ 1 for all non-archimedean v if x ≡ 1 mod p, and

|α− 1|v ≥ |ζ2 − ζ1|v = |p|1/(p−1)
v

for all non-archimedean v if x 6≡ 1 mod p.
We have proved that ∣∣(α− 1)−1

∣∣
v

< 0.4q

if v is archimedean, and∣∣(α− 1)−1
∣∣
v
≤

∣∣p′∣∣−1/(p−1)

v

if v is non-archimedean. (Recall that p′ = 1 if x ≡ 1 mod p and p′ = p
otherwise.) It follows that

h(α− 1) = h
(
(α− 1)−1

)
< log 0.4q +

log p′

p− 1
= log 0.4q(p′)1/(p−1)

and
h(α) ≤ h(α− 1) + log 2 < log 0.8q(p′)1/(p−1).

Now we apply (3–5) to obtain

log |x| = h(x) = h

(
ζ2 − ζ1

αq − 1
+ ζ2

)
≤ qh(α) + 3 log 2 < log 8

(
0.8q(p′)1/(p−1)

)q
,

which contradicts (9). �

5. Solutions of Catalan’s equation

In this section we summarize necessary properties of solutions. Every-
where in this section, (x, y, p, q) is a solution of Catalan’s equation; that
is, x, y are non-zero integers and p, q are odd prime numbers satisfying
xp − yq = 1. Recall the symmetrical property of solutions: if (x, y, p, q) is
a solution, then (−y,−x, q, p) is a solution as well.

We begin with the classical result of Cassels [3].

Proposition 5.1. (Cassels) We have q|x and p|y. Moreover, there exist
non-zero integers a, b and positive integers u, v such that

x− 1 = pq−1aq, y = pau,
xp − 1
x− 1

= puq,

y + 1 = qp−1bp, x = qbv,
yq + 1
y + 1

= qvp. �

The following is an easy consequence of Proposition 5.1 (see [1, Corol-
lary 2.2]).
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Proposition 5.2. The number λ := (x− ζ)/(1− ζ) is an algebraic integer.
The principal ideal (λ) is a q-th power of an ideal of the field K. �

Another consequence of Cassels relations is lower bounds for |x| and |y|
in terms of p and q. We need the following result of Hyyrö [5].

Proposition 5.3. We have |x| ≥ pq−1(q − 1)q + 1.

Proof. We shall use the following obvious fact: the four numbers x, y, a, b
in Proposition 5.1 are either altogether positive (the positive case), or alto-
gether negative (the negative case).

Since q|x, we have

pq−1aq = x− 1 ≡ −1 mod q.

Since pq−1 ≡ 1 mod q, this implies aq ≡ −1 mod q, which is equivalent to
a ≡ −1 mod q. Similarly, b ≡ 1 mod p. Now, in the positive case we have
a ≥ q − 1 and x ≥ pq−1(q − 1)q + 1. In the negative case we have either
a ≤ −q − 1, which implies that

|x| ≥ pq−1(q + 1)q − 1 > pq−1(q − 1)q + 1,

or a = −1.
It remains to show that the last option is impossible. Thus, assume that

a = −1, which implies 1− x = 1 + |x| = pq−1. Since we are in the negative
case, we have b ≤ 1− p, and

|y| = (|x|p + 1)1/q ≤ (1 + |x|)p/q < pp <

< 2p−1(p− 1)p < qp−1|b|p = |1 + y| < |y|,

a contradiction. �

6. The relative class number

Warning. In this section h stands for the class number rather than for
the height function.

As usual, let ζ be a primitive p-th root of unity and K = Q(ζ). Denote
by K+ the totally real part of K, and by H and H+ the class groups
of K and K+, respectively. It is well-known [19, Theorem 4.14] that H+

naturally embeds into H. The index [H : H+] is called the relative class
number and is denoted by h− = h−(p).

In this section we prove the following theorem, due to Bugeaud and
Hanrot [2].

Theorem 6.1. (Bugeaud and Hanrot) Let (x, y, p, q) be a solution of
Catalan’s equation with q > p. Then q|h−(p).
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It is not difficult to calculate the relative class number, using the stan-
dard class-number formulas; see, for instance, [19, Theorem 4.17]. Already
Kummer [8, pages 544, 907–918] calculated h−(p) for p < 100 (and even
determined the structure of the group H/H+). Tables of relative class
numbers are widely available; see, for instance, [19, pages 412–420]. Using
the tables, it is easy to verify that, for p ≤ 41, the number h−(p) has no
prime divisors greater than p. We obtain the following consequence.

Corollary 6.2. Let (x, y, p, q) be a solution of Catalan’s equation. Then
p, q ≥ 43. �

Proof of Theorem 6.1. We assume that q does not divide h−(p) and derive
a contradiction. Put λ := (x− ζ)/(1− ζ). Proposition 5.2 implies that
(λ) = aq, where a is an ideal of K. The class of a belongs to the q-component
of H. Since q does not divide h−(p) = [H : H+], the q-component of H is
contained in H+. Thus, a = αb, where α ∈ K∗ and b is an ideal of K+.
Write the principal ideal bq as (β), where β ∈ K+. Then λ = αqβ times a
unit of K.

Now recall that every unit of K is a real unit times a root of unity,
the latter being a q-th power in K. Hence, redefining α and β, we obtain
λ = αqβ with α ∈ K and β ∈ K+.

Since (1− ζ)/(1− ζ̄) is a root of unity, it is a q-th power in K. Hence

x− ζ

x− ζ̄
=

1− ζ

1− ζ̄
· λ

λ̄
=

1− ζ

1− ζ̄

(α

ᾱ

)q
∈ (K∗)q .

In other words, 1− ι ∈ IM , where ι is the complex conjugation and IM the
Mihăilescu ideal, defined in Section 4.

On the other hand, x ≡ 1 mod p by Proposition 5.1, and

|x| ≥ pq−1(q − 1)q + 1 > 8 (0.8q)q

by Proposition 5.3. We are in a position to apply Corollary 4.3, which
forbids IM to have elements of weight 0 and size 2. Since 1− ι is such an
element, we obtain a contradiction. �

7. The Stickelberger ideal

The Stickelberger ideal IS of the group ring R = Z[G] is defined by
IS = Rθ ∩R, where

θ =
1
p

p−1∑
a=1

aσ−1
a

is the Stickelberger element. In this section we establish some properties of
the ideal (1− ι)IS , where ι, as above, stands for the complex conjugation.
First of all, we recall the notion of the “minus-part”.
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By definition, the minus-part of R is R− = (1− ι)R. Further, for any
ideal I of R the minus part of I is defined by I− = I ∩R. We have

(14) I− ⊇ (1− ι)I ⊇ 2I−.

Here the first inclusion is obvious. To prove the second, observe that
(1− ι)2 = 2(1− ι), which implies the identity (1− ι)Θ = 2Θ for every
Θ ∈ R−. Hence

(1− ι)I ⊃ (1− ι)I− = 2I−,

which proves the second inclusion in (14).
Relation (14) implies, in particular, that the ideals I− and 1− ι)I are

of the same Z-rank.
After this deviation, we return to the Stickelberger ideal.

Proposition 7.1. There is a Z-basis θ1, . . . , θ(p−1)/2 of (1− ι)IS satisfying

‖θk‖ ≤ p− 1 (k = 1, . . . , (p− 1)/2).

Proof. First of all, observe that the Z-rank of (1− ι)IS is (p− 1)/2. Indeed,
the Z-rank of R− is (p− 1)/2, because it has the Z-basis

σk − σp−k (k = 1, . . . , (p− 1)/2).

Further, it is well-known that the index
[
R− : I−S

]
is finite (and equal to the

relative class number); see, for instance, [19, Theorem 6.19]. This implies
that the rank of I−S is also (p− 1)/2, and so is the rank of (1− ι)IS ,
because, as we have observed above, the two ranks are equal.

Now, given an integer k not divisible by p, put

Θk = (k − σk)θ

Then IS is generated (over Z) by all the Θk (see [19, Lemma 6.9]3). Since
Θk+p = Θk + pθ, the ideal IS is generated by Θ1 = 0,Θ2, . . . ,Θp−1 and pθ.
Since

Θk(1− ι) + Θp−k(1− ι) = pθ(1− ι),
the ideal (1− ι)IS is generated by the set

{Θk(1− ι) : k = 1, . . . , (p + 1)/2} .

Since Θ1 = 0, it is also generated by θ1, . . . , θ(p−1)/2, where

θk = (Θk+1 −Θk) (1− ι).

Since the Z-rank of (1− ι)IS is (p− 1)/2, the elements θ1, . . . , θ(p−1)/2 form
a Z-basis of I−S . It remains to estimate the size of θk.

An easy calculation shows that w(θ) = (p− 1)/2. Hence

w (Θk) = (k − 1)
p− 1

2
,

3In the statement of the lemma Washington writes “generated” without specifying “over Z”,
but he proves exactly what we need.
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and

w (Θk+1 −Θk) =
p− 1

2
.

On the other hand, we have Θk =
∑p−1

a=1 bak/pcσ−1
a which implies that

Θk+1 −Θk ≥ 0, and

‖Θk+1 −Θk‖ = w (Θk+1 −Θk) =
p− 1

2
.

It follows that ‖θk‖ ≤ ‖1− ι‖ · ‖Θk+1 −Θk‖ = p− 1, as wanted. �
For a positive integer n and a positive real r denote by S(n, r) the number

of points (x1, . . . , xn) ∈ Zn satisfying |x1|+ · · ·+ |xn| ≤ r. The following is
an immediate consequence of Proposition 7.1.

Corollary 7.2. Let r be a positive integer. Then the ideal (1− ι)IS con-
tains at least S ((p− 1)/2, r/(p− 1)) elements of size not exceeding r. �

8. Proof of Theorems 1.3 and 1.2

Mihăilescu proved the following (see [1, Proposition 3.1.1]).

Proposition 8.1. Let (x, y, p, q) be a solution of Catalan’s equation. Then
IM ⊇ (1− ι)IS. �

Since the elements of (1− ι)IS are of weight 0, the ideal (1− ι)IS is
contained in the augmented part of IM . Combining this with Corollary 7.2,
we obtain the lower bound

(15) Iaug
m (r) ≥ S

(
p− 1

2
,

r

p− 1

)
for any r > 0.

On the other hand, in Section 4, we obtained an upper bound for Iaug
m (r).

We are going to show that the two bounds are contradictory.
To adapt (15) for our purposes, we need a simple lemma.

Lemma 8.2. Let n and r be integers satisfying n ≥ 11 and r ≥ 3. Then

(16) S(n, r) > 4n2(r + 1).

Proof. When r is an integer, we have

S(n, r) =
n∑

k=0

2k

(
n

k

)(
r

k

)



Catalan without logarithmic forms 83

(see [6, Lemma 2.3]). If n ≥ 11 and r ≥ 3 then

8
(

n

3

)(
r

3

)
=

2
9
n(n− 1)(n− 2)r(r − 1)(r − 2)

≥ 2
9
· 10
11

· n2 · 9 · 3
4
· (r + 1) · 2 · 1

=
30
11

n2(r + 1),

4
(

n

2

)(
r

2

)
= n(n− 1)r(r − 1)

≥ 10
11

· n2 · 3
4
· (r + 1) · 2

=
15
11

n2(r + 1).

It follows that

S(n, r) ≥ 4
(

n

2

)(
r

2

)
+ 8

(
n

3

)(
r

3

)
≥ 45

11
n2(r + 1) > 4n2(r + 1). �

Proof of Theorem 1.3. Assume that q ≥ 3(p− 1)2 and put

r =
⌊

q

(p− 1)2

⌋
, n =

p− 1
2

.

Then r ≥ 3 by the assumption and n ≥ 21 by Corollary 6.2. Further, Propo-
sition 5.3 implies that

|x| ≥ pq−1(q − 1)q + 1 ≥ 36 · 2p−1

(p− 1)2
.

Now using subsequently Theorem 4.1 with ε = 1, inequality (15) and
Lemma 8.2, we obtain

q ≥
∣∣Iaug

M ((p− 1)r)
∣∣ ≥ S (n, r) > 4n2(r + 1) > 4

(
p− 1

2

)2 q

(p− 1)2
= q,

a contradiction. �
Theorem 1.2 is a consequence of Theorem 1.3 and Mihăilescu’s “double

Wieferich criterion” [14] (see also [1, Theorem 3.2]).

Proposition 8.3. (Mihăilescu [14]) Let (x, y, p, q) be a solution of
Catalan’s equation. Then

qp−1 ≡ 1 mod p2, pq−1 ≡ 1 mod q2. �

Proof of Theorem 1.2. Assume that q ≡ 1 mod p. Since qp−1 ≡ 1 mod p2 by
Proposition 8.3, we have q ≡ 1 mod p2. Since q is odd, it cannot be equal to
p2 + 1 or 3p2 + 1. Also, notice that p 6= 3 by Corollary 6.2. It follows that
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q 6= 2p2 + 1, because the latter number is divisible by 3 (this observation is
due to Mignotte). Thus, q ≥ 4p2 + 1, which contradicts Theorem 1.3. �

Remark. It is worth mentioning that, for p ≥ 5, one can prove Theorem 1.2
without any reference to Corollary 6.2. Indeed, the same argument as in
Lemma 8.2 shows that (16) holds for n ≥ 5 and r ≥ 4. This implies that
that q ≤ 4(p− 1)2 for p ≥ 11, which is sufficient to conclude that Theo-
rem 1.2 is true for p ≥ 11.

Further, (16) is true for n = 3 and r ≥ 5, as well as for n = 2 and r ≥ 9.
This implies that q ≤ 5(p− 1)2 = 180 for p = 7, and q ≤ 9(p− 1)2 = 144
for p = 5. Hence Theorem 1.2 is true for p = 7 and p = 5, except perhaps
the case (p, q) = (5, 101). The latter can be ruled out by verifying that
5100 6≡ 1 mod 1012 (which can be done on a pocket calculator) and applying
Proposition 8.3.

Finally, recall that the case p = 3 has been solved long ago by Nagell [17].
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